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Interactions between humans give rise to complex social networks that are characterized
by heterogeneous degree distribution, weight-topology relation, overlapping community
structure, and dynamics of links. Understanding these characteristics of social networks is
the primary goal of their research as they constitute scaffolds for various emergent social
phenomena from disease spreading to political movements. An appropriate tool for
studying them is agent-based modeling, in which nodes, representing individuals,
make decisions about creating and deleting links, thus yielding various macroscopic
behavioral patterns. Here we focus on studying a generalization of the weighted social
network model, being one of the most fundamental agent-based models for describing the
formation of social ties and social networks. This generalized weighted social network
(GWSN) model incorporates triadic closure, homophilic interactions, and various link
termination mechanisms, which have been studied separately in the previous works.
Accordingly, the GWSN model has an increased number of input parameters and the
model behavior gets excessively complex, making it challenging to clarify the model
behavior. We have executed massive simulations with a supercomputer and used the
results as the training data for deep neural networks to conduct regression analysis for
predicting the properties of the generated networks from the input parameters. The
obtained regression model was also used for global sensitivity analysis to identify which
parameters are influential or insignificant. We believe that this methodology is applicable for
a large class of complex network models, thus opening the way for more realistic
quantitative agent-based modeling.

Keywords: social networks, agent-based modeling, high-performance computing, metamodeling, deep learning,
sensitivity analysis

1 INTRODUCTION

When analyzing the structural patterns of real social networks, the synthetic model-generated
networks have served as references for comparison and enhanced our insight into their properties
(Kertész et al., 2021). Here we classify the models of social networks into two categories: static models
and dynamic models. The static models constitute a family of models, in which the network links are
randomly generated with certain constraints. The most fundamental one is the Erdés-Rényi model
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(Erdoés and Rényi, 1960), which generates a random network
under the constraint on the average degree. Other examples
include the configuration model, the exponential random
graph model, and the stochastic block models (Barabasi and
Pésfai, 2016; Newman, 2018; Menczer et al., 2020). Often these
models enable us to compute their properties analytically. After
inferring the model parameters for a real social network of
interest, these models serve as useful null models. One can
then judge, for instance, whether an observed quantity is
significantly different from the expected null model value or
not, thus serving as hypothesis testing.

On the other hand, dynamic models are models, in which the
network evolves as a function of time. One of the major objectives
of the dynamic models is to find the mechanisms that lead to
certain structures observed in empirical networks. Here the
models are defined by the rules on how nodes and links are
created or deleted, in order to incorporate the perceived
mechanisms of the evolutionary processes of social networks.
However, in the light of vast complexities of social dynamics,
these mechanisms should, at best, be considered as plausible ones.
This class includes Barabdsi-Albert scale-free network model and
its generalizations (Barabdsi and Posfai, 2016) as well as Kumpula
et al.’s weighted social network model (Kumpula et al., 2007). The
latter will be in the focus of the present paper. These models allow
us to get insight into how and why the observed networks have
been generated and, more importantly, to predict the possible
evolution of real networks.

While the static models are often analytically solvable,
analytical tractability of dynamic models is limited to some
basic cases. These models are usually designed to be as simple
as possible, in order to identify the most important mechanisms,
yet they should not be considered for quantitative comparison
and prediction. When models are extended to incorporate aspects
of reality, understanding their behavior becomes a formidable
task since the parameter space is high-dimensional and non-
trivial relationships between the parameters may occur. This
makes the choice of appropriate parameters very difficult.

In this paper, we are going to overcome this difficulty by high
performance computing (HPC) approach and by the
development of metamodels in order to investigate the
parameter space of an agent-based model of social networks.
To achieve this, a massive number of simulations will be
performed, the results of which are then used as training
data for a neural network model to either infer or analyze
the properties of the generated networks. Such a regression
model is called a metamodel or surrogate model as it is a model
of a simulation model (Wang and Shan, 2007; Zhao and Xue,
2010; Ghiasi et al., 2018). Metamodels are developed as
approximations of the expensive simulation process in order
to improve the overall computation efficiency and they are
found to be a valuable tool to support activities in modern
engineering design, especially design optimization. Once a good
metamodel is obtained, it is useful for various purposes
including parameter tuning, understanding of the model
behavior, and sensitivity analysis. The metamodel is effective
especially when the simulations are computationally
demanding, which is the case for agent-based models with
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many parameters. To the best of our knowledge, this study is
the first attempt to apply the metamodeling approach to an
agent-based model of social networks. Here we will also carry
out a sensitivity analysis to demonstrate that this approach is
useful to distinguish between influential and negligible
parameters.

This paper is organized as follows. In Section 2, we first
introduce Kumpula et al.’s weighted social network model and its
various extensions, then we formulate a generalized model to
incorporate most of the previous extensions. In Section 3, we
conduct the regression analysis and the sensitivity analysis using
neural networks. Section 4 is devoted to the summary and
discussion.

2 GENERALIZED WEIGHTED SOCIAL
NETWORK MODEL

2.1 Background

The original weighted social network (WSN) model was
introduced in Kumpula et al. (2007), which is a dynamic,
undirected, and weighted network model leading to a
stationary state. The model starts with an empty network of N
nodes. Links are created, updated, and eliminated using three
essential mechanisms, which are called a global attachment (GA),
a local attachment (LA), and a node deletion (ND). The GA
mechanism represents the focal closure in sociology (Kossinets
and Watts, 2006), meaning that ties between people are formed
due to the shared activities. In the WSN model it is implemented
by creating links between randomly chosen nodes. The LA
mechanism represents the cyclic or triadic closure (Kossinets
and Watts, 2006), implying that friends of friends get to know
each other. The created new links by GA or LA mechanisms are
assigned link weights of the same positive value. Whenever the
LA mechanism is applied, weights of involved links increase by
some fixed non-negative value, implying the link reinforcement
(note that the triadic closure is not always successful in the LA
mechanism, which will be discussed later). Finally, the ND
mechanism represents a turnover of nodes, which can be
implemented by removing all the links incident to a randomly
chosen node. Without the ND mechanism, the model would end
up with a complete graph, while with it a stationary state sets in
for long times.

The WSN model turns out to generate several stylized facts of
social networks (Jo et al., 2018), among which the Granovetterian
community structure is the most important one as it connects the
global structure of the network with local features (Granovetter,
1973). The Granovetterian community structure means that
communities of nodes that are tightly and strongly connected
to each other are connected via weak ties, as shown in Figure 1
(top center); nodes connected by strong links within communities
have many common neighbors while the opposite is true for weak
links. If one of the above mechanisms is missing from the model,
the model is not able to reproduce the Granovetterian community
structure, indicating that the model contains the minimal set of
the essential ingredients for this structural feature. Among several
parameters in the model, link reinforcement is the most crucial
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low link reinforcement

homophilic WSN
segregated phase

overlapping communities (bottom right).

original WSN

FIGURE 1| Snapshots of the networks generated by the GWSN model for various combinations of parameter values in the model. The top center panel shows the
network generated by the original WSN model showing the Granovetterian community structure when the links are reinforced sufficiently. The Granovetterian community
structure is absent when the link reinforcement is not high enough, as shown in the top left panel. The top right panel presents the network with higher clustering than the
original WSN model when only the link aging mechanism is applied for the link termination. The bottom panels show the effect of homophilic interaction on the
generated networks; depending on the parameter values, it shows the structural transition from the segregated, non-overlapping communities (bottom left) to the

homophilic WSN
overlapping phase

one to get the desired community structure (see Figure 1 (top
left)).

Let us briefly sketch how the Granovetterian community
structure emerges in the model: As the nodes are initially
isolated, they make connections with other nodes by means of
the GA mechanism. By the LA mechanism, created links are
gradually strengthened and occasionally new links are also
formed by the triadic closure. Such clusters formed around
triangles are seeds for communities. These seeds develop as
their sizes increase by the GA mechanism, and the links inside
the communities get more dense due to the triadic closure and
their weights become larger by the link reinforcement, thus
leading to the Granovetterian community structure. By the
ND mechanism, all the links adjacent to a randomly chosen
node are removed in order to reach the nontrivial stationary state
of network dynamics.

Although the WSN model has remarkably reproduced some
salient features of social networks, it lacks other realistic
considerations such as the geographical dimension
(Barthélemy, 2011) and multiplexity (Boccaletti et al., 2014;
Kiveld et al.,, 2014). In order to consider such factors, Murase
et al. (2014a) extended the WSN model by assuming that each
node can have connections in different layers for representing
different types of connections. These nodes are also embedded
into a two-dimensional geographical space, which enables to
define the geographical distance between nodes as used in
cases when the nodes choose other nodes that are

geographically close to them for the GA mechanism. The
locality of interaction naturally leads to the correlation
between different layers and to a multilayer Granovetterian
community structure. In the absence of interlayer correlations,
the generated network does not have a community structure
when merged into a single-layer network.

Since the ND mechanism, as the only mechanism eliminating
links, could be too abrupt for representing the real dynamics of
social networks, alternative mechanisms focusing on the links,
namely, link deletion (LD) (Marsili et al., 2004) and link aging,
have been studied within the framework of the WSN model
(Murase et al, 2015). The LD mechanism is implemented by
removing randomly chosen links irrespective of their weights,
while for the link aging each link weight gradually decays and is
removed when the link weight gets smaller than some threshold
value. Different link termination mechanisms lead to different
network structures, e.g., see Figure 1 (top right) for the case of
link aging. Three link termination mechanisms (ND, LD, and
aging) are not exclusive to each other but may work
simultaneously in reality. Note that the WSN model with the
link deletion mechanism has been used to study the effect of the
so-called channel selection on the network sampling (T6rok et al.,
2016).

Finally, Murase et al. (2019) extended the WSN model to
incorporate the effect of homophily or the tendency of
individuals to associate and bond with similar others
(McPherson et al., 2001). For this, each node is assigned a
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set of features, similarly to the Axelrod model and its variants
(Axelrod, 1997; Centola et al., 2007; Vazquez et al., 2007;
Vazquez and Redner, 2007; Gandica et al., 2011; Tilles and
Fontanari, 2015; Min and Miguel, 2017). Precisely, each node is
represented by a feature vector that is a collection of traits for
each feature. These features may relate to gender, ethnicity,
language, religion, etc. The GA and LA mechanisms apply only
to the nodes sharing the same trait for a randomly chosen
feature per interaction. The number of features represents the
social complexity of the population, while the number of traits
per feature represents the heterogeneity of the population.
Depending on the number of features and the number of
traits per feature, the structural transition of the network
from an overlapping community structure to a segregated,
non-overlapping community structure is observed [see
Figure 1 (bottom)].

In addition, we remark that the temporal network version of
the WSN model was studied by incorporating the timings of
interactions by the GA and LA mechanisms (Jo et al., 2011). This
temporal WSN model generates not only the Granovetterian
community structure but also bursty interaction patterns (Karsai
et al., 2018).

In this paper we treat the WSN model by considering all
generalizations including the geographical dimension, various
link termination mechanisms, and the homophilic interaction at
the same time, which is called a generalized weighted social
network (GWSN) model hereafter.

2.2 Model Definition

We define a generalized weighted social network (GWSN) model
for generating realistic social networks. Let us consider a network
of N nodes. Each individual node i = 1,.. ., N is located in a fixed
position (x;, y;) that is randomly selected in a unit square [0, 1] x
[0, 1] with periodic boundary conditions. The Euclidean distance
between two nodes i and j is denoted by r;. The node i is
characterized by a feature vector of F components,
ie, di=(d},...,0f Fy with a efl,...,q} for eachjfe {1,..

The value of af is called a trait. The value of each o; is un1formly
randomly selected in the beginning of the s1mulat1on and then
fixed throughout. In reality the different feature may have
different numbers of traits, whereas we assume for simplicity
that all features have the same number of traits. By the
homophilic interaction rule for a randomly chosen feature f,
only a pair of nodes with the same trait, i.e., of = 0{ , are allowed
to interact with each other. A link weight between nodes i and j is
denoted by wj;, and w;; = 0 indicates the absence of the link
between them.

The implementation of the GWSN model is summarized as a
pseudocode in Algorithm 1. A simulation starts with an empty
network of size N. For each Monte Carlo time step ¢, every node
updates its neighborhood by sequentially applying the GA and
LA mechanisms as well as three link termination mechanisms,
i, ND, LD, and aging.

For the GA mechanism, let us consider a focal node i and a
randomly chosen feature f from {1,..., F}. We obtain a set of
nodes whose fth feature has the same value as aif and that are not
connected with the node i, precisely,

i
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1! ={jlo] = o] & w;; =0}. (1)

One of nodes in 1"{ , say j, is randomly chosen with the probability
given by

r..
GA _ ij
PiEy )
jer/Tij

Here the non-negative parameter a controls the locality of
interaction. When « = 0, there is no geographical constraint.
The larger the value of « is, the more likely nodes tend to make
connections with geographically closer nodes. If the focal node i
has no neighbors, equivalently, if the node ’s degree is zero (k; =
0), it makes connection to the node j. Otherwise, if k; > 0, the link
between nodes i and j is created with a probability p,. The initial
weight of the new link is set to wy. See Figure 2A for an example
of the GA mechanism.

For the LA mechanism, if the focal node i has n fghbors, it
randomly chooses one of its neighbors j with ol ; =0; with the

probability proportional to the link weight wy;, prec1sely,
LA Wij
pi . = . (3)
! z j’eA,f wij'

Here Af denotes a set of i’s neighbors whose fth feature has the
same value as a . Then the node ] randomly chooses one of its
neighbors but i, say [, with ‘71 = 0] , with the probability
proportional to the link weigth w;.

- o (4)
2 el Wi

P]l
Here Af denotes the set of j’s nelghbors, but i, whose fth
feature has the same value as ¢/. If nodes i and I are not
connected to each other, the link between them is created with
the probability p, and the initial weight of the new link is set to
wo. In addition, the weights of all involved links are increased
by the reinforcement parameter w,, irrespective of whether a
new link is created or not. Figure 2B shows an example of the
LA mechanism.

For the link termination, we sequentially apply all of ND,
LD, and aging mechanisms. At each time step ¢, each node is
replaced by an isolated node with the probability p,,. In
addition, each link in the network is deleted with the
probability p;;. For all links that are not deleted, the
weight of each link is multiplied by a factor 1 — A and the
links whose weights are below a threshold value, denoted by
Wy, are deleted. Here the parameter A € [0, 1] controls the
speed of aging.

We remark that previously studied modifications of the
WSN model correspond to this GWSN model with some
parameters set to certain values. For example, if each
feature in the feature vector can have only one value, i.e., if
g=1forall fe {1 ., F}, every node can interact with every
other node as O’ = 1 for all i and f. It means that the GWSN
model reduces to the model without the homophilic
constraint. In addition, setting p,4, pis or A to zero nullifies
the ND, LD, or aging mechanism, respectively.
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Algorithm 1 Pseudocode for the GWSN model

fori=1,...,Ndo

Initialize the node ¢’s location (z;, y;) and its feature vector (o;, ..., 0;

for;j=1,...,i—1,¢4+1,...,Ndo
Wij < 0.
fort=1,... thax do
fori=1,....,Ndo
if The node 7 has no neighbor OR rand(
Randomly choose a feature f from {1

if Flf is not empty then

> Initialization
1 F)
i)

> Global Attachment

< p, then
F}.

Obtain a set Flf of nodes whose fth feature is the same as o

f

; and that are not connected to :.

Randomly choose a node j from Flf with the probability proportional to r;j(" (Eq. (2)).
Create a link between 7 and j and w;; < wp.

fori=1,...,Ndo

Randomly choose a feature f from {1,..., F'}.

> Local Attachment

Obtain a set A{ of 7’s neighbors whose fth feature is the same as a;f .

if A{ is not empty then

Randomly choose a node j from Alf with the probability proportional to w;; (Eq. (3)).

Wij <= Wij + Wy

Obtain a set Ajf ; of j’s neighbors but < whose fth feature is the same as o7 .

e[
if A; _; is not empty then

f
J

Randomly choose a node [ from Aji —; with the probability proportional to w;; (Eq. (4)).

Wy <= wj; + Wy.

if Nodes 7 and [ are connected then

Wi < Wy + Wy
else if rand() < pa then

Create a link between 7 and [ and w;; <+ wy.

fori:=1,...,Ndo
if rand() < p,q then

> Node Deletion

Remove all links adjacent to the node 7 (i.e., w;; < 0 for every neighbor 7).

for ij in {ij]w;; > 0} do
if rand() < p;q then
Remove the link 75 (i.e., w;; < 0).
else
Wij < Wi5 X (1 — A)
if w;; < wy, then

Remove the link 2j (i.e., w;; < 0).

> Link Deletion

> Link Aging

The input parameters of the GWSN model are
summarized in Table 1, together with the sampling
ranges of those parameters for the simulation. Here we
respectively fix the values of wy and wy, to 1 and 0.5, as
they set scales only.

2.3 Network Properties

For the systematic comparison between the generated networks
by the GWSN model and the empirical networks, we adopt
several quantities characterizing network properties as
described below.

Average degree (k). It is defined as zfﬁlk,-/N .

Degree assortativity coefficient p;. It is defined as
Pr = i kk e — qqur)/oé, where ey is the fraction of
links connecting nodes with degrees k and k', g is the
distribution of the excess degree k, and 02 is the variance of
qx (Newman, 2002, 2003). It characterizes the preference for
nodes to attach to others with similar degree.

Average link weight {w). It is defined as ) ;w;/L, where L is
the number of links having positive weights.

Average clustering coefficient C. It is defined as Zf\zjlci/N ,
where ¢; is the local clustering coefficient for the node i. ¢; is
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Global Attachment

—Q

GA
Dij XT;

9 9 O
® e

2,3,1)

Local Attachment

2,3,1)

ba 31,2

FIGURE 2 | Schematic diagrams of (A) the global attachment (GA) and (B) the local attachment (LA) of the GWSN model. Each node is described by a feature
vector, e.g., 3; = (2,3, 1) for the node i. For each update by the GA and LA mechanisms, a feature is randomly chosen, e.g., f= 2, then the node i interacts only with other
nodes, say j, with 0/2 = 0,2 = 3. For the GA mechanism, the dependence on the geographical distance between nodes, rj, is controlled by the parameter « (see Eq. 2). For
the LA mechanism, the triadic closure occurs with the probability p, and the involved links increase their weights by w,.

the number of links between 7’s neighbors divided by k; (k; —
1)/2 (Watts and Strogatz, 1998).

e Average link overlap O. It is defined as } ;;0;/L, where o;; is
the link overlap for the link ij. 0;; is defined as m
with n;; being the number of neighbors common to both i
and j (Onnela et al., 2007a,b).

e Pearson correlation coefficient between local clustering
coefficient and degree py . This quantity measures
correlation between ¢; and k; for nodes.

e Pearson correlation coefficient between link overlap and
weight p,,,. This quantity measures correlation between o;;
and wj; for links.

e Percolation transition points rescaled by the average degree.
The Granovetterian community structure can be analyzed
by means of the link percolation method (Onnela et al.,
2007a,b). For this, links are sorted according to their
weights. For the ascending percolation, the weakest links
are removed one by one from the network to see how many
links need to be removed to disintegrate the global structure
of the network. f¢ denotes the fraction of links removed
when the disintegration occurs. Thus, it is called “transition
point”. f f is similarly defined but by removing the strongest
links one by one from the network. Significant difference
between f? and f‘j implies the existence of the
Granovetterian community structure. In our work we
have recorded the fraction of remaining links at the
percolation transition multiplied by the average degree
for both ascending and descending link percolation,
denoted by (1 - f%<k), and (1 - f9)<k), respectively.
Generally speaking, the fraction of remaining links
multiplied by the average degree indicates the average
number of remaining neighbors per node.

2.4 Remarks

The GWSN model has a large number of input parameters as
listed in Table 1, so that understanding the consequences of the
model mechanisms and their effects on the statistical properties
of the generated networks becomes a formidable task. So far each
of the above mechanisms has been studied independently for

TABLE 1 | Notations and sampling ranges of the input parameters of the GWSN
model. Parameters indicated with the asterisk (*) take the values sampled
uniformly on the logarithmic scale, while the others take the values sampled
uniformly on the linear scale. Parameters indicated with the dagger (') take only
integer values. Values of wg and wy, are fixed.

Symbol Input parameter Sampling range
N Number of nodes [2,000, 5,000]
F Number of features [1.10]"

q Number of traits per feature 11,101

a Dependence on the geographical distance [0, 4]

pr Probability of global attachment [105,1072]
Pa Probability of triadic closure [1078,107" ]'
Wy Link reinforcement in the local attachment [0, 2]

Pra Probability of node deletion [105,102]
Prd Probability of link deletion [106,10-3]
A Speed of link aging [105,101]
Wo Initial weight of new links 1

Wi, Threshold weight for removing aged links 0.5

simplicity and theoretical tractability (Murase et al., 2014a, 2015,
2019), however, these mechanisms might coexist and interfere in
reality. The non-trivial interplay between such mechanisms
makes the analysis of the model highly complex, hence the
behavior of the GWSN model cannot be simply predicted
based on the previous studies.

In order to overcome such difficulties we will use machine
learning technique to perform regression analysis, as a new, general
method to handle models with a large number of parameters. By
using deep learning we will investigate the input-output
relationships, where the inputs are model parameters (Table 1)
and outputs are network properties (Table 2), respectively.

3 PARAMETER-SPACE EXPLORATION
WITH DEEP LEARNING METAMODELS

3.1 Regression Analysis

Since the GWSN model has a fairly large number of parameters, it is
not easy to understand the model behavior when parameter values
change simultaneously, which hinders tuning the parameter values
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TABLE 2 | Notations of network properties considered in this work.
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Symbol Network property

(k) Average degree

P Degree assortativity coefficient

w)y Average link weight

C Average clustering coefficient

(0] Average link overlap

Pok Pearson correlation coefficient between local clustering coefficient and degree

Pow Pearson correlation coefficient between link overlap and weight

A -k Percolation transition point rescaled by the average degree: The critical fraction 72 of links are removed in ascending order of
weights

- fg k) Percolation transition point rescaled by the average degree: The critical fraction fg of links are removed in descending order

of weights

TABLE 3| Mean squared error (MSE) of the metamodels obtained for each output
feature. The variances of the test dataset are also shown as a reference.

Network property MSE Variance
(k) 3.22 676.4
P 0.000607 0.0162
log 10{w) 0.000414 0.423
C 0.000363 0.0309
(0] 0.000247 0.0175
Pek 0.00170 0.0730
Pow 0.000647 0.0379
A =13k 0.122 1.23
- f§)<k> 0.076 0.208

to empirical data. In order to overcome this difficulty, we conduct a
regression analysis using machine learning as follows. We first run
the simulation of the model a large number of times for sampling
the parameter space defined in Table 1 uniformly randomly. We
execute these simulations on the supercomputer Fugaku using four
thousand nodes (192 k CPU cores) for 8 h and used CARAVAN
framework (Murase et al,, 2018) for the job scheduling. Each
simulation is implemented as an OpenMP" parallelized function
running on four threads while the whole program runs as an MPI*
job. For each set of parameter values, we conduct five independent
Monte Carlo runs with different random number seeds. For each
generated network, we measure the network properties, such as the
average degree and the average link weight, as listed in Table 2. The
network quantities are measured every 5,000 steps until the
simulation finishes at ¢ = 50,000, thus yielding 10 entries for
each run. Most simulations typically finish in 10 min, however,
we find very rare cases that are exceptionally computer time
demanding. To avoid such edge cases, we abort the simulation
if the average degree exceeds a threshold ky, = 150 [inspired by Hill
and Dunbar (2003)] since the network is no longer regarded as a
sparse network for the network sizes used (see Table 1). The
number of features are 11 since there are 10 input parameters in
addition to the simulation time step f. As a result, we obtained
training data of about 25 million entries (0.5 million parameter
sets).

'https://www.openmp.org/
*https://www.mpi-forum.org/

The sets of input parameters and output network properties are
then used to train an artificial neural network (ANN) for the
regression analysis. We use an ANN with three hidden layers each
of which consists of 7,,; (=30) fully connected rectifier linear unit
(ReLU) with the dense output layer with the linear activation function.
We chose ANN because it is one of the standard ways for
metamodeling and it indeed showed a significantly Dbetter
performance for our case compared to the classical regression
methods including Ridge, Lasso, and ElasticNet regression using
up to third-order polynomial features. All input data are pre-
processed by scaling each of the input ranges into the unit interval.
The input parameters indicated by the asterisk (*) in Table 1 are scaled
after taking the logarithm. ANN are trained to minimize the mean
squared error for 2,000 epochs using the Adam optimization
algorithm with a batch size of 200. We obtained these hyper-
parameters by the grid search over the number of hidden layers in
[2, 3], the number of units in each layer in [15, 30], and the learning
rate in [0.001, 0.01]. The mean squared errors for the test set that are
obtained independently from the training set are summarized in
Table 3. The accuracy of the regression is good enough for our
purpose although a better performance could be obtained by a more
extensive tuning of hyper-parameters or other regression methods
such as support vector regression, Gaussian process, or Kriging (Wang
and Shan, 2007; Zhao and Xue, 2010; Ghiasi et al., 2018). We used
OACIS for the tuning of hyper-parameters (Murase et al., 2014b,
2017). We conducted regression for each output feature in Table 2.
For the analysis of the link weights, we take the logarithm of {w) since
its scale differs by orders of magnitude. Keras (Chollet, 2015),
TensorFlow (Abadi et al, 2015), and scikit-learn (Pedregosa et al.,
2011) were used for the implementation. The source code for both the
simulation and the analysis is available online’.

An example of the results of the regression analysis is shown in
Figure 3. In Figure 3A, the average degree (k) predicted by the
machine learning as a function of p, is shown as the dashed curve
when N = 2,000, F=2,q=2,a=0,p,=0.001,w, =1, pg = 0.001,
pia=10.01, A = 0.003, and t = 50,000 are used. In the same figure,
the simulation results are depicted by filled circles. Note that the
prediction by the machine learning is not just an interpolation of
these simulation results since these simulation results were not
included in the training data but conducted separately. Figure 3

*https://github.com/yohm/GWSN_metamodeling
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FIGURE 3 | Comparison between the predictions by machine learning and the simulations. Each panel shows how each network property of the generated
networks changes with respect to the value of the parameter for the triadic closure, p . In each panel the dashed curve shows the predictions by machine learning while
the filled circles indicate the simulation results averaged over five independent runs, showing that the machine learning predicts the model outputs quite well. Other
parameter values are fixed at N = 2,000, F = 2,9 =2, a =0, p, = 0.001, w, = 1, ppy = 0.001, py = 0.01, A = 0.003, and t = 50,000.

also includes the results for other network properties such as
P> WY, C, O, peses Pows (1 = f2)<kY,and (1 - ff)(k). While the
behavior of the average degree (k) as a function of p, is easy to
interpret, the other quantities show complex non-monotonic
dependence on p,. For instance, as shown in Figure 3D, the
average clustering coefficient C increases with p, for the
ranges of p, < 0.1 and p, > 0.3, while it decreases with p,
for the range of 0.1 < p, < 0.3. Other non-monotonic
dependencies on p, are also observed for other network
properties. As this example demonstrates, the metamodels
reproduce the model outputs, which is useful not only for
quantitative parameter tuning but also for understanding the
properties of the model. We provide an online interactive
chart that allows users to observe the responses of the network
properties to the input parameters®.

We remark as mentioned in Subsection 2.2 that by setting
some parameters to certain values the GWSN model falls back to

*https://yohm.github.io/GWSN_metamodeling

the simpler versions in previous studies (Kumpula et al., 2007;
Murase et al., 2014a, 2015, 2019). We note that the results
obtained by our metamodeling approach are found to be
consistent with the previous findings.

3.2 Sensitivity Analysis

The input parameters of the model are not equally important.
While some of them have a major impact on the output, others
do not alter the results significantly. Sensitivity analysis is a
method to evaluate how the uncertainty in the output of a model
or system can be divided and attributed to the uncertainty in its
inputs, namely, it tells which input parameters are important
and which are not. While several methods have been proposed
for sensitivity analysis (Saltelli et al., 2007), here we adopt the
variance-based sensitivity analysis proposed by Sobol’ (2001)
and Saltelli et al. (2010). As we have seen in Figure 3, the GWSN
model shows highly non-linear dependency on the input
parameters. Furthermore, simultaneous perturbations of two
or more input parameters often cause greater variations in the
output than the sum of the variations caused by each of the
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FIGURE 4 | Sensitivity analysis of the metamodel. The first-order index S; and the total-effect index S7; of each input parameter (Table 1) against each output
(Table 2) are shown with error bars indicating the 95% confidence intervals. See Egs. 5, 6 for definitions of S; and S7;, respectively.

perturbations alone. The variance-based method is effective for
such models because it measures sensitivity across the entire
input space (i.e., it is a global method), it deals with nonlinear
responses, and it takes into account the effect of interactions in
non-additive systems. While the variance-based methods
generally require a larger number of sampling than other
methods, they are easily calculated once we developed a
metamodel as is done in Section 2.

In variance-based sensitivity analysis, the sensitivity of the
output to an input variable is quantified by the amount of
variance caused by the fluctuation of the input. Consider a
generic model Y = f (X3, X,, ..., X,,), i.e., the output Y is a
function of #n input variables X. Due to the uncertainties of the
input parameters, each of which is considered as an independent
random variable following the probability distribution p; (X;), the
output Y has also some uncertainty. Let us denote the variance of
Y as V[Y] = E[Y?] — E[Y]? where the operator E[-] EJ-p(X)dX
indicates the expected value. We calculate the two indices
representing the sensitivity of Y to X;, namely, the first-order

sensitivity index S; and the total-effect sensitivity index St;. These
indices are defined as

VLIELIY]]

Si - W’ (5)
_E4[VilY]]

STi = V(Y) > (6)

where E;[-] and E_;[-] denote the expected values averaged over X;
and over all input variables but X;, respectively. The operator V;[-]
= E,[-?] - EJ[-]? denotes the variance taken over X;. The first-
order index §; indicates the expected reduction of variance
when the input X; could be fixed. The interactions between
the other inputs are not taken into account. On the other
hand, the total-effect index Sy; tells us the importance of ith
input taking into account all the higher-order interactions in
addition to the first-order effect. We used SAlib python
package to calculate the sensitivity indices (Herman and
Usher, 2017).
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Figure 4 shows the results of the sensitivity analysis. In
Figure 4A we show the first-order and the total-effect indices
for the average degree (k). The figure indicates that the average
degree is the most sensitive against the change in p, whether p,
changes independently or with other parameters at the same time.
The next important factors for (k) are the parameters for link
termination, i.e., p,4 pis» and A. Since they show large values of
Sri» these parameters seem to strongly interact with other
parameters. The average link weight (w) displays a different
tendency as shown in Figure 4C. It shows strong dependency
mainly on w, and A in addition to p,, which is reasonable since w,
and A control the link reinforcement and the link aging,
respectively.

If we look at the indices for clustering coefficient shown in
Figure 4D, we find a different behavior. The parameters for the
homophilic interaction, i.e., F and g, have high values of S; and Sr;,
indicating that these parameters affect the clustering properties of
the emergent networks, while they play minor role in determining
the average degree as shown in Figure 4A. A similar tendency is
observed for the average link overlap O in Figure 4E; this is
reasonable since both the clustering coefficient and the link
overlap essentially quantify the frequency of closed triads.

Finally, some input parameters such as N, t, &, and p, lead to
relatively small values of Sz; for most outputs, indicating that
these input parameters rarely affect the outputs even when they
change with other parameters. The insignificance of N and ¢
indicates that the finite-size effect is negligibly small and the
simulations reach statistically stationary state for most cases.
Consequently, the model can be simplified by fixing these
parameters to arbitrary values within their sampling ranges.

4 SUMMARY AND DISCUSSION

In this paper we have focused on studying the formation of social
network using an agent-based GWSN model, which incorporates
several realistic extensions, such as homophilic interactions and
link aging, to the original WSN model (Kumpula et al., 2007). The
effects of these additional mechanisms were studied
independently in our previous papers (Murase et al., 2014a,
2015, 2019) for simplicity and analytical tractability. However,
in real world social networks these mechanisms coexist, which, if
incorporated within one model, poses a challenge, because they
often interact in non-trivial ways. In the framework of modeling
this means that with the number of model parameters the number
of possible combination effects increases super-linearly. Such
difficulties are common for agent-based models (Bonabeau,
2002; Sayama, 2015). Thus, the use of agent-based models has
been limited for a long time to either research for qualitative
understanding using relatively simplistic models, or research that
uses complex models but does not fully explore the
parameter space.

Instead of the traditional approach to build first a simple
model and add elements one by one to study in sequence their
consequences, we started from a generalized model with all the
elements incorporated and then studied its behavior using large-
scale computation and metamodeling. Hence a massive number

Agent-Based Social Network Model

of simulations were performed using a supercomputer to sample
a high-dimensional input space, and the outputs of the model
were then used as training data for machine learning. We
demonstrated that the metamodel, obtained by a deep
multilayer perceptron, accurately reproduces the behavior of
the model over a wide range of input parameters. Although
massive computation is needed for the preparation of
the training data, these simulations were efficiently executed
using a supercomputer since they can be calculated
independently and in parallel. Once the learning phase is
completed, it is computationally quite cheap to calculate a
prediction, which is useful for various purposes including the
understanding of model behavior, tuning of parameter values,
and sensitivity analysis.

As a demonstration, we conducted sensitivity analysis of our
metamodels and identified which input parameters influence the
output most, i.e., the properties of the generated networks. In
addition, the sensitivity analysis tells us which parameters
have negligible effect on the output, indicating that these
parameters can be fixed to certain values in their sampling
ranges without the loss of generality and for simplifying the
model. Therefore, our computational approach enables us to
study a model with a larger number of parameters in a
systematic and quantitative way. Taking the full GWSN
model with the traditional approach of parameter fitting
would cause severe, if not unsolvable, difficulties, while
our metamodeling approach allowed us to study it with
reasonable computational effort.

A good metamodel will also help us finding appropriate
parameters to generate a network with some desired
properties. The problem would be formulated as a
mathematical optimization, in which the objective function
represents a certain distance between the desired and the
generated networks. We leave such an inverse problem for
future studies, since there is another challenge, namely how to
define such an objective function appropriately.

There are still a couple of open issues for future research.
First of all, the GWSN model should be extended further.
While we have so far moved forward from the simplest
plausible model to more realistic ones, there is still a long
way to go, considering the complexity of real social systems.
A possible future direction is the extension of the output
network characteristics. We quantified the network
properties only by scalar values such as the average degree,
yet we did not pay attention to more informative quantities,
such as the degree distribution. This is mainly for the
simplicity in developing metamodels, however the
heterogeneity of the network, often characterized by the
broad distributions, is of crucial importance in
investigating not only the network properties but also the
dynamical processes taking place on those networks such as
epidemic spreading (Pastor-Satorras et al., 2015) and random
walks (Masuda et al., 2017). It is expected that metamodels
approximating the distributions obtained from the agent-
based models will be developed in the near future. Another
promising future direction would be the extension of models
toward temporal, multiplex, and higher-order networks
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(Holme and Saramiki, 2012; Kiveld et al., 2014; Battiston
et al, 2020) as there has been increasing demand for
representing social Big Data in these terms. It would be
straightforward to extend the metamodeling approach of
this paper beyond the simple pairwise interactions between
the nodes of the network.
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