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As a joint effort from various communities involved in the Worldwide LHC Computing Grid,
the Operational Intelligence project aims at increasing the level of automation in computing
operations and reducing human interventions. The distributed computing systems
currently deployed by the LHC experiments have proven to be mature and capable of
meeting the experimental goals, by allowing timely delivery of scientific results. However, a
substantial number of interventions from software developers, shifters, and operational
teams is needed to efficiently manage such heterogenous infrastructures. Under the scope
of the Operational Intelligence project, experts from several areas have gathered to
propose and work on “smart” solutions. Machine learning, data mining, log analysis,
and anomaly detection are only some of the tools we have evaluated for our use cases. In
this community study contribution, we report on the development of a suite of operational
intelligence services to cover various use cases: workload management, data
management, and site operations.
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1 INTRODUCTION

We formed the operational intelligence (OpInt) initiative to increase the level of automation in
computing operations and reduce human interventions. In the approaching High-Lumi LHC (HL-
LHC) era, we may be granted the computing resources needed to process, analyze, and store an order
of magnitude more than the current LHC data. However, the person–power available to operate this
infrastructure will not increase at a similar rate, if at all. Therefore, we pursue the outlined
automation objectives in two ways: we organize a regular, technical, cross-experiment forum
that brings people from various teams together to share ideas, experience, and code, and we
develop tools to automate computing operations, exploiting state-of-the-art technology.

The Worldwide LHC Computing Grid (WLCG) (Bird, 2011) project is a global collaboration of
around 170 computing centers in more than 40 countries, linking up national and international grid
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infrastructures. It provides a seamless access to computing
resources which include data storage capacity, processing
power, sensors, and visualization tools, the resources that are
capable to process over two million tasks daily, leveraging over
one million computer cores and 1 exabyte of storage. It is a very
heterogenous infrastructure. We, as a community, strive to
exploit these resources, use the infrastructure efficiently and
optimize its usage, and squeeze every available compute cycle
out of it. We are passionate about optimizing our software as well
as evolving the infrastructure and integrating novel
configurations, approaches, and tools, such as compute
accelerators, to assure a sustainable future.

Notably, machine learning (ML)models applied to the prediction
of intelligent data placements and access patterns can help to
increase the efficiency of resource exploitation and the overall
throughput of the experiments’ distributed computing
infrastructures. Time series analyses allow for the estimation of
the time needed to complete certain tasks, such as processing a
certain number of events or transferring a certain amount of data.
Anomaly detection techniques assist with prediction of system
failures. Natural language processing (NLP) techniques can be
used to analyze logs of services and extract information to
automatically assist the operators; each year, thousands of tickets
are submitted to ATLAS (ATLAS Collaboration, 2008) and CMS
(ATLAS Collaboration, 2008) issue-tracking systems and further
analyzed by the experiment operators. Analysis of the operators’
actions is used to automate tasks such as creating support-requesting
tickets to support centers or to suggest possible solutions to recurring
issues. Some of those efforts that were born out of the discussions are
already being used to reduce operational costs.

In this article, we cover operational intelligence areas that
focus on optimization of computing infrastructure, site
operations, and workflow management and data management
operations. We summarize activities that have been delivered to
production and are already assisting with the automation
objectives as well as those that are still in the prototyping
phase, the fruits of which will only be harvested in the future.

The structure of the article is as follows: in Section 2, we
provide an overview of areas of interest of the operational
intelligence activities, detailing various activities in different
stages of completeness, from conceptual design ideas to those
that have already been brought to production. In Section 3, we
summarize directions for the future evolution. Section 4 provides
conclusions of the OpInt activities and plans.

2 OPINT AREAS OF INTEREST

One of the most important aspects of the OpInt project is
enabling the collaboration between the different experiments
and teams that take part in it. High-energy physics computing
is a complex and diverse world, but many components used in
software development can be shared across projects. As we are a
diverse community, some of the activities aim toward modest
evolution and harmonization, rather than revolution, with a
highly visible impact on users. Nevertheless, one of the
challenges we are facing as we approach the HL-LHC era is

the nurturing of cross-team, cross-experiment, and cross-domain
collaborations, to share ideas and tools, working toward a
common goal, together, making our community stronger and
sustainable on the long term. In the following paragraphs, we
summarize the areas of the challenges that we are addressing.

2.1 Monitoring the Computing
Infrastructures—Tools and Their
Unification
The OpInt activity heavily relies on the monitoring infrastructure
that consists of experiment-agnostic and specific components
described later in this section. One of the challenges we address is
finding the correct balance of generalization versus customization
in the infrastructure configuration, in the tools, the data formats,
interfaces, access protocols, and visualization. We believe it is
important to offer a shared development platform for all the
OpInt-related projects in order to foster code re-usability and
enable a quick prototyping of new ideas by using pre-created
components. Further description of the monitoring
infrastructure is given in Section 2.1.

2.2 Predictive and Reactive Site Operations
Predictive maintenance is a sought-after topic in a variety of
applications to complex systems, aiming at identifying
maintenance tasks, cutting operational costs, and boosting
overall productivity. It is based on the identification of the
system state, from diagnosis to prediction, involving decision-
making activities to autonomously control the system itself. As
such, it also works for computing centers and data centers as well
as data infrastructures. The health maintenance of the computing
systems can be divided in at least three big activity areas: 1)
diagnosis, 2) prevention, and 3) prediction (Decker de Sousa
et al., 2019). This activity concerns the first step of the
maintenance, performed using anomaly detection solutions.
Anomaly detection is a chosen strategy to feed a diagnostic
system. In this context, it refers to preliminary data treatment
to evaluate the current system status using scores, variables, or
metrics extracted from log data. We describe the anomaly
detection approach in Section 2.2, the predictive site
maintenance in Section 2.3, and dynamic, reactive job shaping
in HammerCloud in Section 2.4.

2.3 CMS Intelligent Alert System
The intelligent alert system for the CMS experiment, further
described in Section 2.5, aggregates alerts from different
experiment-specific monitoring systems and augments them
with additional information from the multi-experiment
monitoring tool Site Status Board (SSB) (Andreeva et al., 2012a)
and Global Grid User Support (GGUS) (Antoni et al., 2008). The
GGUS is a ticketing system used in theHEP-distributed computing
domain (and others too) that facilitates a standardized issue-
reporting and communication interface among the experiment
teams (e.g., operators, experts, developers, and users) and the sites.
In the CMS intelligent alert system, focusing mainly on network
and database interventions and outages, annotations are created to
assist the experiment’s operators.
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2.4 Workflow Management—Jobs Buster
The Jobs Buster is an application that assists with spotting job
failures and chasing their root causes in a timely manner. It is
built with the OpInt development platform, comparing features
of successful and failed jobs taken within the same time frame.
The statistics of failed and successful jobs are used to train a
failure model. The Jobs Buster is described in Section 2.6.

2.5 Error Messages Clustering
Clustering of error messages is a possible way to simplify the
analysis of error messages encountered in large-scale distributed
systems. With the considerable quantity of failures, the variety of
sources and types of errors, and considering the unpredictable
textual patterns of error messages, the traditional method of
manually reviewing errors is impractical.

The error message clustering employs the following
categorization: messages encountered only once or several
times are considered as anomalies, whereas messages with
the same textual pattern and error conditions are grouped
together. Groups of similar messages are then described by
the common textual patterns and keywords. All messages are
linked to the sources, and messages may be of various types and
from different sources. The error message clustering is described
in Section 2.7.

2.6 FTS Logs, Errors, and Failures Analysis
The distribution of the large volumes of data collected by the LHC
is mainly managed by the file transfer service (FTS) (Karavakis
et al., 2020). Each data transfer operation among grid sites is
tracked by FTS, and the related log files contain large volumes of
information related to performance and errors. Analysis of the
FTS logs represents a typical OpInt workflow, processing logs of
the FTS service with a ML model and visualizing the clusters and
their updates in a monitoring dashboard. It is written in an
experiment-agnostic manner (developed in the CMS
experiment), and one of the future challenges will be to
integrate it with the infrastructure of another experiment
(notably the ATLAS experiment).

Analysis of FTS errors and failures represents a challenge to
distributed data management (DDM) infrastructure operations.
It is performed by teams of trained shifters and thus represents
one of the challenges for OpInt: how can we improve the
operations automation, in order to benefit from the expertise
of the shifters elsewhere in the community? We have adopted an
unsupervised learning approach to minimize the shifters’ effort
and to enable the discovery of new failure patterns related to FTS
transfers.

A further description of the analysis of FTS errors and failures
is presented in Section 2.8.

2.7 NLP Applications in Rucio
Rucio (Barisits et al., 2019) is an open-source project for
managing large amounts of data, and it is now adopted by
many communities. Rucio exploits NLP techniques to
automate the processing of user support requests coming
from a variety of support channels, up to a certain
complexity of the request, and provides a collection of

information to the user-requesting support. A further
description of NLP applications in Rucio is provided in
Section 2.9.

2.8 Monitoring the Computing
Infrastructures
In this section, we describe the infrastructure that the OpInt
activity heavily relies on, with the experiment-agnostic and
specific components.

2.9 CERN MONIT Infrastructure
The CERN IT department offers a stack of monitoring services,
referred to as MONIT (Aimar et al., 2017), based on different
open-source technologies, supporting a variety of data sources.
Clients can either actively push data to MONIT or pull it. All the
collected data are processed by Apache Kafka at the MONIT core,
with Apache Spark used to enrich and aggregate the data (Apache
Software Foundation). Data are written into three different data
stores: InfluxDB1 for time-series data, ElasticSearch2 for more
detailed data with a limited retention, and Apache Hadoop
(Apache Software Foundation) for long-term archival. Data
visualization is offered via Grafana3 dashboards.

2.10 ATLAS Monitoring Infrastructure
The ATLAS monitoring infrastructure (Beermann et al., 2020) is
based on MONIT. The main components are the DDM transfer
monitoring and accounting, the jobs monitoring and accounting,
and the SSB. The DDM dashboard is based on the Rucio events
and traces, which are collected from Apache ActiveMQ (Apache
Software Foundation). They are enriched with topology
information from the Computing Resource Information
Catalogue (CRIC) (Anisenkov et al., 2020), aggregated and
written both to InfluxDB and ElasticSearch. The DDM-
accounting dashboards are based on preprocessed accounting
reports from Rucio, enriched with topology information and
written to ElasticSearch. The jobs monitoring and accounting
dashboards data are collected directly from the PanDA (Maeno
et al., 2014) database, processed in Apache Kafka and written into
ElasticSearch. Finally, the SSB is a meta-dashboard that collects
data from a variety of different sources, such as DDM and jobs
monitoring, SAM tests (Andreeva et al., 2012b), and GGUS
tickets, and presents the aggregated data to easily spot a site issue.

2.11 CMS Monitoring Infrastructure
CMS benefits from MONIT, and its own monitoring
infrastructure (Ariza-Porras et al., 2021), which is hosted on a
set of Kubernetes (k8s) clusters (Kubernetes, 2021). The CMS
monitoring cluster provides access to common infrastructure
monitoring services, interfacing their output with smart-
alerting and notification applications, for example, the CMS
intelligent alert system, providing a uniform real-time

1https://www.influxdata.com/.
2https://www.elastic.co/.
3https://grafana.com/.
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messaging and alerting infrastructure that assists the operators in
their decision-making and escalation processes. Currently, the
CMSmonitoring infrastructure scrapes metrics from hundreds of
computing nodes, runs 125 exporters, and provides more than
3,000 measurements as well as hundreds of different alert records
and alert rules. It stores around 500 billion data points with a data
retention policy corresponding to the last 30 days.

2.12 OpInt Framework
In order to share expertise and re-use code and approaches across
the board, we started developing the OpInt framework4 and have
already created the following components:

• Abstract data fetchers to enable getting data from various
sources, and a demo implementation of a fetcher that gets
data from an Apache Hadoop endpoint.

• Amodule to schedule and execute data-fetching tasks either
periodically or on demand.

• A module to construct REST APIs to share processed data
with other services.

• database integration to store fetched and aggregated data.
• An abstract template for NLP-processing pipelines. Two of
the pipelines that are used in our projects have already been
adapted to follow the abstract implementation.

• A sample application that can be used to kick-start new
projects.

The OpInt framework has already been utilized to run the Jobs
Buster application described in Section 2.6. Migration of other
existing projects is ongoing. Some next steps have been identified,
including the refinement of the framework and consolidation of
the deployment method, for example, in a Kubernetes cluster.
Future developments will focus on a feedback mechanism
implementation, for our users to provide feedback on our
results, to improve the quality of the information exposed to
the operator/user. The feedback mechanism will be flexible to
meet the needs of each individual application. A generic
authentication and authorization component to enable login
through CERN Single Sign-On and other sources will be
implemented in the near future.

2.13 Anomaly Detection
The detection of anomalies in data center metrics using machine
learning algorithms is an active field of development, with
promising advantages in terms of increased quality of service
and cost efficiency. The most important players in the field,
namely large commercial data centers, often prefer to keep their
research findings undisclosed to increase their competitive
advantage. The WLCG community has started several
initiatives to tackle this subject and fill this gap. One such
example is a modular anomaly detection system, developed
with open-source technologies, which can be easily adopted
and/or adapted by other data centers and service managers
(Giordano et al., 2021). Besides the data engineering task, the

work also involves data science tasks, including mathematical
formulation of the anomaly detection problem for time series and
the implementation of multiple algorithms with both traditional
and deep-learning methods. In addition, the need of field-specific
annotated datasets is highlighted, and a straightforward solution
based on Grafana annotations is proposed in order to collect
them. The solution extends the Grafana annotations tool to add
two buttons (“Normal” and “Anomaly”) and to associate tags
with events.

2.14 Predictive Site Maintenance
Log data are often unstructured, in which the format and
semantics may vary significantly from system to system,
making an approach toward a general-purpose log-based
anomaly detection system extremely challenging. Supervised
approaches provide more accurate results at the cost of
requiring a large dataset of labeled entries, which is a hard
restrictive requirement in the majority of real-world scenarios.
Generally, labeled anomalous logs are not available and because
of this supervised approaches are seldom used without expensive
data pretreatment. In addition, to generate ad hoc solutions for
each existing system is counterproductive since a single data
center can incorporate hundreds of computing sub-systems. For
this reason, general-purpose solutions are preferable even if,
initially, they are expected to perform worse than dedicated
solutions.

We are exploring feasibility of isolation forest (IF) techniques
in the area of predictive site maintenance. The IF technique is a
machine learning algorithm commonly applied to anomaly
detection problems, for example, to identify anomalous
samples in unlabeled data (Liu et al., 2008). A novel IF
log–based anomaly detection approach has been proposed
(Farzad and Gulliver, 2020), focusing on identifying normal
log samples instead of anomalies to extract features through
an autoencoder network. A One-class Support Vector Machine
classifier is used to identify anomalous time-windows, in which
the classifier is based on the logging activity and volatility
extraction from the unstructured log data (Minarini and
Decker, 2020).

NLP techniques stand out as one of the most popular classes of
strategies. Automated log parsing offers promising results
through standard off-the-shelf NLP algorithms (Bertero et al.,
2017). Further improvement is possible (Wang et al., 2020) by
applying word2vec (Mikolov et al., 2013) algorithms to log events.
Whilst log parsing is often used to improve the effectiveness of
anomaly detection tools, NLP is a very expensive technique since
it was originally envisioned to approach a much more complex
class of problems, such as handling natural language. The OpInt
effort is focused on NLP solutions.

2.15 HammerCloud Job Shaping
The functionality of the compute sites of the WLCG for the
ATLAS and CMS experiments is verified by a large number of
experiment-specific test jobs. These jobs are steered, controlled,
and monitored by the HammerCloud (Schovancová et al., 2019)
testing infrastructure. ATLAS HammerCloud runs different
functional tests, continuously checking the site status by4https://github.com/operationalintelligence/opint-framework.

Frontiers in Big Data | www.frontiersin.org January 2022 | Volume 4 | Article 7534094

Di Girolamo et al. Operational Intelligence and HL-LHC Computing Operations

https://github.com/operationalintelligence/opint-framework
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


representative MC simulations (PFT) and analysis jobs (AFT). If
these test jobs fail, the site is automatically excluded from the
central ATLAS workflow management system (WFMS): only test
jobs will be sent to the site until the test jobs succeed again.
Thanks to this auto-exclusion mechanism, the success rate of the
user jobs is improved, since jobs are then only sent to properly
working sites.

With job shaping, we aim to speed up auto-exclude and
recovery decisions made by HammerCloud. This will be
achieved by dynamically adjusting the frequency of test jobs
based on the latest test job results. Since the auto-exclude
decision is based on several functional test jobs processed on a
given site, a delay of any individual job can delay the decision as a
whole for the site. Therefore, we have analyzed the average run
time and the time to start for all test jobs used for auto-exclusion
over a week on all sites. The average run time is well below
30 min, which is following the requirements of efficient
functional tests: they should be fast and lightweight in terms
of resource utilization. The time-to-start peaks below 20 min, but
it also has a long tail up to more than 10 h, as shown in
(Figure 1A). Based on these numbers, a 2 -hour run time
threshold has been defined.

In order to speed up the decision time in case of jobs
remaining in the state “submitted - waiting to start”, for
example, if the current job is just stuck, increasing the
number of parallel running test jobs would improve the
situation. This “submitted - waiting to start” clogging may be
a result of a queue mechanism mis-configuration or high
demand for capacity at the site serving demands of multiple
experiment in a shared environment, the central job scheduler
of the experiment may have only a little wiggling space to
attempt to unclog the site; one of the approaches is to
avalanche more probing jobs, as the job shaping mechanism
does. At the same time, in order to avoid wasting compute
resources for unnecessary test jobs, the job shaping mechanism
adjusts the number of parallel running jobs dynamically: in case
of missing job results, five additional jobs per test type are

submitted, and as soon as the tool recognizes jobs which have
been finished within the last 2 hours, the number of parallel
running jobs is decreased to 1 again.

As shown in Figure 1B, the job shaping tool triggers an order
of 1,000 increase and decrease actions per day. Considering the
different AFT test jobs running on 150 sites and PFT jobs on 200
sites, this translates into roughly one job shaping action per site
and one test type per day. The increase and decrease decisions
follow a mainly uniform distribution. The isolated spikes which
can be seen at 10 a.m., 2 p.m., and 8:30 p.m. are caused by the
same set of faulty sites. The increase actions are triggered in three
different periods, since the underlying tests have been started at 8
a.m., 12 noon, and 6:30 p.m., respectively. In order to quantify the
improvement of the job shaping, we have analyzed the number of
sites missing test jobs for the auto-exclusion and re-inclusion
decision in the month before enabling job shaping, compared to
10–11 sites afterward. On average, there were 12–14 sites with
missing test jobs before enabling job shaping, compared to 10–11
sites afterward.

2.16 CMS Intelligent Alert System
Within the CMS experiment, we developed an intelligent alert
system to automate our dashboard with SSB and GGUS alerts.
The system is based on the Prometheus and AlertManager
RESTful APIs to fetch, create, and update new or existing
alerts and supplement them with additional information
obtained from SSB and GGUS services.

First, we developed a general purpose scraper for the GGUS
system by fetching its tickets via HTTP end-point in the CSV
format. Then, we used CERN MONIT ElasticSearch instance to
obtain SSB alerts.

Finally, our system processes this information and constructs
necessary annotations on a set of dashboards. All parameters are
configurable: from various HTTP end-points to regular
expressions used in alert matching as well as dashboard tags.

We deployed this service in the CMSmonitoring cluster, and it
is integrated with our Prometheus and AlertManager services. So

FIGURE 1 | (A) Time-to-start in minutes of HammerCloud functional test jobs used for auto-exclusion and re-inclusion into the ATLAS Grid WFMS. (B) Example
histogram from 2020-11-24. Number of job shaping actions every 30 min (empty: increase; filled: decrease) of the parallel running test jobs.
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far, we annotate dashboards related to cmsweb services, which
provide service overview for the experiment’s compute services.
The current matching expression watches for network and
database interventions and outages as well as issues related to
the CERNMONIT infrastructure. The annotations are applied on
a tag-matching basis, i.e., we put specific tags on our dashboard
and use them for HTTP request annotations.

2.17 Jobs Buster
Jobs Buster is an application built within the OpInt framework to
detect large groups of job failures and identify the most probable
cause. We used a CatBoost library (Prokhorenkova et al., 2019)
and the CatBoostClassifier to train a gradient-boosted tree, which
were able to predict the outcome status of a job by its features. The
CatBoost library provides embedded support of categorical
variables and efficient learning. Using a model previously
trained on a particular data slice, Jobs Buster extracts the list
of features with importance above a threshold of 0.5 and performs
a ranking of its values. Groups of feature-value pair sets for failing
jobs define clusters that might be identified with a specific source
of failure (a particular task fails on a selected grid site due to
misconfiguration or some rack in a data center is out of order).

Jobs Buster uses eight features that describe a job, such as the
site, the user who submitted a task, and the number of required
CPU cores. It also preprocesses the text into diagnostic messages,
constructing a corpus of words from all words in all messages for
a particular time window. When performing the frequency
analysis, a custom list of stop words is excluded. All diagnostic
messages of a particular job are converted into a hash and then
merged into one string. Once each job descriptor has this
concatenated diagnosis string, all failed jobs are split into
groups by the diagnosis value, and we train models within
each group separately as described previously. This tool is
continuously assessing jobs from the ATLAS experiment.

2.18 Error Messages Clustering
Analysis of error messages encountered in large-scale distributed
systems has become one of the crucial tasks for the monitoring of
computing resources. The monitoring systems utilize error
messages to detect anomalies (failures that happened only a
few times in some period), to identify duplicated issues (in
practice, issues tend to recur many times), to diagnose failures
(to discover the resource, user, or other entity related to messages
indicating some issue), and to analyze failures retrospectively.

There is already a variety of tools for log and error message
parsing that perform clustering using methods such as frequent
pattern mining, machine learning clustering, grouping by longest
common subsequence, heuristics, parsing trees, and evolutionary
algorithms (Zhu et al., 2019). But, the existing tools have some
limitations: most of them require preprocessing, most are
customized for specific data, and they do not allow error
messages to be linked with other entities, meaning messages
cannot be clustered together with auxiliary data.

We are developing an error messages clustering framework
that consists of several stages: data trimming, vectorization,
clustering, and clusters description. Data trimming—cleaning,
tokenization, and regrouping of data—allows reduction of the

initial number of messages by about 90–95%. Error messages are
split into tokens, cleaned from insignificant substrings (for the
clusterization), and regrouped by the equal cleaned patterns. The
vectorization stage is based on the word embeddings technique: at
the beginning, each token (or word) is converted to a numerical
vector using the word2vec method, and then the average vector
for each error message is calculated. At the clustering stage, we
intend to explore various machine learning or statistical
algorithms to cluster the numerical vectors, such as DBSCAN,
HDBSCAN, Optics, Hierarchical, and k-means. Some of these
algorithms are density-based as they do not require the initial
knowledge of the number of clusters and allow the detection of
anomalies. For the DBSCAN and Hierarchical algorithms, the
epsilon parameter (intra-cluster distance) is selected
automatically based on the data. k-means can be used
additionally if we need the deterministic output. The accuracy
of the clustering highly depends on the quality of the word2vec
model. After training on a large volume of error messages, it
becomes the basis for the mapping of error messages to numerical
vectors. Larger models can achieve better accuracy in clustering
tasks. The clusters description stage searches for common textual
patterns and common key phrases for all messages in a cluster.
For this purpose, we evaluate the performance of the Levenshtein
similarity matching and various keyword extraction algorithms,
such as RAKE, TopicRank, and YAKE.

2.19 Analysis of FTS Errors and Failures
One of the main concerns in data transfer operations is to
promptly detect and solve issues that affect the functioning of
the infrastructure. On our way toward improving automation of
DDM operations, we adopted an unsupervised learning approach
to minimize experts’ effort and enable discovering new failure
patterns related to FTS transfers. This tool targets the operators
and aims to assist with understanding the infrastructure issues in
the data transfer area.

The pipeline consists of twomain steps: 1) vectorization and 2)
clustering. In the vectorization step, we concatenate the raw error
string with source and destination hostnames, and we use a
word2vec model that learns how to map all that information
to a vectorial space of a given size, where similar errors are
expected to be close together. This is to transform the textual
information into a convenient numeric representation and serves
as preprocessing for the next steps. A clustering algorithm is the
applied to get groups of related errors: we pre-train a word2vec
model on a big dataset and run a k-means++ algorithm (Arthur
and Vassilvitskii, 2007) online during the monitoring shifts.

In order to demonstrate the approach, we report an analysis of
FTS data from one full day of operation. Figure 2 shows an
example of a summary table for the biggest cluster found by
the model.

The first three columns provide numeric summaries: 1) the
cluster size, 2) the number of unique strings within the cluster,
and 3) the number of unique patterns: unique strings after the
removal of parametric parts such as paths, IP addresses, and
URLs. The model learns to abstract message parameters and to
group strings that are similar except for the parametric parts. As a
result, the initial amount of errors is reduced to a number of
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patterns which is lowered by several orders of magnitude. The
core part of this visualization is then represented by the top 3
sections, where the most frequent triplets of pattern, source, and
destination sites are reported in a descending order, together with
their multiplicity and the percentage over the cluster size. There,
we extract several insights, for example, whether a pattern is
responsible for a large number of failures or if it accounts for a
conspicuous fraction of the cluster. In addition, one can
investigate the contribution of source/destination site pairs, as
in Figure 2, where Site-4 clearly seems to have a problem as
destination. Another useful piece of information given by the
cluster’s time evolution plot (shown in Figure 3) is that it can give
an immediate indication of whether the problem is transient
or not.

Overall, the idea is for the shifters to look at summary tables
and time plots for each of the clusters detected by the
algorithm, which act as suggestions of possible issues to
investigate further, or later, would create automatic alerts,
notifications, or even issue reports. The process described
previously can be fully automated after tuning model hyper
parameters based on metrics, such as average silhouette width
score and within-cluster sum of squared (Euclidean) distances,

that measure how compact and separated the clusters are. We
have conducted an extensive testing as pre-validation
comparing the clusters obtained with this approach against
GGUS tickets, showing a reasonable overlap between
suggested and reported issues. Although it makes sense to
cross-check clustering results with tickets, this comparison has
some drawbacks. In particular, the procedure is very sensitive
to the choice of the time window. It requires a manual check of
the ticket information and the cluster content, which makes
the comparison lengthy and not scalable.

2.20 NLP Applications in Rucio
Data in Rucio is organized using data identifiers (DIDs), which
have three levels of granularity: files, datasets, and containers.
Datasets and containers are used to organize sets of files in various
potentially overlapping groups and to facilitate bulk operations
such as transfers or deletions. Users are permitted to perform
certain actions on the DIDs: downloads, uploads, or transfers.
Due to the large sizes of the collaborations, the experts support a
noteworthy amount of requests daily. To reduce the required
efforts, we are looking into methods to assist the support team in
answering these requests. Ideally, the support would be provided

FIGURE 2 | Example of an error message cluster summary.

FIGURE 3 | Time evolution of cluster 0: the plot shows the count of errors in bins of 10 min.
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by an intelligent bot able to process and understand the user’s
requests and, if possible, trigger appropriate automated action.

The NLP assists in processing questions from users, where the
objective is to provide satisfactory answers. A prototype bot
capable of handling user’s requests up to a certain level of
complexity has been developed, acting with emails as inputs.
When a new email is received, it goes through the
QuestionDetector, and a question object is created. Originally,
the support bot was meant to answer incoming support emails.
After an initial data analysis, we expanded that idea and
introduced new data sources and the option to query the bot
directly. A question from a user is treated as a query by the search
engine in the next step. Once a question has been detected from a
new email or given by a user query, the search engine looks into
the support bot data storage and retrieves the most similar
documents. Documents are archived questions from emails or
GitHub issues and Rucio documentation pages from GitHub as
well as FAQ question–answer pairs created by Rucio experts. The
search engine subclasses exist for each data source. Once the most
relevant documents have been retrieved, we use them as context
for the new question in a SQuAD-like (Rajpurkar, 2021) manner
to generate answers with a given confidence. The current
implementation caches and uses DistilBERT (Sanh et al., 2020)
and BERT large-cased/uncased models, fine-tuned on the
SQuAD dataset.

The NLP applications described in this section are in different
maturity states, from prototypes to production deployment. They
aim to reduce human person–power cost in DDM operations,
targeting partly DDM operation experts, partly suggestion, and
chat systems for the user community.

3 FUTURE DEVELOPMENTS

We foresee activities developing in a variety of areas:

• Predictive Site Maintenance: We foresee tuning of anomaly
detection approaches applied to data centers’metrics as well
as further exploration and exploitation of granular
computing classifiers in predictive site maintenance. We
intend to introduce specialized debugging tests to probe
further the root cause of the failure with HammerCloud
dynamic job shaping, and provide suggestions to the
operators, or even assist in the automation of the issue
reporting and mitigation.

• Jobs Buster: We plan to add long-term models into Jobs
Buster, enriching jobs features with information extracted
from failures that occurred in the past.

• Error Messages Clustering: Further framework
developments involve code parallelization of the time-
expensive stages.

• FTS Logs, Errors and Failures Analysis: We wish to build a
reference dataset to store labels for error categories, root
causes, priority, and solving actions, assisting in performance
optimization. Additionally, further NLP tools such as
Question Answering or Named Entity Recognition (NER)
look promising to support our target of understanding the
root causes and suggesting solving actions for the issues.

• NLP Applications in Rucio: Creating a user interface will
allow us to deploy the support bot on a test server to a wider
set of users, expanding the reach from the beta-testers and
from the developers and experts community to the user
communities. Their questions and the answers given can
then be supervised and examined to create a dataset for the
fine-tuning of the models. Additionally, we wish to create a
NER tagger to detect Rucio-specific language entities,
exploring potential to boost the tool performance
significantly, and provide a way to create dynamic answers.

4 CONCLUSION

The operational intelligence initiative brings together experts
from various WLCG communities and is aiming to reduce the
person–power cost of operating distributed computing systems.
We presented an overview of activities in varying stages of
completeness in the areas of computing centers operation and
the workflow and data management, which represent only three
of the areas, where innovative approaches can bring substantial
improvement while we benefit from the state-of-the-art
technologies.

The projects described in Section 2 and Section 3 are summarized
in Table 1. In the collaborative spirit, in compliance with a variety of
computer security and data privacy guidelines and policies applicable
to our environment, we have been sharing the code developed in the
scope of the various operational intelligence initiative projects in a
GitHub repository5.

TABLE 1 | List of OpInt projects deployed in production and under development, with their current status.

Project Status Detail

Intelligent alert system In production in one experiment; concept in development in another one Section 2
Jobs Buster In production in one experiment Section 2.6
FTS log clustering In production in one experiment; concept in development in another one Section 2.7
HammerCloud job shaping In production in one experiment Section 2.4
Shared k8s cluster Infrastructure deployed, wider adoption by two experiments in progress Section 2.1
Cloud anomaly detection Infrastructure and algorithms prototyped, commissioning in progress Section 2.2; (Giordano et al., 2021)
FTS anomaly detection Prototype developed in one experiment; generalization and adoption by another experiment in progress Section 2.8
Predictive site maintenance Code in development Section 2.3

5https://github.com/operationalintelligence/.
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Although some of the projects have recently entered only the
prototyping phase, some are in the development and
commissioning phase and some of the activities are already in
production and bringing fruits in terms of saving person–power,
already now: the intelligent alert system, combined with the
monitoring cluster in CMS, and the Rucio NLP applications as
well as Jobs Buster and HammerCloud job shaping in ATLAS.

The combined monitoring and alerting infrastructure is a fully
automated system. It consists of five Kubernetes clusters managed by
less than two FTEs (Full-time equivalent). It provides an enormous
amount of information to the collaboration. The technology allows to
automate many operations, from service deployments (via
continuous integration/continuous deployment processes) to
dashboard annotations (via OptInt modules). The use of common
monitoring tools and technologies allowed the experiment to reduce
the number of custom, in-house developed applications that would
require the allocation of additional FTEs for development and
maintenance. The automated service maintenance via a common
set of alert notifications (i.e., importance of the notification is assessed
by the system, prior to escalating to a human operators) provides
much better insight into operations, allowing operators to timely
address the most important and urgent issues.

Rucio NLP applications assist with repetitive tasks in the area of
DDM operations, particularly targeting the support of the user
communities. The Jobs Buster provides insights into jobs failure
causes in ATLAS, as it extracts the essential information from the
jobs’ logs, and serves it in a comprehensive manner to the operators.
The HammerCloud job shaping tool assesses the job failures of test
jobs and avalanches a set of probing jobs to collect and abstract
further information about the underlying cause of the failure.

Since the beginning of LHC data taking (and even before that),
digging into plethora of logs spread across different tools and
servers, with different format to present the log information, and
abstracting the essential information about the system failure,
whichever system or systems they were, has been the core activity
of the human operators, including the experts. It would account
for at least 80% of the operators’ work time. Having automation
tools such as Jobs Buster and HammerCloud performing the
laborious steps of the failure chasing saga instead of the human
operators is a great achievement and still have potential for
automation that we are exploring as a next step, with the

planned automated reports (e.g., GGUS tickets to the sites),
describing the underlying cause and suggesting which
corrective actions should have been taken. These tools not
only reduce the time operators need to spend to identify
potential issues but also help to increase the utilization of
computing resources.

The established procedures of large experiments are well-
understood and trusted, such that integrating new ideas and
approaches, even general ones, requires significant time and
careful integration and validation. The complex heterogenous
WLCG infrastructure represents a stimulating environment to
apply data science techniques to assist in pushing forward the
frontiers of fundamental science, and the initial objectives
achieved supported by the positive feedback from the
community confirm that integrating further projects into
OpInt pipelines is a step in the right direction,
demonstrating that collaboration across the table is not only
possible but also fruitful, and it is one of the ways to make our
community sustainable and capable of addressing the future
challenges.
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