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This paper presents Bayesian directional data modeling via the

skew-rotationally-symmetric Fisher-von Mises-Langevin (FvML) distribution. The

prior distributions for the parameters are a pivotal building block in Bayesian analysis,

therefore, the impact of the proposed priors will be quantified using the Wasserstein

Impact Measure (WIM) to guide the practitioner in the implementation process. For the

computation of the posterior, modifications of Gibbs and slice samplings are applied for

generating samples. We demonstrate the applicability of our contribution via synthetic

and real data analyses. Our investigation paves the way for Bayesian analysis of skew

circular and spherical data.

Keywords: Fisher-von Mises-Langevin distribution, Gibbs sampling, MCMCmethod, skew-rotationally-symmetric
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1. INTRODUCTION

Big and complex data sets are collected from various scientific fields such as atmospheric
environment, social science, psychological and biomedical studies, bioinformatics, epidemiology,
digital imaging information, and machine learning, to name just a few. Big Data can refer to
data with big volume or velocity, high-dimensional data (Ahmed, 2017), unstructured or unusual
data (Härdle et al., 2018), complex data, etc. Therefore, there is a need for developing statistical
techniques other than the traditional analytical frameworks to model, interpret, and use such data
in different fields of science. Data with directions are categorized as unusual data that cannot be
analyzed and modeled under the Cartesian coordinate system.With the aid of directional statistics,
data science meets another level of analytical methods. In this research work, we focus on the
analysis of complex directional data. Bayesian methods have received extensive attention in data
science because prior information can be added to enhance modeling. Therefore, here, we consider
Bayesian analysis of complex directional data.

A robust roadmap with the symmetric Fisher-von Mises-Langevin (FvML) distribution as the
key element from a Bayesian perspective is briefly reviewed. According to Kikuchi’s collection
of directional data (Kikuchi, 1982), the first attention paid to Bayesian methods for directional
data was in a paper by Mardia and El-Atoum (1976). They used the Bayesian approach to
estimate the location parameter of the FvML distribution when the concentration parameter was
known. The author Bagchi made several contributions in this area: (i) Bagchi (1988) formulated
a conjugate prior for the mean direction and a non-informative prior for the concentration
parameter of the von Mises distribution; (ii) Bagchi and Guttman (1988) focused on Bayesian
inference for the multi-variate FvML distribution; (iii) Bagchi and Kadane (1991) derived the
Bayes estimate for the cosine of the direction parameter of the von Mises distribution when
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the concentration parameter is known; and (iv) Bagchi (1994)
developed empirical Bayesian techniques to estimate the mean
direction of the FvML distribution (see also Guttorp and
Lockhart, 1988; Dowe et al., 1996). Damien and Walker (1999)
presented a full Bayesian inference for the von Mises distribution
implementing a Gibbs sampler while (Rodrigues et al., 2000)
provided an empirical or approximate Bayesian inference for
the von Mises distribution. Nuñez-Antonio and Gutiérrez-Peña
(2005) presented Bayesian analysis of the FvML distribution
when all of the parameters were unknown, as well as an algorithm
to generate samples from the posterior distribution based
on a sampling-importance-resampling method. Muralidharan
and Parikh (2007) provided Bayes estimates for both location
and concentration parameters of the von Mises distribution.
Bhattacharya and SenGupta (2009) presented Bayesian analysis
of a generalized von Mises distribution introducing a new
algorithm based on importance sampling and Markov chain
Monte Carlo (MCMC) to draw samples from the posterior
distribution. Mardia (2010) moved the attention to the bivariate
von Mises distribution (on the torus) from a Bayesian viewpoint.
Infinite mixtures of FvML distributions using standard conjugate
priors for the parameters and Dirichlet priors for the mixing
probabilities received attention from Bangert et al. (2010).
Hornik and Grün (2013) defined conjugate and Jeffreys
priors for the FvML distribution while Taghia et al. (2014)
worked on Bayesian inference for the FvML mixture model.
From 2017 and onwards the following contributions can be
highlighted: Straub (2017) presented Bayesian analysis for
the FvML distribution in 3D; Røge et al. (2017) presented
Bayesian inference in the case of infinite FvML mixture
model assumption; Mulder et al. (2020) provided Bayesian
inference for mixtures of von Mises distributions using a
reversible jumpMCMC sampler and focused on non-informative
priors. Lastly, the interested reader is referred to Pewsey
and García-Portugués (2021) for Bayesian inference of other
directional distributions.

Numerous directional data sets tend to show non-trivial
features such as skewness. Therefore, the underlying distribution
is not always symmetric, which emphasizes the focus on skewed
directional distributions. This inspired us to investigate Bayesian
analysis for the general class of skew-rotationally-symmetric
distributions (Ley and Verdebout, 2017b), an asymmetric
extension of all rotationally symmetric distributions, when the
location, concentration, and skewness parameters are unknown.

In section 2, the skew-rotationally-symmetric distribution and
special cases are described. The novel contribution is given in
section 3 where the posterior distributions are obtained for the
skew-FvML as the likelihood model, for four different scenarios
of the prior distributions for the parameters of the model.
Moreover, an algorithm is provided for generating samples from
these posterior distributions. The impact of the priors is explored
in section 4, by implementing the Wasserstein Impact Measure
(WIM). In section 5, a synthetic data analysis is conducted
to show the accuracy of the Bayes estimates based on the
assumptions of the skew-FvML model. We demonstrate the
applicability of the Bayesian framework for well known real
datasets in section 6 for dimensions p = 2 and 3.

2. SKEW-ROTATIONALLY-SYMMETRIC
DISTRIBUTIONS

Most of the distributions on the unit hypersphere S
p−1 =

{v ∈ R
p
: v

⊤
v = 1}, p > 2, share the common feature of

being rotationally-symmetric about their location µ ∈ S
p−1.

The distribution of a random variable X ∈ S
p−1 is said to

be rotationally-symmetric about µ if for any orthogonal matrix
Op×p satisfying Oµ = µ it is concluded that OX is equal in
distribution to X. The FvML distribution, the most common
distribution in spherical studies, is obtained by conditioning on
the p-variate normal distribution (seeMardia and Jupp, 2000; Ley
and Verdebout, 2017a). Suppose X takes values on the non-linear
manifold Sp−1 and has the FvML distribution, then its probability
density function (pdf) is given by

f (x;µ, τ ) = C(τ ) exp(τµ⊤
x), x,µ ∈ S

p−1, (1)

where

C(τ ) = (2π)−p/2 τ p/2−1

Ip/2−1(τ )
, (2)

τ > 0 is the concentration parameter, and Iα is the modified
Bessel function of order α. For τ = 0, (1) simplifies to the
uniform distribution. If p = 2 in (1), it results in the von Mises
distribution and when p = 3, the Fisher distribution (Fisher,
1953) is obtained.

However, in practice, all real-life phenomena cannot be
represented by symmetric models. The interested reader is
referred to Downs (2003) for medical research of heart
disease diagnosis, Leong and Carlile (1998) for application in
neurosciences, Shearman et al. (2000) for biological research on
mammalian circadian rhythms, Mardia (2013) and Ameijeiras-
Alonso and Ley (2020) for application in bioinformatics
especially protein structure prediction, Fisher and Lee (1994)
for some studies on wind direction, Ameijeiras-Alonso et al.
(2021) for biomechanics studies, and Pewsey (2002) and Ley and
Verdebout (2014) for animal movement studies.

Therefore, in this paper, the focus will be on the skew-
rotationally-symmetric (SRS) distributions, introduced by Ley
and Verdebout (2017b) as

fSRS(x) = 2f (x⊤µ)5(γ⊤ϒ⊤
µx), x,µ ∈ S

p−1, (3)

where f (x⊤µ) is a rotationally-symmetric pdf about µ ∈ S
p−1,

5 :R → [0, 1] is a monotone increasing function satisfying
5(−t) + 5(t) = 1 for all t ∈ R, and ϒ⊤

µ represents the

semi-orthogonal matrix such that ϒµϒ⊤
µ = Ip − µµ⊤ and

ϒ⊤
µϒµ = Ip−1, where Ip is the p × p identity matrix. The

parameter γ ∈ R
p−1 is a skewness parameter vector such that

γ = 0 provides the symmetric pdf f (x⊤µ) and non-zero values
of γ provide skewed pdfs. This construction allows using the
full potential of existing rotationally-symmetric distributions by
turning them into skewed versions.

Substituting (1) in (3) and letting ϒ⊤
µx =(

(1− (x⊤µ)2)1/2Uµ(x)
)

with Uµ(x) the sign vector which
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is uniformly distributed on S
p−2, the skew-FvML (SFvML)

distribution is obtained as

fSFvML(x;µ, γ , τ )
= 2C(τ ) exp(τx⊤µ)5

(
(1− (x⊤µ)2)1/2γ⊤

Uµ(x)
)
,

x,µ ∈ S
p−1, (4)

where C(τ ) is defined in (2).
By using the standard cosine transformation

(x1, x2, ..., xp)
⊤

= (cos θ1, sin θ1 cos θ2, ..., sin θ1... sin θp−2 sin θp−1)
⊤, (5)

and choosing ϒ⊤
µx = 1(x > µ)− 1(x 6 µ) in (4), for p = 2, the

skew-von Mises (SvM) distribution follows as

fSvM(θ;µ, τ , γ ) = 1

πI0(τ )
exp(τ cos(θ − µ))5

(
γ sin(θ − µ)

)

(6)
where θ ,µ ∈ (−π ,π], τ > 0 and γ ∈ R. Here, the scalar product
x
⊤µ is cos(θ − µ). By choosing 5(x) = 1+x

2 , x ∈ [−1, 1], in (6),
the sine-skewed von Mises distribution introduced by Abe and
Pewsey (2011) is obtained where γ ∈ [−1, 1].

The following lemma can be used to generate a sample from
the SFvML distribution.

LEMMA 1. (Ley and Verdebout, 2017b) Generate Y from the
rotationally-symmetric FvML distribution in (1). Then for any
uniformly distributed sign vector Uµ(Y), Uµ;5(Y) is defined as

Uµ;5(Y) =
{

Uµ(Y) if U 6 5
(
(1− (Y⊤µ)2)1/2γ⊤

Uµ(Y)
)
,

−Uµ(Y) if U > 5
(
(1− (Y⊤µ)2)1/2γ⊤

Uµ(Y)
)
,

where U is uniformly distributed on (0, 1) and independent of Y .
Then the vector X with pdf (4) is obtained as

X = (Y⊤µ)µ + (1− (Y⊤µ)2)1/2ϒµUµ;5(Y).

In the next section, Bayesian inference with the SFvML
distribution as the key element is presented with all location,
concentration, and skewness parameters µ, τ , and γ unknown.

3. METHODOLOGY

Let X = (X1,X2, ...,Xn) be a random sample of size n with pdf
(4) where the standard normal cumulative density function (cdf)
8 replaces 5. The likelihood function is

L(µ, γ , τ | X) = 2nCn(τ ) exp(τµ⊤
n∑

i=1

xi)

n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
. (7)

Subsequently, four scenarios are presented to define the prior
distributions for the location parameter µ, the concentration
parameter τ , and the skewness parameter γ .

3.1. Prior Distributions
As above, let X denote a set of observations, and a generative
model of the data be defined through a set of unknown
parameters � = (µ, γ , τ ) (see (7)). In this section the prior
distributions for � = (µ, γ , τ ) are outlined.

For the skewness vector γ the following prior distributions are
proposed: (i) the multi-variate normal distribution with location
parameter ξ and covariance matrix diag(σ ), (ii) the multi-
variate skew-normal distribution (Azzalini, 1985) with location
parameter ξ , covariance matrix diag(σ ) and skewness parameter
λ, i.e.,

π1(γ | ξ , diag(σ )) ∝
p−1∏

i=1

1

σi
φ

(
γi − ξi

σi

)
∝ φp−1(γ−ξ ; diag(σ )),

(8)
and

π2(γ | ξ , diag(σ )),λ) ∝
p−1∏

i=1

1

σi
φ

(
γi − ξi

σi

)
8

(
λi

γi − ξi

σi

)
(9)

∝ φp−1(γ − ξ ; diag(σ ))8p−1(γ − ξ ;D),

where D = diag( σ1
λ1
, · · ·, σp−1

λp−1
), ξi ∈ R, σi > 0, λi ∈ R, φ is

the standard normal pdf, φn and 8n are the pdf and cdf of the
n-variate standard normal distribution, respectively. Next, the
following priors for µ and τ are considered.

Case 1: Nuñśez-Antonio and Gutiérrez-Peñśa’s Prior

In this case, we adopt the joint prior distribution of Nuñez-
Antonio and Gutiérrez-Peña (2005) with direction parameterµ0,
concentration parameters ζ and η for (µ, τ ), i.e.,

π(µ, τ | µ0, ζ , η) ∝
(

τ p/2−1

Ip/2−1(τ )

)ζ

exp(ητµ⊤µ0), (10)

where µ0 ∈ S
p−1 and 0 < η < ζ . The normalization

constant can only be obtained for some special cases. Straub
(2017) computed the normalization constant of (10) for ζ = 1
and p = 3.

Case 2: FvML and Gamma Prior

In this case, the FvML and gamma distributions with parameters
µ0, τ0, α, and β are proposed as priors for (µ, τ ) (Muralidharan
and Parikh, 2007), i.e.,

π(µ, τ | µ0, τ0,α,β) ∝ exp(τ0µ
⊤µ0)τ

α−1 exp(−βτ ), (11)

where τ0,α,β > 0 and µ0 ∈ [−π ,π).

3.2. Posterior Distributions
Subsequently, the posterior distribution π(� | X) ∝ π(�)L(� |
X) is determined for the different prior assumptions on � =
(µ, γ , τ ). Firstly, assume the prior distribution set up as
described under case 1 and different prior distributions for the
skewness parameter.
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Scenario 1

Assume the prior distribution of the skewness parameter, γ

is given by (8), then for given X the posterior distribution of
(µ, γ , τ ) can be obtained by using (7), (8), and (10) as

π(µ, γ , τ | X,µ0, ζ , η, ξ , σ ) ∝
(

τ p/2−1

Ip/2−1(τ )

)ζ+n

exp

(
τµ⊤

(
n∑

i=1

xi + ηµ0

))
φp−1(γ − ξ ; diag(σ ))

×
n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
. (12)

The full conditionals for µ, γ , and τ are, respectively:

π(µ | γ , τ ,X) ∝ exp

(
τµ⊤

(
n∑

i=1

xi + ηµ0

))

n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
,

π(γ | µ, τ ,X) ∝ φp−1(γ − ξ ; diag(σ ))
n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
,

π(τ | µ, γ ,X) ∝
(

τ p/2−1

Ip/2−1(τ )

)ζ+n

exp

(
τµ⊤

(
n∑

i=1

xi + ηµ0

))
.

Scenario 2

If we assume the prior distribution (9) for γ , the posterior
distribution of (µ, γ , τ ) can be obtained by using (7), (9), and
(10) as follows

π(µ, γ , τ | X,µ0, ζ , η, ξ , σ ) ∝
(

τ p/2−1

Ip/2−1(τ )

)ζ+n

exp

(
τµ⊤

(
n∑

i=1

xi + ηµ0

))
φp−1(γ − ξ ; diag(σ ))

×
n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
8p−1(γ − ξ ;D).

(13)

The full conditionals for µ, γ , and τ are, respectively:

π(µ | γ , τ ,X) ∝ exp

(
τµ⊤

(
n∑

i=1

xi + ηµ0

))

n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
,

π(γ | µ, τ ,X) ∝ φp−1(γ − ξ ; diag(σ ))8p−1(γ − ξ ;D)

×
n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
,

π(τ | µ, γ ,X) ∝
(

τ p/2−1

Ip/2−1(τ )

)ζ+n

exp

(
τµ⊤

(
n∑

i=1

xi + ηµ0

))
.

Scenario 3

If the prior distribution of the skewness parameter γ is given by
(8), for given X, the posterior distribution of (µ, γ , τ ), by using
(7), (8), and (11), is

π(µ, γ , τ | X,µ0, τ0,α,β , ξ , σ )

∝ τnp/2+α−n−1

Inp/2−1(τ )
exp

(
µ⊤

(
τ

n∑

i=1

xi + τ0µ0

)
− βτ

)

φp−1(γ − ξ ; diag(σ ))

×
n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
. (14)

The full conditionals for µ, γ , and τ are, respectively:

π(µ | γ , τ ,X) ∝ exp

(
µ⊤

(
τ

n∑

i=1

xi + τ0µ0

))

n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
,

π(γ | µ, τ ,X) ∝ φp−1(γ − ξ ; diag(σ ))
n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
,

π(τ | µ, γ ,X) ∝ τnp/2+α−n−1

Inp/2−1(τ )
exp

(
τ

(
µ⊤

n∑

i=1

xi − β

))
.

Scenario 4

When the prior distribution of γ is the skew-normal distribution
in (9), the posterior distribution of (µ, γ , τ ) by using (7), (9), and
(11) is

π(µ, γ , τ | X,µ0, τ0,α,β , ξ , σ )

∝ τnp/2+α−n−1

Inp/2−1(τ )
exp

(
µ⊤

(
τ

n∑

i=1

xi + τ0µ0

)
− βτ

)

φp−1(γ − ξ ; diag(σ ))

×
n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
8p−1(γ − ξ ;D). (15)

The full conditionals for µ, γ , and τ are, respectively:

π(µ | γ , τ ,X) ∝ exp

(
µ⊤

(
τ

n∑

i=1

xi + τ0µ0

))

n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
,

π(γ | µ, τ ,X) ∝ φp−1(γ − ξ ; diag(σ ))8p−1(γ − ξ ;D)

×
n∏

i=1

8
(
(1− (xi

⊤µ)2)1/2γ⊤
Uµ(xi)

)
,

π(τ | µ, γ ,X) ∝ τnp/2+α−n−1

Inp/2−1(τ )
exp

(
τ

(
µ⊤

n∑

i=1

xi − β

))
.
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3.3. Sampling From the Posterior
Distributions
A general algorithm is presented to obtain the Bayes estimates of
the parameters � = (µ, γ , τ ) based on the modified sampling-
resampling method (Smith and Gelfand, 1992) and modified
Gibbs sampling.

After a sufficient burn-in period, the generated sample
((µ1, γ 1, τ1), (µ2, γ 2, τ2), ..., (µN , γN , τN)) is approximately
distributed according to the posterior distribution of
� = (µ, γ , τ ). As can be seen in Algorithm 1, it is sufficient to
generate samples of size k from prior distributions of (µ, γ , τ )
which is one of the advantages of this algorithm. By increasing
N and k in Algorithm 1 the approximation increases. When the
joint prior distributions are not independent, Algorithm 1 still
has a good performance (Muralidharan and Parikh, 2007). For
the joint prior of (µ, τ ) in (10), the slice sampler can be used (see
McElreath, 2020).

4. THE WASSERSTEIN IMPACT MEASURE

The prior distributions are a crucial part in Bayesian analysis.
If the sample size is small, or available data provide only
indirect information about the parameters of interest, the prior
distribution becomes more important (Carlin and Louis, 2008).
Different criteria can be used for prior selection, we refer the
reader to Vehtari et al. (2017). Ghaderinezhad et al. (2022)
implemented the Wasserstein Impact Measure (WIM) as a
measure of the impact of the choice of the prior in a Bayesian
approach. In fact it is a convenient way for quantifying prior
impact which will help us to choose between two or more priors
in a given situation. Suppose � is the vector of parameters and
F1(.) and F2(.) are two cumulative distribution functions (cdfs) of

Algorithm 1 : Steps to generate samples from the posteriors by
using priors and full conditionals.

1: Set the initial values �(0) = (µ(0), γ (0), τ (0)) and fix the
sample size as B+ N, where the first B samples are burn-in.

2: Simulate µ1,µ2, ...,µk, a sample of size k, from π(µ), the
prior distribution of µ.

3: Let ρ1i = π(µi|X,γ (0) ,τ (0))
π(µi)

for i = 1, 2, ..., k, where π(µ |
X, γ , τ ) is the full conditional of µ.

4: Select µ(1) corresponding to max ρ1i, i = 1, 2, ..., k.
5: Simulate τ1, τ2, ..., τk from π(τ ), the prior distribution of τ .

6: Let ρ2i = π(τi|X,µ(1) ,γ (0))
π(τi)

for i = 1, 2, ..., k, where π(τ |
X,µ, γ ) is the full conditional of τ .

7: Select τ (1) corresponding to max ρ2i, i = 1, 2, ..., k.
8: Simulate γ 1, γ 2, ..., γ k from π(γ ), the prior distribution of

γ .

9: Let ρ3i = π(γ i|X,µ(1) ,τ (1))
π(γ i)

for i = 1, 2, ..., k, where π(γ |
X,µ, τ ) is the full conditional of γ .

10: Select γ (1) corresponding to max ρ3i, i = 1, 2, ..., k.
11: Repeat Steps 1-10 with �(1) = (µ(1), γ (1), τ (1)) to obtain

�(2) = (µ(2), γ (2), τ (2)) and continue until �(B+N) is
obtained.

two posterior distributions π1(�|.) and π2(�|.). TheWasserstein
distance between these two posteriors related to two different
prior sets is obtained as follows:

dW(π1,π2) =
∫

D�

|F1(�;X)− F2(�;X)|d�, (16)

with D� the domain of all possible values of �. The Wasserstein
distance between two posteriors indicates, at any finite sample
size n, how close the posterior distributions are and how similar
the related inference will be. This is particularly interesting when
considering a simple vs. a complicated, computationally intense
prior; if the WIM between them is small, then one can safely use
the simpler version. When n → ∞ the distance tends to 0.

In this section, a simulation study is conducted to compare
the different sets of proposed priors in section 3 for p = 2 using
this measure. Since the cdfs of the posteriors in (12)–(15) are not
computable, Algorithm 1 and Monte Carlo integration are used
to obtain the Wasserstein distance. Also, the transport package
(Schuhmacher et al., 2020) in the R software offers functions for
computing the Wasserstein distance between two sets of samples
from different distributions. Most of the functions in this package
have been designed for data with two or higher dimensions. For
various combinations of the parameters we draw 200 random
observations from the SvM in (6).

To compare the impact of the normal distribution and skew-
normal distribution in (8) and (9) (for p = 2) as priors for the
skewness parameter γ , the following steps were performed:

(1) µ and τ were considered as known parameters.
(2) For the unknown skewness parameter γ , the N(0, 5) and

SN(0, 5, λ) with λ = −3,−2,−1, 1, 2, 3 were considered
as priors.

(3) For a generated sample from (6) (the skewing function is the
standard normal cdf), with µ = 3, τ = 1 and γ = 5, the
posteriors π1(γ |.) and π2(γ |.) emanating from N(0, 5) and
SN(0, 5, λ), respectively, were considered.

(4) The posteriors π1(γ |.) and π2(γ |.) were sampled using
Algorithm 1, for n = 10, 15, 20, 25, 30, 35, 40, 50, 100.

(5) The Wasserstein distance between the posteriors π1(γ |.)
and π2(γ |.) was estimated, using the transport package and
Monte Carlo method with 1, 000 repetitions.

Figure 1 (top) shows the calculated Wasserstein distance for
different values of λ and n. As expected,

• when λ is close to 0, there are no nearly differences between
the posteriors π1(�|.) and π2(�|.) for different values of n.

• by increasing n, the Wasserstein distance decreases. Hence,
for large values of n the difference between the posteriors
is minimal.

To illustrate the impact of the prior selection for µ and τ

the following approach was followed. Assume the normal
distribution as the prior for the skewness parameter γ .
The posteriors π2(�|.) and π3(�|.), emanating from the
informative priors (10) (case 1) and (11) (case 2) were
compared with the posterior resulting from the non-
informative prior µ ∼ Uniform(0, 2π) and π(τ ) ∝ 1,
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FIGURE 1 | (Top) WIM values for comparing the normal and skew-normal distributions as priors for the skewness parameter γ for different values of λ and n.

(Middle) the Wasserstein distance between the posteriors π1 and π2 (case 1) and also π1 and π3 (case 2) for µ = 2, τ = 1, γ = −1 (left) and µ = 3, τ = 0.6, γ = 1

(right) and different values of n. (Bottom) the Wasserstein distance between the posteriors π2 and π3 for µ = 2, τ = 1, γ = −1 (left) and µ = 3, τ = 0.6, γ = 1 (right)

and different values of n.

denoted by π1(�|.). The posteriors were sampled using
Algorithm 1 for n = 10, 15, 20, 25, 30, 35, 40, 50, 100.
The Wasserstein distances were calculated between them
with the transport package and Monte Carlo method with
1, 000 repetitions.

Figure 1 (middle) illustrates the obtained Wasserstein
distance between the posteriors π1(�|.) and π2(�|.) (case 1) and
between π1(�|.) and π3(�|.) (case 2) for µ = 2, τ = 1, γ = −1
(left) and µ = 3, τ = 0.6, γ = 1 (right). Figure 1 (bottom)
shows the Wasserstein distance between the posteriors
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TABLE 1 | Bayes estimates of parameters for p = 2 based on scenario 1 with prior parameters µ0 = 1, τ0 = 9,α = 0.5,β = 5, ξ = −4, σ = 1, scenario 2 with prior

parameters µ0 = 1, ζ = 10, η = 0.5, ξ = 0.5, σ = 0.5, λ = −1, scenario 3 with prior parameters µ0 = 1, τ0 = 9,α = 0.5,β = 5, ξ = −4, σ = 1, and scenario 4 with prior

parameters µ0 = 0.5, τ0 = 0.01,α = 0.5,β = 9, ξ = 0.5, σ = 0.5, λ = −2 and for p = 3 based on scenario 3 with prior parameters

µ01 = 1, τ01 = 5,µ02 = 2, τ02 = 9,α = 12, β = 2, ξ1 = 1, σ1 = 2, ξ1 = −2, and σ1 = 2.

Parameter Actual Mean sd Q1 Median Q3 Mode

Scenario 1 (p = 2)

µ 2.0 2.0931 0.1498 1.8640 2.0719 2.3978 1.9445

n = 500 τ 1.0 1.0089 0.2867 0.3646 1.0031 1.5859 1.0884

γ −1.0 −0.9848 0.0019 −0.9879 −0.9850 −0.9808 −0.9832

µ 2.0 2.0005 0.2908 1.3715 1.9963 2.5974 1.9910

n = 100 τ 1.0 1.0247 0.2975 0.3902 1.0376 1.5037 1.1037

γ −1.0 −0.9749 0.0044 −0.9825 −0.9749 −0.9660 −0.9745

µ 2.0 1.9953 0.3032 1.4256 1.9830 2.6032 1.9127

n = 50 τ 1.0 1.0617 0.3153 0.3991 1.1056 1.5552 0.9032

γ −1.0 −0.9755 0.0041 −0.9820 −0.9760 −0.9655 −0.9787

µ 2.0 1.9386 0.2645 1.5802 1.8836 2.4149 2.1606

n = 20 τ 1.0 1.0367 0.2317 0.5845 1.0376 1.4549 1.1174

γ −1.0 −0.9753 0.0036 −0.9806 −0.9753 −0.9694 −0.9734

Scenario 2 (p = 2)

µ 3.0 2.9830 0.0598 2.8158 2.9821 3.0978 2.9747

n = 500 τ 0.6 0.5715 0.1532 0.2072 0.5661 0.8942 0.5404

γ 1.0 1.0269 0.0969 0.8801 1.0058 1.2686 0.9833

µ 3.0 3.1035 0.1040 2.9108 3.0964 3.3410 3.1665

n = 100 τ 0.6 0.5967 0.0986 0.4041 0.6027 0.7983 0.6432

γ 1.0 1.0639 0.0878 0.8412 1.0734 1.1998 1.0157

µ 3.0 3.1011 0.1428 2.8433 3.1214 3.3861 2.9560

n = 50 τ 0.6 0.6389 0.1510 0.3696 0.6456 0.8706 0.5258

γ 1.0 1.1032 0.1707 0.8495 1.0739 1.4655 0.9629

µ 3.0 2.9777 0.2014 2.6674 2.9620 3.2630 2.9674

n = 20 τ 0.6 0.6571 0.2084 0.3139 0.6539 0.9103 0.5216

γ 1.0 1.0203 0.1147 0.8313 1.0037 1.2143 1.1558

Scenario 3 (p = 2)

µ 2.0 2.0865 0.1512 1.8514 2.0701 2.4726 2.0578

n = 500 τ 1.0 1.0185 0.3038 0.3688 0.9740 1.7048 0.8468

γ −1.0 −0.9515 0.3780 −1.5384 −1.0019 −0.0617 −1.1953

µ 2.0 2.0976 0.1591 1.8746 2.0766 2.4898 1.9338

n = 100 τ 1.0 1.0518 0.1968 0.7561 1.0252 1.4816 0.9890

γ −1.0 −0.9717 0.3878 −1.5099 −1.0616 0.0234 −0.9795

µ 2.0 2.0671 0.1407 1.8745 2.0492 2.3671 1.9274

n = 50 τ 1.0 1.0503 0.1853 0.7767 1.0282 1.4259 0.9899

γ −1.0 −1.0243 0.3483 −1.5132 −1.0963 −0.3674 −0.9612

µ 2.0 2.0406 0.1480 1.8427 2.0338 2.3473 1.9457

n = 20 τ 1.0 1.0650 0.1608 0.8113 1.0457 1.3459 0.9899

γ −1.0 −1.0472 0.4333 −1.5279 −1.1187 −0.0711 −0.9801

Scenario 4 (p = 2)

µ 3.0 3.1034 0.1231 2.7620 3.1036 3.3263 3.1364

n = 500 τ 0.6 0.5714 0.1592 0.2248 0.5508 0.9029 0.5621

γ 1.0 0.9923 0.0837 0.8458 0.9904 1.1678 1.0903

µ 3.0 3.2601 0.0829 3.1212 3.2432 3.4170 3.2175

n = 100 τ 0.6 0.5967 0.1442 0.4130 0.5747 0.8620 0.5985

γ 1.0 0.9095 0.0592 0.8041 0.9173 0.9903 0.9261

µ 3.0 3.1193 0.0888 2.9994 3.1142 3.2818 3.0141

(Continued)
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TABLE 1 | Continued

Parameter Actual Mean sd Q1 Median Q3 Mode

n = 50 τ 0.6 0.6047 0.1597 0.4307 0.5747 0.8464 0.4968

γ 1.0 1.0161 0.0861 0.9059 0.9945 1.1983 0.9820

µ 3.0 2.9734 0.1287 2.8209 2.9589 3.2492 2.8303

n = 20 τ 0.6 0.6150 0.2097 0.4322 0.5775 1.1058 0.4968

γ 1.0 1.0066 0.0779 0.8978 0.9888 1.1682 0.9820

Scenario 3 (p = 3)

µ1 1.0 0.9512 0.0547 0.8766 0.9495 1.0569 0.9386

µ2 2.0 2.0385 0.0635 1.9296 2.0296 2.1261 1.9755

n = 500 τ 2.0 1.9858 0.9318 0.5731 1.8519 4.3790 1.8534

γ1 1.0 0.9081 0.0112 0.8836 0.9097 0.9257 0.9123

γ2 −1.0 −0.9724 0.5095 −1.0492 −0.9856 −0.8903 −1.0477

µ1 1.0 0.9996 0.0347 0.9473 0.9970 1.0729 0.9877

µ2 2.0 2.0020 0.0329 1.9378 2.0016 2.0690 2.0731

n = 100 τ 2.0 2.1327 0.6247 1.5256 2.0795 2.6173 1.8732

γ1 1.0 0.9092 0.0119 0.8845 0.9116 0.9284 0.9130

γ2 −1.0 −0.9082 0.0113 −0.9257 −0.9091 −0.8835 −0.9173

µ1 1.0 1.1198 0.0171 1.0921 1.1166 1.1533 1.1262

µ2 2.0 2.1168 0.0157 2.0908 2.1146 2.1449 2.1096

n = 50 τ 2.0 2.0631 0.3130 1.5308 2.0340 2.6085 2.2340

γ1 1.0 0.9089 0.0122 0.8809 0.9095 0.9265 0.9126

γ2 −1.0 −0.9073 0.0106 −0.9242 −0.9095 −0.8842 −0.9173

µ1 1.0 0.8940 0.0244 0.8390 0.9081 0.9248 0.8927

µ2 2.0 1.9098 0.0760 1.8415 1.8957 2.1224 1.8639

n = 20 τ 2.0 1.9192 0.3611 1.3785 1.8825 2.5855 1.8419

γ1 1.0 0.9275 0.0109 0.9068 0.9259 0.9482 0.9248

γ2 −1.0 −0.9282 0.0086 −0.9426 −0.9282 −0.9124 −0.9360

π2(�|.) and π3(�|.) for µ = 2, τ = 1, γ = −1 (left)
and µ = 3, τ = 0.6, γ = 1 (right), respectively. From
Figure 1 (middle and bottom) the following observations can
be obtained:

• The impact of the informative priors (10) (case 1) and (11)
(case 2) for µ and τ is clearly visible in comparison with the
assumed non-informative priors.

• Comparatively, the posterior resulting from prior (11) (case 2)
is closer to the non-informative priors.

• By increasing n, the posteriors resulting from the informative
priors (10) (case 1) and (11) (case 2) tend to the case of
non-informative priors.

• There is less difference between the informative priors (10)
(case 1) and (11) (case 2), than with respect to the non-
informative priors.

• By increasing n, the posteriors resulting from the informative
priors (10) (case 1) and (11) (case 2) approach each other.

We can thus conclude that from moderate sample sizes on,
both priors for all three parameters are rather similar (hence
one could use the less computationally intense of both priors),
but differ clearly from a non-informative one. In order to judge
how large the obtained WIM values actually are, bootstrap re-
sampling could be done with the original data; we leave this for

future research. Our analysis here is also limited to the chosen
parameter values; more simulations need to be done to get a
complete picture.

A similar analysis can be performed for p = 3.

5. SYNTHETIC DATA ANALYSIS

In this section, to assess the performance of the Bayesian
approach for obtaining the estimates of� = (µ, τ , γ ), a synthetic
data analysis was conducted to obtain the Bayes estimates of the
parameters of the SvM distribution (6). We generated samples of
size N = 20, 50, 100, 500 from the posterior distributions (12)-
(15) (scenarios 1–4) with a burn-in period of 5,000 and k = 500,
using Algorithm 1 (the values of these parameters are written
down in the respective tables). It is noteworthy that steps 2–
7 in Algorithm 1 are combined for scenarios 1 and 2. Bayes
estimates of the parameters µ, τ and γ were obtained under
the squared error, absolute error and zero-one loss functions
by calculating mean, median, and mode of the generated
samples, respectively.

The results for p = 2 and p = 3 including the sample
mean, standard deviation, quartiles, and mode of the posterior
distribution are summarized in Table 1 for each of the scenarios.
As can be seen in Table 1 the obtained Bayes estimates are
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FIGURE 2 | Traceplots, mean running and estimated posterior pdf plots of generated samples for (µ, τ , γ ) in Table 1 for p = 2, n = 500 and scenario 1 (first row),

scenario 2 (second row), scenario 3 (third row), and scenario 4 (fourth row).
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close to the actual values of the parameters. In addition, for
small sample sizes our proposed Bayesian approach still provides
accurate estimates.

The traceplots of the generated samples from the posteriors,
the compare-partial plots and the running mean plots are shown
in Figure 2 (p = 2) and Figure 3 (p = 3) for each of the

scenarios and p = 2 and 3 using the ggmcmc package in
R (Fernández-i-Marın, 2016). A traceplot is an essential plot
for evaluating convergence and diagnosing chain problems. It
shows the time series of the sampling process and the expected
outcome is to get a traceplot that looks completely random. A
compare-partial plot provides overlapped kernel density plots

FIGURE 3 | Traceplots, mean running and estimated posterior pdf plots of generated samples for (µ1,µ2, τ , γ1, γ2) in Table 1 for p = 3 and n = 500.

FIGURE 4 | Traceplots of generated samples of size n = 500 from four parallel chains for (µ, τ , γ ) based on scenario 3 (p = 2) in Table 1.
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FIGURE 5 | (Top) the RE of the Bayes estimates and MLEs of µ, τ , and γ vs. the sample size n for scenario 2. (Middle) the RE of the Bayes estimates and MLEs of

µ, τ , and γ vs. the sample size n for scenario 3. (Bottom) the biases of the Bayes estimates of (µ, τ , γ ) under the squared error loss function for scenario 3, p = 2,

n = 100 and different values of k = 10, 50, 100, 200, 300, 500.
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FIGURE 6 | (Top) the boxplots of the movement of blue periwinkles (left), long-axis orientations of feldspar laths (middle) and thunder at Kew (right) datasets.

(Bottom) the scatter plot of the household expenditures dataset.

FIGURE 7 | The execution time (in miliseconds) for generating samples of size n = 10 (left) and n = 50 (right) from the posterior density functions of each scenario.
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that compare the last part of the chain (the last 10% of the
values, in green) with the whole chain (in black). Ideally,
the initial and final parts of the chain have to be sampling
in the same target distribution, so the overlapped densities

TABLE 2 | Bayes estimates of parameters based on scenario 1 with prior

parameters µ0 = 2, ζ = 2, η = 1, ξ = 5, and σ = 2 for the movement of blue

periwinkles dataset.

Parameter Mean Mode sd Q1 Median Q3

µ 0.8786 0.8854 0.04155 0.7952 0.8785 0.9574

τ 1.4033 1.2918 0.1729 1.0746 1.4021 1.7409

γ 5.8574 5.8183 0.3974 5.0180 5.8851 6.5687

should be similar. In addition to the traceplots, the running
mean plot of the chains is very useful to find within-chain
convergence issues. A time series of the running mean of the
chain allows to check whether the chain is slowly or quickly

TABLE 3 | Bayes estimates of parameters based on scenario 3 with prior

parameters µ0 = 0, τ0 = 8,α = 5,β = 2, ξ = 3, σ = 1 for the long-axis

orientations of feldspar laths dataset.

Parameter Mean Mode sd Q1 Median Q3

µ 0.0442 0.0497 0.0134 0.0180 0.0451 0.0697

τ 0.3438 0.2616 0.0970 0.1571 0.3504 0.5301

γ 5.0906 5.0972 0.0109 5.0729 5.0894 5.1158

FIGURE 8 | (Top) traceplots, mean running and estimated posterior pdf plots of generated samples for (µ, τ , γ ) in Table 2 for the movement of blue periwinkles

dataset. (Bottom) the histogram and kernel density plot of the data related to the movement of blue periwinkles and the fitted curves under different loss functions.
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approaching its target distribution. The expected output is a line
that quickly approaches the overall mean. Figures 2, 3 confirm
the convergence of the chains and show that the modified Gibbs
sampler recovers the values that actually come from the target
posterior distributions.

Running multiple independent chains in parallel is necessary
to access the representativeness of the chains. If the multiple
chains are not well mixed, the convergence of the chains is
suspected (Kruschke, 2014; Vehtari et al., 2021). Therefore, four
independent chains were run in parallel for scenario 3 (p = 2)
in Table 1 to make the inference more robust and reliable. The
results are shown in Figure 4 which confirm the convergency.

To compare the efficiency of Bayes estimates with respect to
the maximum likelihood estimations (MLE), the mean squared

errors (MSE) of MLEs and Bayes estimates of parameters under
the squared error and absolute error loss functions were obtained
for scenario 2 and 3 and n = 10, 20, 30, 50, 100 using a

TABLE 4 | Bayes estimates of parameters based on scenario 4 with prior

parameters µ0 = 3, τ0 = 2,α = 5,β = 6, ξ = 0.5, σ = 0.5, and λ = −2 for the

thunder at Kew dataset.

Parameter Mean Mode sd Q1 Median Q3

µ 3.0943 3.1601 0.1598 2.8035 3.1032 3.3948

τ 0.9675 1.2178 0.3597 0.2863 0.7868 1.6630

γ 0.9179 1.0629 0.1610 0.7402 1.1234 1.3237

FIGURE 9 | (Top) traceplots, mean running and estimated posterior pdf plots of generated samples for (µ, τ , γ ) in Table 3 for the long-axis orientations of feldspar

laths dataset. (Bottom) the histogram and kernel density plot of the data related to the long-axis orientations of feldspar laths and the fitted curves under different loss

functions.
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Monte Carlo simulation with 500 replications. Then, the relative
efficiency (RE) was computed as

RE1 =
MSE(�̂)

MSE(�̃)
,RE2 =

MSE(̂̂�)

MSE(�̃)
,

where �̃ is the MLE of � = (µ, τ , γ ) and �̂ and ̂̂� are the
Bayes estimates of � under the squared error and absolute error
loss functions, respectively. The results are shown in Figure 5 for
scenario 2 (top) and scenario 3 (middle) and µ = 3, τ = 0.6,
γ = 1.

From Figure 5 (top and middle) the following general
conclusions can be observed:

• Our proposed Bayesian approach provides more accurate
estimates for parameters in comparison with the maximum
likelihood method for small values of n.

• The obtained Bayes estimates under the squared error loss
function have less MSE than the estimates based on absolute
error loss function.

TABLE 5 | Bayes estimates of parameters based on scenario 3 with prior

parameters µ01 = 3, τ01 = 2,µ02 = 3, τ02 = 4, α = 20,β = 1, ξ1 = 0, σ1 = 3,

ξ1 = 0, and σ1 = 2 for the household expenditures dataset.

Parameter Mean Mode sd Q1 Median Q3

µ1 4.9376 4.9550 0.0392 4.8634 4.9362 5.0156

µ2 3.9085 3.9300 0.0384 3.8327 3.9080 3.9828

τ 9.1075 8.9427 0.9499 6.9295 9.1673 10.7127

γ1 1.8475 1.8412 0.0189 1.8019 1.8490 1.8773

γ2 0.1974 0.2449 0.0365 0.1184 0.2008 0.2550

FIGURE 10 | (Top) traceplots, mean running and estimated posterior pdf plots of generated samples for (µ, τ , γ ) in Table 4 for the thunder at Kew dataset. (Bottom)

the histogram and kernel density plot of the data related to the thunder at Kew and the fitted curves under different loss functions.
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• By increasing n, our proposed Bayesian approach has a similar
performance as the maximum likelihood method.

Finally, to investigate the rule of k in Algorithm 1, the biases
of the Bayes estimates of (µ, τ , γ ) under the squared error loss
function were obtained for scenario 3 (p = 2) in Table 1,
n = 100 and different values of k = 10, 50, 100, 200, 300, 500
using aMonte Carlo simulation with 500 replications. The results
are shown in Figure 5 (bottom) which demonstrate that, by
increasing k, the bias tends to zero and thus, the accuracy of
estimates increases.

6. DATA APPLICATION

In what follows, the proposed Bayesian approach’s performance
for p = 2 is demonstrated through three datasets with different
sizes n = 31, 60, 725 with the skew-von Mises distribution in (6)
as assumed model. The circular boxplots (Buttarazzi et al., 2018)

of the datasets are shown in Figure 6 (top) and confirm the skew
pattern of the datasets.

The obtained results in section 5 show all the assumed
scenarios provide accurate estimates for the parameters.
However, based on the obtained results in section 5 with the
WIM, we propose scenario 3 or 4 for obtaining the Bayes
estimates to avoid time intensive computations when the sample
size is not small (see Figure 7). The justification is that scenarios 1
and 2 need the slice sampler in Algorithm 1 to generate samples
from the joint prior (10). Therefore, the Bayes estimates of the
parameters µ, τ , and γ were obtained based on scenario 1 for the
movement of blue periwinkles dataset (n = 31); scenarios 3 and
4 for the long-axis orientations of feldspar laths (n = 60) and the
thunder at Kew (n = 725) datasets, respectively. See below for
the description of said datasets.

For p = 3, a dataset of size n = 40 including the expenditures
of households is considered. Figure 6 (bottom) shows the scatter
plot of the data. For all the datasets to obtain the Bayes estimates

FIGURE 11 | (Top) traceplots, mean running and estimated posterior pdf plots of generated samples for (µ1,µ2, τ , γ1, γ2) in Table 5 for the household expenditures

dataset. (Bottom) the scatter plot of the household expenditures dataset and the contour plot of the fitted distribution under different loss functions.
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we generated samples of size N = 1, 000 from the posterior
distributions using Algorithm 1 with a burn-in period of 10,000
and k = 500.

In what follows, we shall describe the individual datasets in
detail. Since the conclusion is more or less the same for all
p = 2 settings, we already write it down here. It is observed
that the proposed Bayesian approach with the skew von Mises
distribution as the underlying model provides a good fit to the
datasets. Generally, the obtained estimates based on the squared
error and absolute error loss functions are more accurate.

6.1. Movement of Blue Periwinkles
A real dataset including the movement directions of 31 blue
periwinkles, Nodilittorina unifasciata, in degrees is considered
(Fisher, 1995). The data was collected from a series of
experiments which were done on the distances and directions
that small blue periwinkles moved after the transplantation to
downshore at a specific height where they live normally. The test
of Pewsey (2002) confirms that the underlying distribution for
this dataset is asymmetric (p-value= 0.0000). This test is defined
based on the sample second sine moment b̄2 = 1

n

∑n
i=1 sin 2(θi−

θ̄) where θ̄ is the sample mean direction. The large values of

| b̄2√
ˆvar(b̄2)

| compared with the quantiles of the standard normal

distribution lead to the rejection of symmetry. For more details
see Pewsey (2002).

The Bayes estimates of parameters are obtained by using
scenario 1 based on squared error, absolute error and zero-
one loss functions. The results are summarized in Table 2. The
traceplots of generated samples from the posterior, the compare-
partial and mean running plots are shown in Figure 8 (top).
The kernel density plot and histogram of the data along with
the fitted curves under different loss functions are shown in
Figure 8 (bottom).

6.2. Long-Axis Orientations of Feldspar
Laths
Another dataset including the measurements of long-axis
orientation of 60 feldspar laths in basalt (Fisher, 1995) is
considered. The symmetry test of Pewsey (2002) confirms the
skew pattern of the data in Figure 6 (p-value = 0.0000).
The Bayes estimates of parameters are obtained by using
scenario 3 based on squared error, absolute error and zero-
one loss functions. The results are summarized in Table 3. The
traceplots of generated samples from the posterior, the compare-
partial, and the mean running plots are shown in Figure 9

(top). The histogram and kernel density plot of the data and
the fitted curves under different loss functions are shown in
Figure 9 (bottom).

6.3. Thunder at Kew
A grouped frequency data set consisting of 725 observations
about the number of times that thunder was heard at Kew
(England) during each two hourly interval of the day in
the summers of 1910–1935 is considered (Mardia, 1975). In
this case, each 15◦ on the circle represents 1 h. According

to the test of Pewsey (2002), the underlying distribution
for this data set is not symmetric (p-value = 0.0000).
The Bayes estimates of parameters are obtained by using
scenario 4 based on squared error, absolute error and zero-
one loss functions. The results are summarized in Table 4.
The traceplots of generated samples from the posterior, the
compare-partial and mean running plots are shown in Figure 10

(top). The histogram and kernel density plot of the data and
the fitted curves under different loss functions are shown in
Figure 10 (bottom).

6.4. Household Expenditures
For p = 3, a sub data from the dataset available in the
HSAUR2 package (Everitt and Hothorn, 2017) in R is considered.
The entire data was collected from a survey on household
expenditures in four commodity groups of housing, food, goods,
and service. It includes the expenses of 20 single men and
20 single women. We considered variables housing, food, and
service and normalized. After applying cosine transformation
(5), the SFvML was fitted on the data and the Bayes estimates
of the parameters were obtained. The results are summarized in
Table 5. The traceplots of generated samples from the posterior
and the compare-partial and mean running plots are shown in
Figure 11 (top). The scatter plot of the data and the contour plot
of the fitted distribution under different loss functions are shown
in Figure 11 (bottom).

7. CONCLUSION

Since the assumption that data is rotationally-symmetric is often
rejected (Pewsey, 2002; Ley and Verdebout, 2014; Ameijeiras-
Alonso and Ley, 2020; Ameijeiras-Alonso et al., 2021), in this
paper, we have presented a Bayesian analysis for the skew-
rotationally-symmetric FvML distribution. For the first time
in Bayesian analysis of directional data the impact of the
proposed priors in the set up has been compared using the
Wasserstein Impact Measure. Using this measure can give
guidance to the practitioner to avoid computationally intensive
priors if a simpler prior has similar impact. An algorithm has
been used based on modified Gibbs sampling and weighted
bootstrap resampling for generating samples from posterior
distributions. This coming together of Bayesian methods and
skew distributions in the directional domain promises new
research interest.
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