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Data-intensive applications are becoming commonplace in all science disciplines. They are
comprised of a rich set of sub-domains such as data engineering, deep learning, and
machine learning. These applications are built around efficient data abstractions and
operators that suit the applications of different domains. Often lack of a clear definition of
data structures and operators in the field has led to other implementations that do not work
well together. The HPTMT architecture that we proposed recently, identifies a set of data
structures, operators, and an execution model for creating rich data applications that links
all aspects of data engineering and data science together efficiently. This paper elaborates
and illustrates this architecture using an end-to-end application with deep learning and
data engineering parts working together. Our analysis show that the proposed system
architecture is better suited for high performance computing environments compared to
the current big data processing systems. Furthermore our proposed system emphasizes
the importance of efficient compact data structures such as Apache Arrow tabular data
representation defined for high performance. Thus the system integration we proposed
scales a sequential computation to a distributed computation retaining optimum
performance along with highly usable application programming interface.
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1 INTRODUCTION

Data engineering and data science are two major branches of data-intensive applications. Data
engineering deals with collecting, storing, and transforming data. Data science tasks (deep learning,
machine learning, data engineering) comprises of several disciplines, out of them machine learning
and deep learning are significant. This is the place where we use data to learn and gain insights. These
two components, illustrated in Figure 1 are designed on top of data structures and operators around
them. The data engineering component primarily works with table data abstractions, while the
machine learning and deep learning components mainly use tensors and matrices.

To run applications using multiple computers, we can partition the data and apply distributed
operators. Current systems use several different strategies to provide distributed application
programming interfaces (APIs) for data-intensive applications. An API for data-intensive
applications is a combination of data structures, operators, and an execution model. There are
thousands of operators defined around data structures such as vectors and tables by different
frameworks. The current data systems use asynchronous and loosely synchronous execution models
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for running programs at scale. Asynchronous execution is
popular in systems such as Spark (Zaharia et al., 2010), Dask
(Rocklin, 2015) and Modin (Petersohn et al., 2020). Loosely
synchronous distributed execution is used in systems such as
PyTorch (Paszke et al., 2019), Cylon (Widanage et al., 2020) and
Twister2 (Fox, 2017).

In a previous paper (Kamburugamuve et al., 2021), the authors
proposed the HPTMT (High-Performance Tensors, Matrices,
and Tables); an operator-based architecture for data-intensive
applications as a scalable and interoperable way for designing rich
data-intensive applications. With HPTMT we focus, as depicted
in Figure 2, on the interoperability of distributed operators and
how one can build large-scale applications using different data

abstractions. Figure 2 contains two aspects of the data analytics.
One is the data processing which includes data loading, data
cleaning, feature engineering, etc. which are the main steps
followed in obtaining a final dataset which is ready for
mathematical evaluations. The big data systems such as
Apache Spark, Apache Flink, Apache Storm, are written on
Java language. The other aspect is the mathematical
computations required to process the data further. Majority of
these data structures are fully or partially represented in terms of
dataframes (set of arrays: Dask, Pandas) and separate arrays
(Numpy, Tensors). Frameworks like Numpy, Dask, Pandas are
written on Python to provide much easier access to data scientists
to write analytical programs without concerning about the

FIGURE 1 | Data science workflow with Jupyter Notebook interface and Data Engineering around Deep Learning.

FIGURE 2 | The goal of HPTMT to achieve High Performance in each ecosystem and high-performance integration between ecosystems.
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underlying computation models. The likes of Dask and Cylon
further enhances the ability to such computations in parallel to
support computation intensive jobs. On top of these
computations systems such as PyTorch and Tensorflow allows
to run complex mathematical models based on machine learning
or deep learning algorithms.

This paper will showcase the importance of HPTMT
architecture through an application that uses various data
abstractions in a single distributed environment to compose a
rich application. It highlights the scalability of the architecture
and its applicability to high-performance computing systems.

The rest of the paper is organized as follows. Section 2 gives an
overview of the HPTMT architecture. Section 3 describes the
distributed execution of various frameworks and how they can
work together according to the HPTMT. Section 4 describes an
end-to-end application while section 5 highlights the
performance. In section 6 we describe related work and
conclude in section 8.

2 HPTMT ARCHITECTURE

HPTMT architecture defines an operator model along with an
execution model for scaling data-intensive applications. The
primary goal of HPTMT is the efficient composability of
distributed operators around different data structures to define
complex data engineering applications. We see this architecture
as a good candidate for exascale software environments. Its
simple premise—put the parallelism into interoperable libraries
seems practical to implement well on heterogeneous collections
of accelerators and CPUs. Note that one of the most widely
adopted approaches to parallel computing is the use of runtime
libraries of well-implemented parallel operations. This was a key
tenet of frameworks such as, High-Performance Fortran HPF
(Dongarra et al., 2003) and related parallel environments [HPJava
(Carpenter et al., 1998), HPC++ (Johnson and Gannon, 1997),
Chapel (Chamberlain et al., 2007), Fortress (Allen et al., 2005),
X10 (Charles et al., 2005), Habanero-Java (Imam and Sarkar,
2014)]. Even though these frameworks became popular in parallel
computing/HPC, they had limited success in data engineering.
We believe that a major reason behind this is, the lack of well-
defined data engineering operators. Historically, such systems
were used in sophisticated computational science simulations
with large linear algebra operators (ex: BLAS routines). HPTMT
attempts to bridge this gap between HPC and data-intensive
applications by providing a set of well-defined data engineering
operators with highly scalable execution model.

2.1 Principles
HPTMT architecture defines several core principles for a
framework to be compatible with it. These are summarized
below and more details can be found in the paper
(Kamburugamuve et al., 2021).

• Use of multiple data abstractions (Tensors, Matrices,
Tables) and operators around them that are suitable for
each class of applications.

• Loosely Synchronous Execution - In an asynchronous
framework, operators and the scheduler are coupled
making it harder work across different systems.

• Operators should be independent of the parallel execution
environment—A parallel environment manages the
processes and various resources required by operators,
such as the network. If the implementation of operators
is coupled to the execution environment, we can only use
the operators specifically designed for it.

• Same operator on different hardware—The same operator
can be implemented on GPUs, CPUs or FPGA (Field
Programmable Gate Arrays). Also, they should be able to
use different networking technologies such as Ethernet and
InfiniBand.

2.2 Operators
An application domain such as deep learning or data engineering
comprises of a combination of operators to build the total job.
Based on the data distribution, these operators can be categorized
into two groups, namely, local operators (single machine) and
distributed operators (across multiple machines). Some operators
are purely local or purely distributed, and some can be either. A
local operator only works with a single piece of data inside the
memory of a single node in a cluster. They give rise to what is
called embarrassingly or pleasingly parallel models for distributed
execution. Operator based methods are not just used to support
parallelism but have several other valuable capabilities.

• Allow interpreted languages to be efficient as overhead is
amortized over the execution of a (typically large) operation

• Support mixed language environments where invoking
language (e.g., Python) is distinct from the language that
implements the operator (e.g., C++)

• Support proxy models where user programs in an
environment that runs not just in a different language
but also on a different computing system from the
executing operators. This includes the important case
where the execution system includes GPUs and other
accelerators.

• Support excellent performance even in non-parallel
environments. This is the case for Numpy and Pandas
operators.

Recent frameworks such as Apache Arrow (Apache Arrow,
2021, Apache Software Foundation, Accessed 2021/Aug), and
Parquet (Apache Parquet, 2021, Apache Software Foundation,
Accessed 2021/Aug) provide essential tools which are crucial to
our approach to HPTMT, and they (or equivalent technologies)
are vital for any high-performancemulti-language multi-operator
class system. They provide efficient language-agnostic column
storage for Tables and Tensors that allows vectorization for
efficiency and performance. Note that distributed parallel
computing performance is typically achieved by decomposing
the rows of a table across multiple processors. Then within a
processor, columns can be vectorized. This, of course, requires a
large amount of data so that each processor has a big enough
workflow to process efficiently. It is a well-established principle
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that the problem needs to be large enough for the success
of parallel computing (Fox et al., 1994), which the latest
Big Data trends also follow. Note that the most compelling
parallel algorithms use block (i.e., row and column)
decompositions in scientific computing to minimize
communication/compute ratios. Such block decompositions
can be used in Big Data (Huai et al., 2014) (i.e. table data
structures), but could be less natural due to the heterogeneous
data within it.

For Big Data problems, individual operators are sufficiently
computationally intensive to consider the basic job components
as parallel operator invocations. Any given problem typically
involves the composition of multiple operators into an analytics
pipeline or more complex topology. Each node of the workflow
may run in parallel. This can be efficiently and elegantly
implemented using workflow such as Parsl (Babuji et al.,
2019), Swift (Wilde et al., 2011), Pegasus (Deelman et al.,
2015), Argo (Argo Home Page, 2021 https://argoproj.github.io/
argo-workflows/, Accessed 2021/Aug), Kubeflow (Kubeflow,
2021 home page https://www.kubeflow.org/, 2021), Kubernetes
(Burns et al., 2016) or dataflow (Spark, Flink, Twister2)
preserving the parallelism of HPTMT.

2.2.1 Categorizing Operators
There are thousands of operators defined for arrays, tensors,
tables, and matrices. Note that tensors are similar to arrays but
have an important deep learning utility. Matrices are similar to
arrays and tensors but typically two dimensional. Tables (and
dataframes) are characterized by entries of heterogeneous types.
This is widely used in databases where the different columns can
have strings to dates to numbers. Table 1 shows some common
operator categories for tensors as defined by PyTorch, Tensorflow

or Keras. These deep learning frameworks define over 700
operators on tensors. Numpy lists 1085 array operations.
Table 2 shows some of the popular operations on tables,
where the Python Pandas library has around 224 dataframe
operators out of a listed total of 4782. Also, optimized linear
algebra operators are used internally in most widely used math
and tensor compute libraries. Table 3 contains a classification of
BLAS operators, which are local or distributed. The (old but
standard) library SCALAPACK has 320 functions (operators) at a
given precision and a total of over one thousand.

2.2.2 Distributed Operators
A distributed operator works across data in multiple processes in
many nodes of a cluster. A distributed operator needs
communication options and local operators. Compared to the
number of local operators defined on a data structure, there are a
limited set of communication operators for a given data structure,
and some of them are listed in Table 4 where 720 MPI operators
support classic parallel computing. Higher-level distributed
operations are built by combining these communication
operations with local operations, as shown in Table 5. These
include the famous MapReduce (Dean and Ghemawat, 2008)
which abstraction showed clearly the similarity between
distributed operators in the technical and database computing
domains. MapReduce and its implementation in Hadoop enabled
parallel databases as in Apache Hive. They added Group-By and
key-value pairs to the Reduce operation common in the previous
HPF family simulation applications. The powerful yet
straightforward MapReduce operation was expanded in Big
Data systems, primarily through the operators of Databases
(union, join, etc.), Pandas, and the Spark, Flink, Twister2
family of systems.

TABLE 1 | Sample set of tensor operations as specified by PyTorch.

Operation class Description

Create Create tensors from files, in-memory data or other data structures such as NumPy
Math Multiplication, addition
Statistics Statistical function such as mean, median, std
Indexing Different methods to access values of tensors
Conversion Convert a tensor to another format such as NumPy or change the shape of a tensor

TABLE 2 | Operators on tables.

Operator Description

Select Filters out some records based on the value of one or more columns
Project Creates a different view of the table by dropping some of the columns
Union Applicable on two tables having similar schemas to keep all the records from both tables and remove the duplicates
Cartesian Product Applicable on two tables having similar schemas to keep the set of all possible record pairs that are present in both tables
Difference Retains all the records of the first table, while removing the matching records present in the second table
Intersect Applicable on two tables having similar schemas to keep only the records that are present in both tables
Join Combines two tables based on the values of columns. Includes variations Left, Right, Full, Outer, and Inner joins
OrderBy Sorts the records of the table based on a specified column
Aggregate Performs a calculation on a set of values (records) and outputs a single value (record). Common aggregations include

summation and multiplication
GroupBy Groups the data using the given columns; GroupBy is usually followed by aggregate operations
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2.3 Distributed Execution
There are two main distributed execution methods used in
current systems. They are fully asynchronous execution and
loosely synchronous execution (Fox, 1989; Valiant, 1990). In
an asynchronous system, the parallel task instances can
execute independently using task queues to decouple them in
time. This is seen in systems like Spark, Dask, and Hadoop. In a
loosely synchronous system, the parallel tasks assume they can
directly send messages to other similar jobs. It is called loosely
synchronous because synchronization only happens when they
need to communicate with each other. Otherwise, parallel task
instances can work independently. This makes loosely
synchronous applications highly scalable and more performant.

The asynchronous execution demands the system to be tightly
integrated with a central coordinator and a scheduler. It may also
employ “mail-boxes” or shared storage to fully decouple each task
in the execution (this is important because, there may be in-flight
messages and the corresponding receiver task would consume
them at a later stage). While this model allows features such as
fault-tolerance, dynamic resource allocation, effective usage of
compute resources, it is susceptible to scheduler overheads,
message passing delays, etc. Thereby, the async model incurs a
performance penalty, and also makes it harder to develop
distributed operators independently and make them work
together.

We observe that the current technology and hardware
advancements provide more reliable, highly available compute
resources with faster networks. And we believe that these trends
enable loosely synchronous execution in modern computing
environments, and thereby develop high performance and

highly scalable data engineering applications. We are seeing
this trend being employed successfully in similar
complementary domains, such as distributed data parallel deep
learning (PyTorch, Tensorflow, Horovood, etc). Therefore,
HPTMT architecture embraces this execution model, and
attempts to broaden horizons of data engineering and data
science in terms of performance and scalability.

3 HPTMT FRAMEWORKS

Now let us look at Cylon and Deep Learning frameworks and see
how they can work together according to the HPTMT
architecture. First, we describe how Cylon is designed to
support distributed data engineering on a dataframe
abstraction. Then we discuss how Cylon can be coupled with
state-of-the-art deep learning frameworks to organise end-to-end
data analytics workloads.

3.1 Cylon
Cylon (Abeykoon et al., 2020; Widanage et al., 2020) provides a
distributed memory DataFrame API on Python for processing
data using a tabular format. Cylon provides a Python API
around high-performance compute kernels in C++. These
kernels are written on top of the Apache Arrow based
efficient in-memory table representation. It can be deployed
with MPI for distributed memory computations processing
large datasets in HPC clusters. Operators in Cylon are based
on relational algebra and closely resemble the operators in
Pandas DataFrame to provide a consistent experience. The
user can program with a global view of data by applying
operations on them. Also, they can convert the data to local
parallel processes and do in-memory operations as well. Cylon
can be thought of as a framework that can work across different
frameworks, data formats to connect various applications, as
shown in Figure 3.

TABLE 3 | Operations as specified by BLAS.

Operation Description

Level 1 Operations on vectors i.e., adding two vectors
Level 2 Operations for combination of vectors and matrices. i.e., matrix and

vector multiplication
Level 3 Matrix operations i.e., matrix and matrix multiplication

TABLE 4 | Communication operations for data structures.

Data
structure

Operations

Arrays Reduce, AllReduce, Gather, AllGather, Scatter, AllToAll,
Broadcast, Point-to-Point

Tables Shuffle (Similar to AllToAll but specifically designed for Tables),
Broadcast, All-gather

TABLE 5 | Higher level distributed operations.

Distributed operation Implementation

Sorting tables Shuffle followed by a local sorting operation
Join tables Partitioning of records, shuffle and local join operation
Matrix multiplication Point to point communication and local multiplication
Vector addition AllReduce with SUM

FIGURE 3 | Cylon for data engineering. Reproduced with permission
from Widanage et al. (2020).
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Cylon is different from other table abstractions such as Modin
(Petersohn et al., 2020), Dask (Rocklin, 2015) and Spark Zaharia
et al. (2010) because it supports an efficient loosely synchronous
execution model. These other frameworks use the asynchronous
execution model, which relies on a central scheduler and a
coordinator and does not conform to the HPTMT
architecture. Figure 4 shows how the Cylon Join operator
performs compared to other frameworks. This experiment
used 200M records per relation (for both left and right tables
in a join) and scaled up to 128 processes. Random data were
generated by considering the uniqueness of data to be 10% such
that the join performs under higher stress feeling hash functions
and hash-based shuffles. In the parallel experiments, each process
will be loading an equal amount of data such that the total
amount is limited to 200M records. The results from Figure 4
show that our distributed join implementation is faster than Dask
and Modin implementations. Also, the scalability in Dask and
Modin is not very strong compared to the scaling provided by
PyCylon. Also, the Modin couldn’t be scaled up beyond a single
machine and failed in the execution.

3.2 Deep Learning Frameworks
Deep learning workloads are compute-intensive. Most of the
existing deep learning frameworks can run codes in a distributed
manner. Here, the widely used approach is the distributed data-
parallel model. Distributed data-parallel model deals with the
distributed memory architecture and has the loosely synchronous
execution capability.

PyTorch offers a distributed data-parallel (DDP)model, which
allows the user to train large models using many GPUs. It can use
distributed frameworks such as MPI, NCCL, or GLOO for the
necessary communication operations for deep learning training
with multiple GPUs. Tensorflow does loosely synchronous
distributed execution via frameworks like Horovod. Due to
these reasons, we can think of these systems as HPTMT when
running data-parallel training using the loosely synchronous
execution model.

3.3 Deep Learning and Data Engineering
Because the distributed execution of Cylon and deep learning
systems such as PyTorch and Tensor conform to the HPTMT
architecture, they can work together in a single parallel program.

This improves productivity and usability in dealing with end-to-
end analytical problems. In a data analytics-aware data
engineering workload, three main factors govern usability and
performance.

• Single source, including data engineering and data analytics
• Simple execution mode for sequential and distributed
computing

• Support for CPUs and GPUs for distributed execution

The single source refers to writing the data engineering and
analytics code in a single script and executing with a single
command. This is a beneficial and efficient method to do data
exploration based data analytics. For such workloads, feature
engineering and data engineering components are extensively
modified to see how the data analytics workload performs for
different settings. In such cases, the data scientist must have room
to write the usual Python script and run the data analytics workload
efficiently, not only in a single node but also across multiple nodes.
Simple execution mode refers to running the workload with a simple
method to spawn the processes to run in parallel.

Data analytics frameworks provide different methods to
spawn parallel jobs. For instance, Dask requires that the user
start the workers and schedulers on each node and provide
host information for distributed communication. MPI allows
for a single execution command mpirun to spawn all the
processes. Such factors are essential in providing a unified
interface to do deep learning easily. Also, the execution mode
on various accelerators for deep understanding is a vital
component. The majority of the frameworks support both
CPU and GPU execution, so it is essential to provide the
means to seamlessly integrate with these execution models to
support data analytics workloads. Figure ?? highlights the
high-level component overlay of a data analytics-aware data
engineering workload. We have partitioned the workflow into
four stages.

• Stage 1: In the first stage, the processes must be spawned
depending on the parallelism. A unified process spawning
mechanism that identifies worker information such as host

FIGURE 4 | Distributed join performance.

FIGURE 5 | Integrating data engineering workload with data analytics
workload.
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IP addresses for each machine or network information is
identified at this stage.

• Stage 2: Worker information is extracted, and data
engineering operators will run in distributed mode on
top of the data engineering platform, which depends on
the worker initialization component. Here the operations
can be distributed or pleasingly parallel.

• Stage 3: For data analytics workloads, the worker
information, network information, chosen accelerator,
and data must be provided from the corresponding data
engineering process. This mapping is 1:1 for data
engineering workers to data analytics workers. But this
can also be a many-to-many relationship.

• Stage 4: The worker information, network information and
data will be used to execute the data analytics workload is
distributed or pleasingly parallel mode.

Considering this generic overview on deploying deep learning
workloads with data engineering workloads, we have integrated
PyCylon with distributed data-parallel models for PyTorch,
Horovod-PyTorch, and Horovod-Tensorflow. Horovod is a
distributed deep learning framework that supports a unified API
for handling distributed deep learning on multiple frameworks.
Horovod supports PyTorch, Tensorflow, and MXNet. In our
research, we paid close attention to PyTorch and Tensorflow.
Horovod internally uses mpirun to spawn the processes, and this
model fits very well with PyCylon internals as we relied onmpirun to
spawn the processes. This makes PyCylon uniquely qualified as a
supportive data engineering framework for Horovod.

The first step is to initialize the runtime. Here either PyTorch
distributed initialization, or PyCylon distributed initialization
can be called. But especially on CPUs, the PyTorch initialization
must be called since PyTorch internally does not handle theMPI
initialization check. But if we use NCCL as the back-end, this
constraint does not exist. This is one of the bugs we discovered
from our previous research. For the PyTorch DDP, the master
address and port must be provided because the NCCL back-end
needs to identify which work will be designated as the master-
worker to coordinate the communication. In addition, the
initialization method has to be set. After the distributed
initialization in PyTorch, the PyCylon context must be
initialized to set to distributed mode. After this stage, we
complete the requirements for stage 1 and partial
requirements for stage 3 (network information is also passed
along with data in stage 3, which is initialized in this step).
Figure 1 is a sample code snippet related to the initialization
step.

Listing 1. Stage 1: Initialization for PyTorch With PyCylon

os.environ[’MASTER_ADDR’] � master_address
os.environ[’MASTER_PORT’] � port
os.environ[“LOCAL_RANK”] � str(rank)
os.environ[“RANK”] � str(rank)
os.environ[“WORLD_SIZE”] � str(world_size)
dist.init_process_group(backend�backend,
init_method�“env://”)

mpi_config � MPIConfig()
env � CylonEnv(config�mpi_config, distributed
�True)

The data engineering workload is done in PyCylon,
assuming the distributed mode initialization. We first join
two tables and use the join response for a deep learning
workload. The distributed join is called by providing the
initialized context information to the join function. At the
end of this stage, we create the resultant dataframe, and later
on, in Stage 3, this dataframe can be used to generate the
Numpy array required for deep learning. This stage is typical
for any framework, including PyTorch, Tensorflow, etc.
Figure 2 details a sample data engineering workload for a
data analytics problem.

Listing 2. Stage 2: PyCylon Data Engineering Workload

df1 � DataFrame(read_csv(“...”))
df2 � DataFrame(read_csv(“...”))
join_df � df1.merge(right�df2, left_on�[0],
right_on�[3], algorithm�’hash’)
In Stage 3, Stage 2 is used to create tensors required for the

deep learning stage. We also perform the data partitioning for
training and testing. This stage is different from framework to
framework since the tensor creation and data partitioning
steps can have various internal utils. We do not use data
loaders or data samplers but note that these tools can be used
to generate both. Figure 3 is a sample code snippet for data
movement from data engineering workload to data analytics
workload.

FIGURE 6 | Response block module.
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Listing 3. Stage 3: Moving Data from Data Engineering
Workload to Data Analytics Workload

data_ar: np.ndarray � feature_df.to_numpy()
df_ftrs: np.ndarray � data_ar[:, 0:3]
df_lrnr: np.ndarray � data_ar[:, 3:4]
x_train, y_train � df_ftrs[0:100], df_lrnr
[0:100]
x_test, y_test � df_ftrs[100:], df_lrnr[100:]
. . .
x_train� torch.from_numpy(x_train).to(device)
y_train� torch.from_numpy(y_train).to(device)
x_test � torch.from_numpy(x_test).to(device)
y_test � torch.from_numpy(y_test).to(device)

In Stage 4, we initialize the deep learning model and the DDP
model using the sequential model.We pass along device information
such that tensors and models are copied to the corresponding
devices (if accelerators are involved) for training and testing. This
initialization part varies from framework to framework depending
on the requirements and APIs. Figure 4 highlights the initialization
of a DDP model with PyTorch.

Listing 4. Stage 4: PyTorch Distributed Data Analytics Workload

model � Network().to(device)
ddp_model � DDP(model, device_ids�[device])
loss_fn � nn.MSELoss()
optimizer � optim.SGD(ddp_model.parameters(),
lr�0.01)
optimizer.zero_grad()
for t in range(epochs):

for x_batch, y_batch in zip(x_train,
y_train):

prediction � ddp_model(x_batch)
loss � loss_fn(prediction, y_batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

3.3.1 Horovod With PyTorch
Horovod PyTorch provides the ability to scale on both GPUs
and CPUs with a unified API. This is significant because

PyTorch does not need to be compiled from the source to
get MPI capability. Horovod has already offloaded the
distributed trainer, optimizer, and allreduce communication
packages. The internal DDP mechanism that does this in
PyTorch is offloaded.

In Stage 1, the Horovod init method must be called to
initialize the environment. After that, the Cylon context can
be initialized with distributed runtime true. If GPUs are
used, the correct device must be set to PyTorch CUDA
configs. To obtain the device IDs, we can either use the
rank from Horovod initialization or PyCylon initialization.
Still, at the moment, Horovod supports local rank as well,
and it is more suitable in terms of effortlessly integrating
with the distributed runtime for Horovod-PyTorch. Figure 5
shows a sample code snippet demonstrating how this is
accomplished.

FIGURE 7 | Response network.

FIGURE 8 | Drug response data processing.
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Listing 5. Stage 1: Initialization for Horovod-PyTorch With
PyCylon

hvd.init()
mpi_config � MPIConfig()
env � CylonEnv(config�mpi_config, distributed�
True)
rank � env.rank
cuda_available � torch.cuda.is_available()
device � ’cuda:’ + str(rank) if cuda_
available else ’cpu’
if cuda_available:

# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(42)

Another essential thing to note is that the data engineering code
remains the same for any deep learning framework discussed in
this context. Also, as with the PyTorch data engineering section,
the output can be converted to a Numpy array using the endpoints
from the PyCylon dataframe. Also, the tensors can be created by
providing the device IDs obtained from the Horovod runtime, and
data can be prepared for a deep learning workload.

In Stage 4, following the tensor creation step, the Horovod-
related initialization must be done to prepare the optimizers,
network and other utils for distributed training. PyTorch-
Horovod integration, PyTorch’s default neural network
model, loss function, and optimizer can be used as input to the
distributed computation-enabled Horovod components. First, the
model parameters and optimizer must be broadcast using the
Horovod broadcast method from 0th rank. There are two method
calls designated for initial network values and optimizer values.
Also, Horovod provides a compression algorithm to select
whether compression is required for distributed

communication. After these steps, the distributed optimizer
must be set by passing the initialized values. Figure 6 includes
a sample code snippet to initialize the Horovod components for
distributed data-parallel deep learning with PyTorch.

Listing 6. Stage 4: Distributed Data Analytics PyTorch-Horovod
Workload

optimizer � optim.SGD(...)
hvd.broadcast_parameters(model.state_dict(),
root_rank�0)
hvd.broadcast_optimizer_state(optimizer,
root_rank�0)
compression � hvd.Compression.fp16
model_ps � model.named_parameters()
optimizer� hvd.DistributedOptimizer(optimizer,
named_parameters�model_ps,
compression�compression, op�hvd.Adasum,
gradient_predivide_factor�1.0)

3.3.2 Horovod With Tensorflow
Similar to PyTorch integration, Horovod also supports Tensorflow.
Tensorflow has its own distributed training platform. It contains
distributedmirrored strategy as the equivalent routine for distributed
data-parallel training. To start this run, we initialize Horovod and
PyCylon. Aswith PyTorch, we also need to decide how the device is
selected depending on the accelerator. The Tensorflow config API
provides a listing of GPUs, and this information is added to the
Tensorflow configurations to make all the GPU devices available.
Figure 7 is a code snippet for the aforementioned initialization.

Listing 7. Stage 1: Initialization for Tensorflow With PyCylon

hvd.init()
assert hvd.mpi_threads_supported()
mpi_config � MPIConfig()
env � CylonEnv(config�mpi_config,
distributed�True)
rank � env.rank
world_size � env.world_size
gpus � tf.config.experimental.list_physical_
devices(’GPU’)
for gpu in gpus:

tf.config.experimental.set_memory_growth
(gpu, True)

if gpus:
tf.config.experimental.set_visible_devices
(gpus[hvd.local_rank()], ’GPU’)

Similar to prior experience, the data engineering component also
remains unchanged for Horovod-Tensorflow integration. The data
analytics data structure creation is different from framework to
framework. Tensorflow has its own set of APIs to make these steps
simpler and more structured. The Tensorflow dataset API can be
used to create tensors from Numpy arrays, and this API can be used
to shuffle and create mini-batches, as expected by the deep learning
workload. Figure 8 contains a code snippet detailing this step.

FIGURE 9 | Drug feature data processing.
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Listing 8. Stage 3: Moving Data from Data Engineering
Workload to Data Analytics Workload

. . .
train_dataset � tf.data.Dataset.from_tensor_
slices((x_train, y_train))
test_dataset � tf.data.Dataset.from_tensor_
slices((x_test, y_test))
BATCH_SIZE � 64
SHUFFLE_BUFFER_SIZE � 100
train_dataset � train_dataset.shuffle(SHUFFLE_
BUFFER_SIZE).batch(BATCH_SIZE)
test_dataset � test_dataset.batch(BATCH_SIZE)
. . .

Horovod-Tensorflow also requires a set of initialization steps to
train a Tensorflow deep learning model. Like PyTorch, the
Tensorflow loss function, optimization function and neural
network model are compatible with Tensorflow-Horovod
internals. The gradient tape from Tensorflow autograd can be
used, and for this, Horovod provides a DistributedGradientTape
operator, which takes the gradient tape instance as a parameter. In
addition, before training, this DistributedGradientTape must be
initialized with the model parameters and loss function, and the
optimizer values must be set to initial values. Again, the model
parameters and optimizer valuesmust be broadcast using designated
Horovod broadcast functions. Figure 9 illustrates this.

Listing 9. Stage 4: Distributed Data Analytics Horovod-
Tensorflow Workload

model � tf.keras.Sequential(. . . )
loss � tf.losses.MeanSquaredError()
opt � tf.optimizers.Adam(0.001 * hvd.size())
@tf.function
deftraining_step(images,labels,first_batch):

with tf.GradientTape() as tape:
probs � model(images, training�True)
loss_value � loss(labels, probs)

tape � hvd.DistributedGradientTape(tape)
grads � tape.gradient(loss_value,
model.trainable_variables)
opt.apply_gradients(zip(grads, model.
trainable_variables))
if first_batch:

hvd.broadcast_variables(model.
variables, root_rank�0)
hvd.broadcast_variables(opt.variables(),
root_rank�0)

return loss_value

4 UNOMT APPLICATION

To demonstrate an end-to-end HPTMT architecture, we
implemented a scientific application with a workload
containing data engineering and data science computations.

Our objective is to showcase how a sequential workload can
be designed in a distributed manner using PyCylon and run a
deep learning workload seamlessly on only a single script with a
unified runtime. For this, we selected an application that uses
Pandas dataframe for data engineering and PyTorch for data
analytics. The original application is sequentially executed, and
we have implemented a parallel version of this application with
PyCylon and distributed PyTorch.

4.1 Background
UNOMT application is part of CANDLE Wozniak et al.
(2020), Xia et al. (2021) research conducted by Argonne
National Laboratory, focusing on automated detection of
tumour cells using a deep learning approach. The
uniqueness of this approach is the composition of a data
engineering workload followed by a deep learning workload
written in PyTorch. This provides an ideal scientific
experiment to showcase multiple systems working together
to facilitate an efficient data pipeline. The goal of the UNOMT
application is to give a cross-comparison of cancer studies and
integrate it into a unified drug response model. Cell RNA
sequences, drug descriptors and drug fingerprints are used as
such responses to train the model.

In the deep learning component, multiple networks are involved
working on small and large datasets in the training process. Our
research focuses on themore extensive network designed to calculate
the drug response based on the cell-line information.

4.2 Deep Learning Component
UNOMT refers to a unified deep learning model with multi-tasks to
predict drug response as a function of tumour and drug features for
personalized cancer treatment. Precision oncology focuses on
providing medicines for specific characteristics of a patient’s
tumour. The drug sensitivity is quantified by drug dose-response
values which measure the ratio of treated to untreated cells after
treatment with a specific drug concentration. In this application, a
set of drug data obtained from the NCI60 human tumour cell line
database Shoemaker (2006) is used to predict the drug response by
considering gene expression, protein and microRNA abundance. As
per the contemplated scope, the UNOMT applicationwe focus on in
the study is conducted on single-drug response prediction using
NCI60 and gCSI datasets.We used 1006 drugs fromNCI60 database
for this evaluation and gCSI for the cross-validation. The original
application runs sequentially, and our contribution is providing a
parallelized runtime for data engineering and running the deep
learning workload alongside it.

The drug response model contains a dense input layer of shape
1537 to get the concatenated results of the gene network and the
drug network response along with the concentration value.
Within the drug response regression network, there is another
residual block being used repeatedly. This layer is called the drug
response block module, which contains two dense layers followed
by a dropout layer and a ReLU activation layer. Figure 6 depicts
the response block module.

Residual blocks are stacked, and a set of dense layers are as
well. Finally, the regression layer contains a single output dense
layer. The number of response blocks can be customized
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dynamically and the number of dense layers that follow it. All
these parameters can be provided as a hyper-parameter in the
application configuration file. Figure 7 shows the drug response
regression network.

This network is trained in a distributed data-parallel model
since it contains a large dataset and a complex network compared
to the other examples. The corresponding data engineering
component is also distributed data-parallel, which is discussed
in detail in Section 4.3.

4.3 Data Engineering Component
UNOMT application uses 2.5 million samples of cancer data across
six research centres. Thismodel analyses the study bias across these
samples to design a unified drug response model. Before building
this model, the application consists of a data engineering workload
written in Pandas. The application consists of a few data
engineering operators: concat (inner-join), to_csv, rename,
read_csv, astype, set_index, map, isnull, drop, filter, add_prefix,
reset_index, drop_duplicates, not_null, isin and dropna.

The existing data engineering workload is written in Pandas
and does not run in parallel. We re-engineered this application to
a parallel data engineering workload. We designed a seamless
integration between data analysis and data engineering workload
consuming state-of-the-art high-performance computing
resources. We also integrated a Modin-based implementation
to showcase the performance comparison with our

implementation. The data engineering workload is executed in
CPU-based distributedmemory, and the data analytical workload
can be either run in CPU or GPU. We use Pytorch for data
analytics workload and extend it to PyTorch distributed data-
parallel training. Our objective is to integrate an HPC-based full
stack of data analytics-aware data engineering for scalability.
PyCylon only supports this feature at the moment. Also, we
stress the importance of designing a BSP-based model for deep
learning workloads associated with data engineering components
for better performance and scalability in HPC hardware.

The data analytics component requires a set of features to be
engineered from the raw data. Here, three primary datasets are
necessary to create the complete dataset for the drug response
model. Figure 8 refers to the primary dataset, which contains the
drug response. The raw dataset possesses additional features, so
the data is loaded in the initial stage, and a column filtering
operation selects extract the expected features. Then a map
operation is performed to preprocess a drug ID column to
remove symbols from the columns and create a consistent
drug ID. Once the data are cleaned, they are scaled with the
Scikit-learn preprocessing library for scaling numerical values.
After this, the data are fully converted into a numeric type to
provide numeric tensors for the deep learning workload. In the
parallel mode, we partition this dataset with the set parallelism,
upon which it is passed to the corresponding operators.

To formulate the global dataset, we require two other datasets
which act as metadata to filter and process the primary drug
response dataset. The first is the drug feature raw dataset, which
contains drug features required to be located in the drug
response data. Two sub-datasets contribute to formulating
the drug feature dataset. We merge them by performing an
inner join on the dataset based on the index formed on the drug
IDs. After that, we cast the data into numeric types and output
them as a numeric array which is later converted to a numeric
tensor for deep learning. This data processing workflow is
shown in Figure 9.

The other dataset required is the RNA sequence dataset
containing information about RNA sequences. Here the

FIGURE 10 | RNA sequence data processing.

FIGURE 11 | Drug response overall data processing.
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dataset is first processed to remove specific symbols by a map
operation, and then duplicate records are dropped by a drop
duplicate operator. Then an index is set for this dataset, and later
on, scaling is done on the numeric data using the Scikit-Learn
preprocessing library. Finally, the data is cast to a numeric type,
and preprocessed RNA-sequence data are formulated as a
Numpy array, which is later converted into a numeric tensor
for the deep learning workload. This data processing pipeline can
be found in Figure 10.

Once the drug response data, drug feature data and RNA-
sequence data are preprocessed, the final data for the drug
response model is engineered as shown in Figure 11. The
processed drug response data are further feature-selected, and
a unique operation is applied. Then the RNA sequence data is
filtered by checking whether specific drug-related RNA
sequences are present. The same is done for the drug
feature dataset. These two operations are done by the isin
operator. Afterwards, the common drug set is selected by
performing an and operation, and later these common
drug-related drug response data filters are used to get the
final drug response data.

Among the operators applied, since we partitioned the data,
each data engineering operator can work independently in a
pleasingly parallel manner. But we can rely on the distributed
unique operator to ensure no duplicate records are used for
deep learning across all processes. Note that the data
engineering component of this application is feature
engineering metadata, and we use them to filter an
extensive dataset converted to formulate the expected input
for the drug response model.

5 PERFORMANCE EVALUATION

The original UNOMT application was a single-threaded
application implemented on Pandas for data engineering and
PyTorch for deep learning. Our first goal was to implement the
sequential version of the application and improve the sequential
performance. After the first stage, we conducted distributed
experiments to see how we could scale our workload on CPUs
for data engineering. We also extended the deep learning
component of this application by integrating with PyTorch

distributed execution framework on both CPUs and GPUs
using MPI and NCCL, respectively. Our goal was to
seamlessly incorporate a deep learning-aware data engineering
workload using a single Python data engineering and deep
learning script with a single runtime in this benchmark. Also,
note that we used the drug response network-related more
extensive data distribution for the application benchmark. At
the same time, the smaller networks require a much shorter
execution time than this larger model.

5.1 Setup
For the experiments, we had two sets of clusters for CPUs andGPUs.
Victor cluster of Future Systems was used with six nodes and 16
processes per each on the maximum parallelism for CPUs. This
cluster contains Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10 GHz
machine per node. GPU experiments had Tesla K80s with 8 GPU
devices on Google Cloud Platform. For single-node single-process
executions, we used the sameVictor nodes. Pandas, PyCylon (single-
core) and Modin (single-core) were deployed for the sequential
performance comparisons. Finally, for the distributed performance
comparisons, we used PyCylon and Modin on single node multi-
core scaling. We selected Modin instead of Dask because it is closer
to the data engineering stack proposed by PyCylon due to eager
execution and the ability to convert an existing Pandas data
engineering workload in a straightforward manner.

5.2 Sequential Execution Performance
We first conducted experiments to evaluate the proposed systems’
single process execution, PyCylon, Modin, and Pandas. Modin

FIGURE 12 | Sequential data engineering.
FIGURE 13 | Multi-core data parallel data engineering performance.

FIGURE 14 | Multi-core data parallel data engineering speed-up.
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provides the ability to convert a Pandas data engineering workload
utilizing a single line of code. In contrast, PyCylon offers a dynamic
API allowing the user to dynamically decide the nature of sequential
and parallel operators. We evaluated the data engineering
performance for the drug response data preprocessing workload
used for the drug response regression network. Figure 12 has the
single-core performance for the aforementioned data engineering
workload. We observe that the sequential performance of PyCylon
and Pandas are very similar, while Modin is much slower. These
measurements include data loading efficiency plus overall operator
performance improvements. But in a general way, Pandas and
PyCylon have almost similar performance in most operators
except for data loading, duplicate handling, null handling and
search operations involved in this application. Note that both
PyCylon and Modin are evolving data engineering frameworks to
support data engineering on tabular data.

This section of the application entails data normalization,
parameterized data partition, and statistical data processing with
third-party Python libraries like Scikit-Learn. These libraries
integrate with Pandas dataframe seamlessly. Since PyCylon
employs zero-copy conversion to and from Pandas, such
third-party libraries can be easily integrated without a
performance penalty. But for Modin, it cannot go back-and-
forth between the Pandas data structure. This caused some of
these operations to be relatively slower for Modin, compared to
Pandas and PyCylon. This shows that we have to go beyond the

dataframe construct and integrate with third-party libraries in
implementing real-world applications. And to integrate with such
libraries, data engineering frameworks must be very well designed
with widely used data structures used by data scientists.

5.3 Distributed Execution Performance
UNOMT computation can be distributed in a data-parallel setting.
For the distributed implementation, the sequential scripts were
ported to distributed HPTMT (PyCylon) operators. We initially
evaluated the performance for a single-node multi-core setup.
Figure 13 shows the results for that application. These results
show that the PyCylon is scaling well compared to Modin in the
distributed data-data parallel setting.

Figure 14 depicts the relative speed-up for each framework.
We observe that PyCylon has a much relative speed-up compared
to Modin. We observed the similar scaling results when we
comparing the performance for distributed-join operation. A
reasonable conclusion drawn from these results is that data
engineering applications could greatly benefit from employing
HPTMT architecture.

We extended the distributed experiments further for multi-
node multi-core. We observed that Modin failed to scale beyond a
single node and failed in the cluster set-up. This could be a lack of
documentation or an issue with the distributed frameworkModin
uses. Modin doesn’t contain its own distributed runtime but relies
on Ray or Dask. But with PyCylon, conveniently gets distributed
in multi-node BSP (ex: MPI) execution environment. The
distributed data engineering performance for PyCylon is
shown in Figure 15.

5.4 Deep Learning Execution
The deep learning experiments also extend data engineering runs
on CPUs but both CPU and GPUs. As indicated previously, deep
learning computation also built on distributed data-parallel
(DDP) setting. For these experiments, we used the same
number of processes for both data engineering and deep
learning. But PyCylon can be further improved to run in
many-to-many process mapping for more complex data-
parallel executions.

We selected PyTorch distributed communication framework
with MPI for CPUs and NCCL for GPUs for the data analytics
scaling experiments. The single process experiment results are the

FIGURE 15 | PyCylon multi-node multi-core distributed data parallel
data engineering.

FIGURE 16 | Distributed data parallel deep learning on CPU.

FIGURE 17 | Distributed data parallel deep learning on GPU
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similar for PyCylon and Pandas, and both have the same PyTorch
codebase. Furthermore, all the data were in memory before the
deep learning workload, so there was no overhead in loading data
to create mini-batches. The CPU-based DDP experiments scaled
well across multi-nodes, but we observed a slight memory
overhead, causing the application to scale below the ideal
point. We completed more experiments to evaluate an
overhead from the data engineering framework, but we
observed no significant overheads hindering the scalability on
CPUs. Figure 16 highlights the average computation and
communication time spent per epoch as we add more
resources to the setup. We used a locally built PyTorch binary
with MPI execution. One significant factor is that PyTorch
becomes an ideal distributed computation deep learning
framework for PyCylon since PyCylon also supports an MPI
backend for distributed computation.

The GPU-based DDP experiments were handled with a single-
node multi-GPU experiment setting to see how the data analytics
workload could be scaled on the NCCL execution framework with
PyTorch. Figure 17 displays the results for single GPU andmulti-
GPU experiments. We observed that the execution time was
dominated by the communication time. With the increase of
parallelism, the number of communications across devices
increases, but the number of batches that has to be sent across
devices decreases. This gives an advantage in scaling. When we
consider the computation time, we saw that scaling happens
closer to the ideal scaling point in all parallel settings. In addition,
the computation is much faster in Parallelism 2 than in
Parallelism 1, where the memory overhead is 50% less than
the sequential execution. When considering CPU vs GPU
performance for the deep learning workload, the speed-up
from GPUs is 2x compared to CPUs in this network.

6 RELATED WORK

There are many efforts to build efficient distributed operators for
data science and data engineering. Frameworks like Apache Spark
(Zaharia et al., 2016), Apache Flink (Carbone et al., 2015) and
Map Reduce (Dean and Ghemawat, 2008) are legacy systems
created for data engineering. And many programming models
have been developed on top of these big data systems to facilitate
data analysis (Belcastro et al., 2019). Later on, these systems
adopted the data analytics domain under their umbrella of big
data problems. But with the emerging requirement for high-
performance computing for data science and data engineering,
the existing parallel operators in these frameworks don’t provide
adequate performance or flexibility (Elshawi et al., 2018).
Frameworks like Pandas McKinney (2011) gained more
popularity in the data science community because of their
usability. Pandas only provide serial execution, and Dask
(Rocklin, 2015) uses it internally (parallel Pandas) to provide
parallel operators. Also, it was re-engineered as Modin
(Petersohn et al., 2020) to run the dataframe operators in
parallel. But these efforts are mainly focused on a driver-based
asynchronous execution model, a well-known bottleneck for
distributed applications.

The majority of the data analytics workloads tend to use data-
parallel execution or bulk synchronous parallel (loosely
synchronous) mode. This idea originated in 1987 from Fox,
G.C. in the article “What Have We Learnt from Using Real
Parallel Machines to Solve Real Problems” Fox (1989). Later, a
similar idea was published in an article by Valiant, L Valiant
(1990) in 1990 which introduced the term “Bulk Synchronous
Parallel”. Frameworks like PyTorch (Paszke et al., 2019) adopted
this HPC philosophy, and distributed runtimes like Horovod
(Sergeev and Del Balso, 2018) generalized this practice for most of
the existing deep learning frameworks. They were adopting this
philosophy along the same time HPC-driven big data systems like
Twister2 (Fox, 2017; Abeykoon et al., 2019; Wickramasinghe
et al., 2019) were created to bridge the gap between data
engineering and deep learning. But with the language
boundaries of Java (Ekanayake et al., 2016) and usability with
native-C++ based Python implementations were favoured over
JVM-based systems. PyCylon (Abeykoon et al., 2020) dataframes
for distributed CPU computation and Cudf (Hernández et al.,
2020) dataframes for distributed GPU computation were
designed. The seamless integration of data engineering and
deep learning was a possibility with such frameworks and
nowadays are being widely used in the data science and data
engineering sphere to do rapid prototyping and design
production-friendly applications.

7 LIMITATIONS AND FUTURE WORK

As showcased in the Section 5, HPTMT Model scales well in a
distributed environment using BSP execution. This requires
dedicated resource allocation. Thus it does not support
dynamic auto-scaling, which may be an important aspect in a
multi-tenant cloud environment. In most of the client-server
(fully asynchronous) frameworks such as Dask, Spark, etc.
provide the ability to allocate new resources without
interrupting current job. Even with a process-memory
snapshot mechanism, the system comes to a pause and will be
restarted with the new processes. Furthermore, fault-tolerance is
another useful aspect in a cloud setup. Even though the cloud
hardware are becoming increasingly cheaper, more reliable, and
widely available, we believe that dynamic scaling and fault
tolerance would be important, and those would be
incorporated with HPTMT and Cylon in the future.

Our next focus is to provide an enhanced set of collective
communication operators on the tabular level to data science/
engineering application developers. The main future objective is
to provide a set of advanced APIs for the data science application
developers to design complex data engineering applications with
a high performance toolkit in hand with much better usability.

Furthermore, we believe that both BSP and fully asynchronous
execution models are important for complex data engineering
pipelines. We are currently integrating an asynchronous
execution model into HPTMT and Cylon, using workflow
management concepts. This would enable creating individual
data engineering workflows that runs on BSP, while each of these
workflows be scheduled asynchronously. We believe such a
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system would optimize resource allocation without hindering the
overall performance.

8 CONCLUSION

In this paper, we proposed the HPTMT architecture that
defines an operator and execution model for scaling data-
intensive applications. We showcased the applicability of this
architecture in an en end-to-end application using Cylon
framework, where data engineering and deep learning
operators working together in a single distributed program.
We believe that it is important to formulate and clearly define
the core concepts used in developing Cylon, which could help
in building highly scalable big-data applications in the future.
HPTMT multi-process experiments’ results show how well the
proposed system architecture can scale compared to the
existing systems with the non-synchronous mode of
computation. Also, the parallel performance gain ratio is 6:1
in favor of the proposed system. This highlighted the
importance of HPTMT based distributed and local
operators on a different data structure that can work
together in a single program. Further, the HPTMT style
operators are more efficient in executing at scale, due to
their loosely synchronous nature and low scheduling/
coordination overhead. With the future work proposed for
the architecture, we believe that we can elevate Cylon to be a
truly high-performance data engineering framework built for
the future.
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