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Runoff forecasting is useful for flood early warning and water resource management. In

this study, backpropagation (BP) neural network, generalized regression neural network

(GRNN), extreme learning machine (ELM), and wavelet neural network (WNN) models

were employed, and a high-accuracy runoff forecastingmodel was developed at Wuzhou

station in the middle reaches of Xijiang River. The GRNN model was selected as the

optimal runoff forecasting model and was also used to predict the streamflow and water

level by considering the flood propagation time. Results show that (1) the GRNN presents

the best performance in the 7-day lead time of streamflow; (2) the WNNmodel shows the

highest accuracy in the 7-day lead time of water level; (3) the GRNN model performs well

in runoff forecasting by considering flood propagation time, increasing the Qualification

Rate (QR) of mean streamflow andwater level forecast to 98.36 and 82.74%, respectively,

and illustrates scientifically of the peak underestimation in streamflow andwater level. This

research proposes a high-accuracy runoff forecasting model using machine learning,

which would improve the early warning capabilities of floods and droughts, the results

also lay an important foundation for the mid-long-term runoff forecasting.

Keywords: streamflow, water level, forecast, machine learning, wavelet neural network (WNN), generalized

regression neural network (GRNN)

INTRODUCTION

Runoff forecasting is the foundation of water resource management, deployment, and efficient
utilization. It is of great significance to reservoir operation, water resource emergency scheduling,
hydro-power generation, and irrigation management decisions (Niu et al., 2018). The river runoff
is sensitive to various factors, such as catchment response times and the accuracy of meteorological
forecasts with time variability and uncertainty (Lima et al., 2016). Furthermore, it is more difficult to
forecast accurately when extreme climatic events occur. The establishment of hydrological models
provides important support for runoff forecasting. The runoff process is simulated and forecasted
from the perspective of the physical mechanism. However, hydrological model driving relies on
the input of a large amount of meteorological data and watershed characteristics parameters.
The forecasting process is relatively complicated, and its accuracy is limited to the accuracy and
completeness of the data (Nourani, 2017).

With the evolution of big data, runoff forecasting methods become more and more diversified.
The research craze for artificial intelligence based on big data has risen. Compared with the
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traditional hydrological models, the machine-learning models
show the advantages of high accuracy, high efficiency, and
convenient application so that it has been widely used in
runoff forecasting and achieved better forecasting results.
The major machine-learning models are applied to runoff
forecasting, including artificial neural networks (ANNs), support
vector machine (SVM), support vector regression (SVR), and
neuro-fuzzy (Mosavi et al., 2018). Badrzadeh et al. (2015)
applied four different types of ANNs to forecast real-time
floods at Casino station on Richmond River, Australia. Tongal
and Booij (2018) developed a simulation framework by
coupling a baseflow separation method to three machine-
learning methods and discussed performances of models in
simulation and forecasting of streamflow regarding model types,
input structures, and catchment dynamics in detail. Shortridge
et al. (2016) utilized multiple regression and machine-learning
approaches to simulate monthly streamflow in five highly
seasonal rivers in the highlands of Ethiopia and compare their
performance in terms of predictive accuracy, error structure
and bias, model interpretability, and uncertainty when faced
with extreme climate conditions. Guo et al. (2011) proposed an
improved SVMmodel with adaptive insensitive factors to predict
monthly streamflow. Yaseen et al. (2016) explored the potential
of the extreme learning machine (ELM) method for forecasting
monthly streamflow discharge rates in the Tigris River, Iraq and
ELM showed better forecasting performance compared with SVR
and the generalized regression neural network (GRNN) models.

The Xijiang River is the longest mainstream of the Pearl
River. To investigate the runoff mechanism in the context of
climate change, lots of studies have been conducted on projecting
hydrological processes and responses in the Xijiang River basin.
Wu et al. (2015) investigated the changes in hydrological drought
frequency over the Xijiang River basin through an analysis of
daily streamflow data observed at major hydrological stations
along the river. Yuan et al. (2017) established a modeling chain
framework to project the future hydrological changes in the
Xijiang River basin and found that extreme low flow would
undergo a considerable reduction in the future, indicating that
drought risk in the Xijiang River basin was expected to increase
significantly. Zhu et al. (2019) analyzed the correlation between
the monthly streamflow and the monthly rainfall in Xijiang
River through several correlation test methods and clarified that
the changes of the monthly discharge are still controlled by
natural precipitation variations in Xijiang’s fluvial system. With
the frequent occurrence of extreme hydrological events caused
by climate change and the increasing impact of human activities
on natural river runoff, the hydrological process in the Xijiang
River basin becomes more random and complicated. Therefore,
it is of great significance to carry out high precision runoff
forecasting for grasping the future flood and drought conditions
of the whole Pearl River basin and ensuring the coordination of
water resources.

In this study, a combination of hydrological data and
meteorological factors was used as input parameters, and the four
different machine-learning models, including backpropagation
(BP) neural network, GRNN, ELM, and wavelet neural network
(WNN) models, were applied for the forecast of mean

streamflow and water level in the 7-day lead time. Moreover,
to improve forecast accuracy, the flood propagation mechanism
was considered. The objectives of this study are as follows:
(1) to propose a more reliable runoff forecasting model; (2)
to improve the accuracy and efficiency of runoff forecasting;
and (3) to explore the relationship between flood propagation
mechanism and runoff in the basin. These findings are expected
to provide a more accurate guidance for the early warning of
floods and droughts.

MATERIALS

Study Area
The Xijiang River is the largest river in Guangxi, China. The total
area of the river basin in Guangxi is 20.21× 104 km2, accounting
for 85.39% of the total land area of Guangxi. The river basin area
aboveWuzhou station is 32.70× 104 km2, accounting for 92.88%
of the total area of the whole Xijiang River basin. The runoff in
the basin is unevenly distributed throughout the year. The annual
wet season is from April to September, the streamflow accounts
for about 78% of the whole year; the dry season is from October
to March of the next year, the streamflow accounts for about 22%
of the whole year correspondingly. The mean streamflow of the
driest month usually occurs from December to February of the
following year, mostly in January.

The study area was chosen in this research is the Wuxuan-
Wuzhou reaches of the Xijiang River in Guangxi with a total
length of about 247 km that includes Qianjiang, Xunjiang, and
Xijiang River sections. The hydrographic stations from upstream
to downstream are Wuxuan station, Dahuangjiangkou station,
and Wuzhou station, respectively (Figure 1).

Data Collection
In this study, daily time series mean streamflow and water
level data from 2009 to 2019 measured at Wuxuan station,
Dahuangjiangkou station, and Wuzhou station were utilized.
The Wuzhou meteorological data were collected from China
Meteorological Data Service Center (http://data.cma.cn) that
includes daily precipitation (P), average air pressure (PRS),
average temperature, mean water vapor pressure (WVP), mean
relative humidity (RH), and maximum wind speed (Umax).
After preprocessing operations, such as interpolation, filling, and
deletion, the data during 2009–2017 were selected for training
and the remainder during 2018–2019 for testing.

METHODOLOGY

The ANN is a technology based on intelligence imitating signal
processing in the human brain. It is used as a black-box model
with the ability to learn and find out non-linear relationships
between the system inputs and outputs. ANNs can efficiently
deal with correlation problems when physical processes are
not understood or are very complex (Pliego Marugan et al.,
2018). The generalization capability of ANN allows it to process
unseen data more quickly and simply after learning using a few
measured data sets. BP neural network, GRNN, ELM, and WNN
models belong to four different types of ANNs (Elsheikh et al.,
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FIGURE 1 | Map of the study area.

2019; Lee et al., 2019). These models have been fully used in
runoff forecasting, which proves their applicability in accurate
prediction (Modaresi et al., 2018;Mosavi et al., 2018; Yaseen et al.,
2018; Zhang et al., 2018; Pradhan et al., 2020).

Backpropagation Neural Network
Backpropagation neural network is a kind of multi-layer forward
neural network based on BP. As a typical machine-learning
algorithm of ANN, BP neural network architecture includes
an input layer, hidden layers, and output layer. Each layer
i+s is composed of several neurons (nodes), the output value
of each node is determined by the input value, function,
and threshold value. The learning process of the BP neural
network includes two processes (Bisoyi et al., 2019): information
forward propagation and error back propagation. In the forward
propagation process, the input information is transmitted from
the input layer to the output layer through the hidden layers,
and the output value is compared with the expected value
after the transfer function operation. If there is an error,
the error propagates back and returns along the original
connection path. Reduce the error by modifying the weight
of each layer of neurons layer by layer, and loop until the
output result meets the accuracy requirements (Hameed et al.,
2017).

The node number of the hidden layer can be determined by
Zhang et al. (2018):

l <
√

(m+ n) + a (1)

Where l is the node number of implicit layer; m is the node
number of output layer; n is the node number of input layer;
a is a constant with any value of 1–10. The optimal value of l
is determined by trial calculation. The training parameters were
assigned as follows: the learning rate is 0.01, the allowable biggest
step of the training is 5,000, and the minimum error was set
to 10−5.

Generalized Regression Neural Network
Generalized regression neural network is a kind of radial basis
neural network, which has strong non-linear mapping ability,
flexible network structure, high fault tolerance, and robustness.
It is suitable for solving non-linear problems. GRNN has
better performance than traditional radial basis function (RBF)
networks in terms of approximation ability and learning speed.
The network converges to the optimized regression surface with
more samples accumulated, and also has better simulation results
when processing fewer samples (Li et al., 2013).

Generalized regression neural network model structure
consists of the input layer, pattern layer, summation layer, and
output layer. The procedure of the GRNN can be represented as
(Cigizoglu and Alp, 2006):

If f (x, y) represents the known joint continuous probability
density function of a vector random variable x and a scalar
random variable y, the conditional mean of y given X (also called
the regression of y on X) is given by

Ŷ = E
(

y|X
)

=

∫∞
−∞ yf

(

X, y
)

dy
∫∞
−∞ f

(

X, y
)

dy
(2)

Parzen non-parametric estimation was used to estimate the

density function f̂
(

X, y
)

:

f̂
(

X, y
)

=
1

n (2π)
p+1
2 σ p+1

n
∑

i=1

exp

[

−
(X − Xi)

T (X − Xi)

2σ 2

]

exp

[

−
(X − Yi)

2

2σ 2

]

(3)

Substituting f̂
(

X, y
)

for Equation (2):

Ŷ (X) =

∑n
i=1 Yi exp

[

− (X−Xi)
T (X−Xi)

2σ 2

]

∑n
i=1 exp

[

− (X−Xi)
T (X−Xi)

2σ 2

] (4)
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Ŷ (X) is the weighted average of the observed value Yi of all
samples, and the weight factor of each observation is Euclidean
distance squared exponent between the corresponding sample Xi

and X. When the smoothing parameter σ is made large, Ŷ (X)

is approximately the mean of all the sample dependent variables.
On the contrary, the smaller value of σ is, the closer Ŷ (X) is to the
training sample.When the point to be predicted is included in the
training sample set, the predicted value of the dependent variable
will be very close to the corresponding dependent variable in the
sample. However, once it encounters a point that is not included
in the training sample, the prediction effect may be very poor.

Extreme Learning Machine
Extreme learning machine is an innovative machine-learning
algorithm proposed for the deficiency of single-hidden layer
feedforward neural network (SLFN). The algorithm randomly
generates the continuous weights between the input layer and the
hidden layer and the threshold of the hidden layer neurons, and
there is no need to adjust during the training process. The unique
optimal solution can be obtained only by setting the number
of neurons in the hidden layer. Compared with the traditional
training method, it has the advantages of fast learning speed
and excellent generalization performance (Yaseen et al., 2019;
Parisouj et al., 2020; Niu and Fen, 2021).

Mathematically, the ELM model can best be summarized
by assuming that there are N arbitrarily different training data
set samples {(x1, y1y1), . . . , (xt , yt)}, t = 1, 2, . . . , N. In this
assumption, xt is the explanatory variable and yt is the response
variable. xi ǫ R

d and yi ǫ R. The output of SLFN can be expressed
as (Huang et al., 2006):

L
∑

i=1

Bigi
(

ai · xi + bi
)

= zt , t = 1, 2, · · · , N (5)

where the L is hidden nodes number, gi (ai· xi+ bi) is a hidden
layer output function, “Sigmoid” was chosen in this article, ai
is the weight factor connecting input node and the ith hidden
node, bi is the bias of the ith hidden node, Bi is the weight factor
connecting the ith hidden node and output node, and zt is the
output of tth input.

If the feedforward neural network with L hidden nodes can
approximate the N samples with zero error, there exist ai, bi, and
Bi such that:

L
∑

i=1

Bigi
(

ai · xi + bi
)

= yt , t = 1, 2, · · · , N (6)

Equation (5) can be simplified as:

HB = Y (7)

H is called the hidden layer output matrix of the neural
network, the ith column of H is the ith hidden node output
with respect to inputs x1, x2, . . . , xN. In the ELM model, the
output weights and deviations can be given randomly, and
the hidden layer output matrix H becomes a certain matrix
so that the training of the feedforward neural network can be
transformed into a problem of solving the least square solution
of the output weight matrix. Theminimum norm square solution
of Equation. (7) is:

B̂ = H+Y (8)

The H+ is the Moore-Penrose inverse of hidden layer output
matrix H.

Wavelet Neural Network
Wavelet neural network is a multi-layer feedforward network
proposed on the basis of wavelet analysis, which integrates the
merits of ANN and wavelet analysis (Zhang and Benveniste,
1992). It can not only avoid local optimal fundamentally but
also accelerate the learning speed and reduce the training
times. In this study, the Morlet wavelet function is used
as the mother wavelet, the BP neural network topology is
taken as the basis, and the transfer function of the neural
network hidden nodes is replaced by the wavelet function.
The corresponding weights from the input layer to the
hidden layer and the threshold value of the hidden layer are
replaced by the scaling factor and translation factor of the
wavelet function, respectively (Abghari et al., 2012; Wei et al.,
2013).

Assuming that there is a set of input samples xi (i =1, 2,
. . . , k), the output of the hidden layer can be constructed using
the equation:

h
(

j
)

= hj

(

∑k
i=1 ωijxi − bi

aj

)

(9)

Where h(j) is the output of the jth hidden layer node, ωij is the
weight from the input layer to the hidden layer, hj is the wavelet
function, aj is the scaling factor of the wavelet function, and bj is
the translation factor of the wavelet function.

The calculation formula of the output layer of WNN is:

y
(

k
)

=

l
∑

i=1

ωijh (i), k = 1, 2, · · · , m (10)

TABLE 1 | Correlation of input parameters with mean streamflow and mean water level of Wuzhou station.

Parameter Qt–7 (m
3
·s−1) Ht–7 (m) Qt–10 (m

3
·s−1) Ht–10 (m) Qt–15 (m

3
·s−1) Ht–15 (m) P (mm) PRS (hPa) T (◦C) WVP (hPa) RH (%) Umax (m·s −1)

Streamflow 0.670** 0.698** 0.614** 0.648** 0.565** 0.605** 0.244** −0.541** 0.473** 0.571** 0.316** 0.237**

Water level 0.704** 0.755** 0.653** 0.705** 0.605** 0.659** 0.247** −0.603** 0.532** 0.637** 0.353** 0.253**

Pearson correlation coefficient between 0.8 and 1.0, very strong correlation; 0.6–0.8, strong correlation; 0.4–0.6, moderate correlation; 0.2–0.4, weak correlation; 0.0–0.2, very weak

correlation or no correlation; “**” represents significant correlation at 0.01 and “*” represents significant correlation at 0.05.
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Where ωik is the weight from hidden layer to the output layer,
h(i) is the output of the ith hidden layer node, l is the number of
hidden layer nodes, andm is the number of output layer nodes.

The gradient learning algorithm is applied to modify
the weights, scaling factor, and translation factor. The
optimized factors are trained by WNN to obtain the
optimal output.

Verification Model
To evaluate the performance of the four modeling approaches,
the following statistical criteria were used:

(1) Mean absolute error (MAE):

MAE =
1

N

N
∑

i=1

|Oi − Pi| (11)

(2) Deterministic coefficient (DC):

DC = 1−

∑N
i=1

[

(Oi − Pi)
2
]

∑N
i=1

[

(

Oi − O
)2
] (12)

(3) Correlation coefficient (R2):

R2 =





∑N
i=1

(

Oi − O
) (

Pi − P
)

√

∑N
i=1

(

Oi − O
)2
√

∑N
i=1

(

Pi − P
)2





2

(13)

(4) Mean relative error (MRE):

MRE =
1

N

N
∑

i=1

|Oi − Pi|

Oi
(14)

(5) Root mean square error (RMSE):

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Oi − Pi)
2 (15)

(5) Qualification rate (QR):

QR =
n

m
× 100% (16)

Where Oi is the ith observation, Pi is the forecasted value of
the ith model, N is the number of samples, O is the average of
observed valuesOi, P is the average of model forecasted values Pi,
n is the number of qualified forecasts, and m is the total number
of forecasts. The closer the value ofMAE is to 0, the better is the
prediction result. When DC is between 0 and 1, the closer DC
is to 1, which implies higher consistency between the forecasted
value and the observed value and ultimately reflects in a better
model prediction. When DC is less than 0, it implies that the T
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1 forecasted result is undesirable. The closer R2 is to 1, the higher

the degree of correlation between the forecasted values and the
observed values. The closerMRE is to 0, the better the prediction.
The closer RMSE is to 0, the smaller the prediction deviation is,
and the model is more reliable. The higher the QR, the better
prediction of the model.

RESULTS

Correlation Analysis of Input Parameters
The factors that include mean streamflow before 7 days (Qt−7),
10 days (Qt−10), and 15 days (Qt−15), mean water level
before 7 days (Ht−7), 10 days (Ht−10), and 15 days (Ht−15),
P, PRS, T, WVP, RH, and Umax of Wuzhou station were
used as input parameters of the model to predict the mean
streamflow and mean water level. Pearson correlation coefficient
between input parameters and mean streamflow and mean
water level of Wuzhou station were calculated respectively,
and the results are displayed in Table 1. The results show
that the mean streamflow, water level, and meteorological
factors of Wuzhou station before 7, 10, and 15 days are
significantly correlated with the mean streamflow and water
level of the day. The runoff forecasting can be reasonably
carried out by input of these 8 factors into the machine-
learning models.

Determination of the Lead Time
To select a mid-long-term runoff forecasting lead time with
satisfactory forecast accuracy, the effects of machine-learning
models (i.e., BP, GRNN, ELM, and WNN models) on daily
mean streamflow and water level in 7-, 10-, and 15-day
lead time were compared. Performance indices in Tables 2, 3
show that the forecast results of mean streamflow and water
level in the 7-day lead time are better than those in the
10- and 15-day lead time. Taking the forecast results by BP
neural network as an example, the MAE values of mean
streamflow for 7-, 10-, and 15-day lead time are 1,772.7856,
1,934.0324, and 2,098.2541 m3·s−1 respectively; DC values
are 0.2081, 0.0951 and −0.2322, respectively; R2 values are
0.5224, 0.4541, and 0.4333, respectively; MRE values are
0.2630, 0.2995, and 0.3715, respectively; RMSE values are
3,036.2640, 3,268.3675, and 3,304.2589 m3·s−1 respectively;
QR values are 64.88, 68.86, and 53.50%, respectively. The
MAE values of mean water level for 7-, 10-, and 15-day
lead time are 1.3460, 1.4400, and 1.5976m, respectively;
DC values are 0.5205, 0.3759, and 0.2415, respectively; R2

values are 0.6365, 0.5816, and 0.5125, respectively; MRE
values are 0.2100, 0.2313, and 0.2712, respectively; RMSEs
are 1.8897, 1.9926, and 2.1758m, respectively; QR values
are 67.22, 63.24, and 60.77%, respectively. It shows that
the longer the lead time, the more the model is affected
by the uncertainty of input parameters. Therefore, this
article discusses the runoff forecasting results of the 7-day
lead time.
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FIGURE 2 | Scatter plots of observed and simulated mean streamflow.

FIGURE 3 | Hydrographs of observed and simulated mean streamflow.

Streamflow Forecast Results of Wuzhou
Station by Machine-Learning Model
By comparing all studies of the dailymean streamflow ofWuzhou
station forecasting methods (i.e., BP, GRNN, ELM, and WNN
models), the forecasting accuracy indices in the 7-day lead time
are presented in Table 2. It shows that the four models have a
certain forecasting ability for the mean streamflow of Wuzhou
station, with MAE ranging between 1,772 and 1,941 m3·s−1,
DC ranging between 0.20 and 0.50, R2 ranging between 0.50
and 0.53, MRE ranging between 0.26 and 0.32, RMSE ranging
between 3,036 and 3,165 m3·s−1 and QR ranging between 56

and 72%. In general, comparing the R2 values of each model,
the evaluation accuracy has reached more than 0.50 and the
difference is unobvious. But GRNN has the highest DC and
QR values (DC = 0.5138, QR > 70%) and smaller errors in
terms of MAE, MRE, and RMSE suggesting that the forecasting
performance is better.

To understand the forecast performance of each model
in more detail and intuitively, the scatter plots of the
linear regression between forecasted and observed streamflow
(Figure 2) and hydrographs (Figure 3) are displayed. Based on
the graphical presentations in Figures 2, 3, the four models
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perform better in the case of low flow values, but regarding the
medium flow values, they are overestimated; for the high-flows
values, these are underestimated. Obviously, it is difficult for

these models to predict the extreme peak flow validly. The reason
may be the probability of extreme flood events is low in the period
of study, the models are unable to learn such events well.

FIGURE 4 | Scatter plots of observed and simulated mean water level.

FIGURE 5 | Hydrographs of observed and simulated mean water level.

TABLE 4 | Performance indices of Wuxuan–Dahuangjiangkou–Wuzhou stations mean streamflow and water level forecast by GRNN.

MAE DC R2 MRE RMSE QR (%)

Mean streamflow 895.9491 (m3·s−1) 0.8884 0.9228 0.1302 1,459.9038 (m3·s−1) 98.36

Mean water level 0.7117 (m) 0.9099 0.9169 0.1346 0.9134(m) 82.74
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FIGURE 6 | Scatter plots of Wuxuan–Dahuangjiangkou–Wuzhou stations mean streamflow and water level observed and simulated by GRNN.

Water Level Forecast Results of Wuzhou
Station by Machine-Learning Model
Backpropagation, GRNN, ELM, and WNN models were used to
forecast the daily mean water level of the Wuzhou station. The
forecasting accuracy indices in the 7-day lead time are presented
in Table 3. In general, the forecast accuracy of the four models
on the mean water level is better than that on the streamflow,
withMAE ranging between 1.27 and 1.36m,DC ranging between
0.52 and 0.65, R2 ranging between 0.61 and 0.65, MRE ranging
between 0.20 and 0.22, RMSE ranging between 1.82 and 1.94m,
and QR ranging between 65 and 70%. The WNN model shows
the smallest error with the highest DC, R2, and QR values, which
are 0.6401, 0.6412, and 69.68%, respectively.

Figures 4, 5 illustrate the scatter plots of the linear regression
between forecasted and observed water level and hydrographs.
Similar to the streamflow forecast results, the four models show
better performance in the case of medium and low water levels,
but significantly underestimate in the case of high water level.

Forecast Results of Considering the Flood
Propagation Time
According to the analysis of Sections Determination of Lead
Time, Streamflow Forecast Results of Wuzhou Station by
Machine Learning Model, and Water Level Forecast Results of
Wuzhou Station by Machine Learning Model, deviations still
exist in the forecast of the streamflow and water level of Wuzhou
station bymeteorological and corresponding hydrological data in
the 7-day lead time. There are problems, such as underestimation
of the flood peak flow and water level in extreme flood events
and lagging of the flood peak forecast. To improve the accuracy
of forecasting, the streamflow and water level of Wuzhou station
on the day were predicted considering the relationship between
upstream and downstream flood propagation.

Wuxuan, Dahuangjiangkou, and Wuzhou stations are
important hydrological control stations in the mainstream of
Xijiang River. Based on the observed flood data of each station
for a series of years, the distance between Wuxuan station and
Dahuangjiangkou station is about 104 km, the flood propagation
time is about 12 h; the distance betweenDahuangjiangkou station

and Wuzhou station is about 143 km, the flood propagation time
is about 30 h. Therefore, the streamflow and water level data
before 2 days at Wuxuan station and the data before 1 day at
Dahuangjiangkou station were selected as input parameters to
forecast the data of Wuzhou station.

The analysis indicates that the prediction performance of
GRNN is more precise compared to other models, thus GRNN
was used for further research. The forecast results are shown in
Table 4. GRNN has a satisfying forecast in streamflow and water
level withDC of 0.8884 and 0.9099, respectively; R2 of 0.9228 and
0.9169, respectively; and QR of 98.36 and 82.74%, respectively.
Observed and forecasted streamflows andwater level values using
the GRNN models are shown in Figures 6, 7. It is evident that
there is a significant linear correlation between the forecasted and
observed results, which improves the accuracy of high flow and
high water level by only inputting hydrological data. Considering
the relationship in flood propagation time between upstream
and downstream, this method has high accuracy and convenient
application, but the shortage is that the lead time is too short to
satisfy mid-long term forecasting at present.

CONCLUSION

In this study, four different machine-learning methods were
utilized to forecast the mean streamflow and water level,
including BP, GRNN, ELM, and WNN. Taking Wuzhou station
of Xijiang River as a case study, the performances of different
models were compared. Furthermore, considering the flood
propagation time, the upstream Wuxuan station and the
Dahuangjiangkou station streamflow and water level data were
used as input parameters to runoff forecasting. The major
findings are as follows:

(1) GRNN model performs the best on the streamflow
forecasting of Wuzhou station in the 7-day lead time, with
DC = 0.5082, R2 = 0.5138, and QR= 71.06%.

(2) WNN model shows the best prediction effect on the water
level of Wuzhou station in the 7-day lead time, with DC =

0.6401, R2 = 0.6412, and QR = 69.68%. Overall prediction
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FIGURE 7 | Hydrograph of Wuxuan–Dahuangjiangkou–Wuzhou stations mean streamflow (A) and water level (B) observed and simulated by GRNN. GRNN,

generalized regression neural network.

results can meet the accuracy requirements (>60.0%),
but it is difficult to make an accurate prediction for
extreme events.

(3) Considering the relationship between upstream and
downstream flood propagation, the accuracy of the
machine-learning method is improved significantly. The
GRNN model was used for streamflow forecasting with
MAE of 895.9491 m3·s−1, DC of 0.8884, R2 of 0.9228, MRE
of 0.1302, RMSE of 1,459.9038 m3·s−1, and QR of 98.36%,
and the water level forecasting with MAE of 0.7117m, DC
of 0.9099, R2 of 0.9169, MRE of 0.1346, RMSE of 0.9134m,
and QR of 82.74%. This method effectively solved the
problem of underestimation in the case of high flow and
high water level.

There are still several aspects that can be improved in this
study. As revealed in this article, optimizing the structure of
machine-learning models to improve the efficiency and accuracy
of forecasting and extending the lead time for runoff forecasting
utilizing the relationship between upstream and downstream
flood propagation is waiting for further research.
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