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Introduction: A growing number of healthcare providers make complex

treatment decisions guided by electronic health record (EHR) software

interfaces. Many interfaces integrate multiple sources of data (e.g., labs,

pharmacy, diagnoses) successfully, though relatively few have incorporated

genetic data.

Method: This study utilizes informatics methods with predictive modeling

to create and validate algorithms to enable informed pharmacogenomic

decision-making at the point of care in near real-time. The proposed

framework integrates EHR and genetic data relevant to the patient’s current

medications including decision support mechanisms based on predictive

modeling. We created a prototype with EHR and linked genetic data from

the Department of Veterans A�airs (VA), the largest integrated healthcare

system in the US. The EHR data included diagnoses, medication fills, and

outpatient clinic visits for 2,600 people with HIV and matched uninfected

controls linked to prototypic genetic data (variations in single or multiple

positions in theDNA sequence).We thenmapped themedications that patients

were prescribed to medications defined in the drug-gene interaction mapping

of the Clinical Pharmacogenomics Implementation Consortium’s (CPIC) level

A (i.e., su�cient evidence for at least one prescribing action) guidelines

that predict adverse events. CPIC is a National Institute of Health funded

group of experts who develop evidence based pharmacogenomic guidelines.

Preventable adverse events (PAE) can be defined as a harmful outcome from

an intervention that could have been prevented. For this study, we focused on

potential PAEs resulting from a medication-gene interaction.

Results: The final model showed AUC scores of 0.972 with an F1 score of 0.97

with genetic data as compared to 0.766 and 0.73 respectively, without genetic

data integration.

Discussion: Over 98% of people in the cohort were on at least one

medication with CPIC level a guideline in their lifetime. We compared

predictive power of machine learning models to detect a PAE between five
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modeling methods: Random Forest, Support Vector Machine (SVM), Extreme

Gradient Boosting (XGBoost), K Nearest neighbors (KNN), and Decision Tree.

We found that XGBoost performed best for the prototype when genetic data

was added to the framework and improved prediction of PAE. We compared

area under the curve (AUC) between the models in the testing dataset.

KEYWORDS

pharmacogenomics, machine learning, clinical decision support, data framework,

prototype

Introduction

The United States Department of Veterans Affairs (VA)

was one of the pioneers in adapting the electronic health

records (EHR) in the mid-1990s, resulting in standardized data

available for research from 1999 onwards. The Veterans Health

Administration (VHA) is the branch of the VA that provides

healthcare to Veterans. It has grown from 54 hospitals in 1930–

1600 healthcare facilities, including 144 medical centers and

1,232 outpatient sites of care. Patient care is dependent on the

framework within which clinicians make treatment decisions

and provide care (Hicks et al., 2016). The framework includes all

systems starting from patient enrollment, diagnosis, treatment,

medications, hospital stay, discharge, follow-up, and long-term

disease management. Clinical decisions are dependent on this

data; therefore, it would be enabling for the clinician if this data

is transformed from medical information to a knowledge source

that leads to precision care based on available guidelines.

The inclusion of genetic data within the EHR is infrequent,

highly variable and not yet standardized. Routine clinical care

treatment decisions do not factor genetic data although the

success rate of medications and procedures may vary depending

on the genetic profile of the patient. Literature shows that in the

U.S. alone, approximately 770,000 injuries or deaths occur every

year due to an inappropriately prescribed medication (Brownlee

and Garber, 2019; Matsuyama et al., 2021) with estimated

expenses between “$1.56 and $5.6 billion annually” (Slight et al.,

2018). The Center for Disease Control (CDC) reported that

between 2011 and 2014 more than 66% of people over 65

took three or more prescription medications (Carstens et al.,

2009; Veteran Affairs, 2021). An aging population with multiple

medications can lead to potentially inappropriate prescribing

(Hoel et al., 2021) of medications (PIMs) (Bradley et al., 2017;

Burkhardt et al., 2020). This research is an attempt to address

some of the systemic issues that contribute to medication related

clinical issues. Systems are fragmented (Caudle et al., 2014),

and the availability of resources to enable the right decision-

making is piece meal (Hicks et al., 2016; Matsuyama et al.,

2021). Guidelines may exist but are not integrated into a tightly

coupled well-managed data framework (Al Kawam et al., 2018;

Kidwai-Khan, 2022).

People with HIV frequently take multiple medications and

are susceptible to chronic diseases or comorbidities specifically

hepatitis C, pain, diabetes and cardiovascular disease. Intake of

multiple medications concurrently increase the risk of adverse

drug events (Young et al., 2021). These factors make the

decision-making process more complicated. In the VA the

large pool of genetic data that is available provides a rich

resource for studying an integrated health record and its

impact on decision making. The proposed framework integrates

individual systems that can effectively interact to facilitate

meaningful interpretation and decision making. The study used

predictive modeling and unique data management methods to

create and validate algorithms to enable informed decision-

making for clinicians. Machine learning was explored as a

method to perform predictive outcomes. The goal was to assess

if an integrated data framework combining EHR data with

relevant elements of genetic data and decision support based on

predictive modeling improve prediction of PAE.

Methods

Data source

The VA has more than 20 years of EHR data available in a

corporate data warehouse (CDW). This data is kept live and up

to date to reflect the EHR. The Veterans Aging Cohort Study

Biomarker Cohort (VACS-BC) is a cohort of 2,656 patients

(1,721 HIV-infected and 935 matched uninfected controls) with

genetic data based on blood specimens provided between 2005

and 2007 or consented for DNA analyses. Subjects in the sample

were between 41 and 64 years of age (>80%) at the time of

enrollment. Most were men (95% male) of African American

ancestry (68%).

The sample used for this study included 2,471 patients

after excluding those had died before 2018. For these patients,

we extracted their EHR data from 2018 to 2021, including

information on diagnoses, labs, and medications. Medication

data includemedication generic name, date dispensed to patient,

dosage, quantity, refills, prescriber, pharmacy and total days

on medication.
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TABLE 1 Finalized variables in dataset after cleaning.

Name Independent/Dependent Description Values

UID Unique ID assigned for each patient Randomly assigned unique Integer value

Sex Independent Sex of patient 1=Male, 2= Female

HIV Independent If person has HIV 1= Yes, 0= No

Anyca Independent If person has any cancer 1= Yes, 0= No

Diabetes Independent If person has diabetes 1= Yes, 0= No

Cardiovascular

disease

Independent If person has cardiovascular disease 1= Yes, 0= No

Treatment Independent Prescribed treatment Treatment name

GeneAllele Independent If person is positive for indicated gene 1= Positive, 0= Negative

PAE Dependent Can the gene/medication values create a PAE 0= No, 1= Yes

PAE, Preventable Adverse Event.

Programming algorithms are run on this to create a list of

medications for each person over time and stratified by past,

current, active or inactive. The algorithms also create a rollup

regimen for each patient that creates start and stop dates from

when a medication was started and when it was stopped. This

is linkable to diagnoses and progress notes to develop a clinical

story for a given patient.

We also extracted genetic data, which is stored as a series

of single nucleotide polymorphism (SNPs pronounced snips).

These are positions on a gene where some individuals have

one nucleotide, e.g., a G, whereas others could have a C. The

information in DNA is stored as a linear code made of four

chemical bases: adenine (A), guanine (G), cytosine (C), and

thymine (T). SNPs are single base changes, like a single letter

variation (like “analyze” vs. “analyse”). These are variations,

not mutations. We also extract other data elements such as

PBMCs (peripheral blood mononuclear cell: blood cell with a

round nucleus), serum plasma, RBCs (red blood cells), and DNA

(deoxyribonucleic acid) in addition to self-reported survey data

available through VACS.

Data cleaning, integration, and
preprocessing

As data is in a data warehousing format, it needs to be

extracted, processed and cleaned to be available in an analyzable

format. For this study, we sourced data from the CDW, and all

programming for data management was done using structured

query language (SQL) and statistical analysis system (SAS). Data

extraction was done with extract, transform and load (ETL)

processes. SQL Server data tool was utilized to create routines

in the.NET framework common language runtime environment.

Data from different EHR domains such as demographics,

diagnosis, pharmacy, and visits were all integrated into one SQL

Server database. Interoperability issues were resolved by creating

algorithms in SQL that could read data from a generic flat file

format and converted to a SQL table. Different formats were

brought into SQL as a single source. Variables such as age, sex,

race date of diagnosis, comorbidities, medication name, drug

class, dose, quantity and prototyped genetic data with gene and

allele variant were transformed to created clean versions from

raw tables. Composite variables were created that rolled up

medication intake by date were matched to genetically relevant

data and transformed into analytically meaningful datasets.

Table 1 shows the variables for the dataset.

Feature scaling was performed to transform feature values

into a similar range. This is required by distance-based methods

such as KNN and SVM (Choi, 2021). Some features in this data,

such as total days on a medication, had a wide range (min: 30,

max: 3517) compared to others (min: 0, max: 1). Given that

distributions of these features are not normal, the “Min-Max”

scaler was utilized to transform range to 0 and 1 (0, 1). This

type of data is called imbalanced and is harmful for performance

for machine learning models. This happens as the training

model spends most of its time on the majority observations not

learning enough from minority observations. To address this

issue, Synthetic Minority Oversampling Technique (SMOTE)

was utilized to oversampling the minority observations. SMOTE

was only applied to the training dataset. The scatter plots in

Figure 1 compare distribution of datapoints before and after

resampling for applying SMOTE.

Predictive analytics

The objective for this study was to include predictive

power in the data framework. Preventable adverse event was

flagged when medication from EHR data was part of the CPIC

level A (sufficient evidence for at least one prescribing action)

grouping and contraindicated with the prototyped genetic data

allele as defined by CPIC guidelines. Predictive Analytics using

machine learning was used as a methodology to assess the

predictive power of the model as part of the larger integrated
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FIGURE 1

(A) Distribution before resampling (B) distribution after resampling.

FIGURE 2

Predictive modeling workflow.

data framework. The decision support prototype compared

five machine learning methods and compared the output

for accuracy. A common supervised learning workflow was

applied to building the predictive models in the study. For the

machine learning models, the first step was training and testing

partitioning, 70 and 30 percent samples. Hyperparameters

tuning for the models using k-fold cross validation was

performed with selection of the best three hyperparameters for

each of the three final prediction models. Figure 2 is a depiction

of the predictive modeling workflow.

For the machine learning models, after data was split into

training (70%) and the testing sets (30%), stratified sampling

was used to ensure that proportion of classes are the same in the

training and testing sets. To be able to perform hyperparameters

tuning, k-fold cross validation was used. In V-fold cross

validation a resampling method is used in which data are

randomly partitioned into V folds of approximately equal size.

In literature, a well reputed hyperparameters tuning is 10-fold

cross validation which gives an idea of true out of sample

performance. Some methods such as bootstrapping may be

biased. As part of the data analysis, the outcome variable for

predicting an adverse event based on the person’s medication

and prototyped contraindicating gene allele data was evaluated

for performance of the algorithm over clinical relevance of

the results.

The hyperparameters related to the types of models and their

descriptions used for this study are tabulated in Table 2.

As part of the tuning process performance metrics were

obtained for each set of the hyperparameters. Based on

10-fold cross validation, the best model was used to get

predictions on the testing sample and final performance

metrics were reproduced. For regression models, root mean

square deviation (RMSE) metric was used as performance

measure. Area under curve (AUC) is used for evaluating

regression models with receiver operating characteristic

(ROC) analysis.

Given the imbalanced distribution of the outcome variable

the weight of each class of the outcome variable was balanced

before training each model. For each model, grid search

technique was utilized to find the optimal hyperparameters

to get the best performance. The prediction models were

conducted with five different methods. For the first step, total

medications, HIV, diabetes, cardiovascular disease, any cancer,

and number of diseases were included. For the second step, the

Gene Allele variable was added to the first model to analyze if

genetic data improved the prediction of PAE. For the first step

five different machine learning methods (KNN, Random Forest,

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2022.1059088
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Kidwai-Khan et al. 10.3389/fdata.2022.1059088

TABLE 2 Hyperparameters used in models.

Model Hyperparameter

Random

Forest

max_depth: longest path between root node and leaf node n_estimators: Number of trees in the forest= 10 criterion: [“entropy’, ’gini”]= “gini”

max_features: Number of maximum features for each tree= “log2” min_samples_split: Minimum number of observations in any given node in order to

split it= 5 min_samples_leaf: Number of samples that should be present in the leaf node after splitting a node= 1 n_estimators: Number of trees= 200

XGBoost colsample_bytree: Percentage of features for building each tree= 0.55 learning_rate: Gain with each iteration= 0.1 n_estimators: Number of trees

= 200 reg_lambda: parameter to apply regularization= 100

SVM C: “adds a penalty for each misclassified data point. If c is small, the penalty for misclassified points is low so a decision boundary with a large margin is

chosen at the expense of a greater number of misclassifications (0.1 < c < 100)”= 1000 gamma: degree of similarity or closeness (0.0001 < gamma <

10)= 0.0001 kernel= rbf

Decision Tree max_features: Number of maximum features for each tree= “log2” n_estimators: Number of trees in the forest criterion’: [“entropy”, “gini”]

= “entropy” max_depth’: Number of maximum features for each tree= 50 min_samples_split: Minimum number of observations in any given node in

order to split it= 2 min_samples_leaf: Number of samples that should be present in the leaf node after splitting a node= 5

KNN n_neighbors: Number of neighbors= 5 weights: uniform or distance= “uniform” algorithm: specific algorithms type= “brute” leaf_size: maximum

points a node can hold= 10

TABLE 3 ROC-AUC score comparison.

Random forest XGBoost SVM Decision tree KNN Ensembling

ROC-AUC Training dataset 0.980 0.975 0.968 0.973 0.975 0.980

Testing dataset 0.969 0.972 0.975 0.960 0.957 0.969

SVM, XGBoost and Decision Tree) were compared to finalize

the type of final prediction model. For the first step with no

genetic data, all AUC scores on training and testing datasets

across models were compared. For additional validation, an

XGBoost model without the gene predictor was created to

evaluate if the prediction of PAE improved with presence of

genetic data. AUC scores were compared between the final

models before and after adding gene in the testing dataset.

Results

Amongst the five models, XGBoost performed most

efficiently as the final model to predict PAE. Random Forest,

Decision Tree and KNN had slight overfitting issues when

comparing AUC between training and testing datasets. Decision

Tree and KNN had the lowest AUC indicating relatively

weaker performance. The results of modeling helped evaluate

feasibility of the framework and explore performance of the five

given methods.

Table 3 shows the ROC-AUC scores obtained for all models

for the training and testing datasets. On the testing datasets,

AUC scores were the highest for SVM and XGBoost.

Though two relatively better performing models, XGBoost

and SVM had high performance XGBoost had higher F1 score

than SVM especially for minority observations. Classification

or categorizing of data was based on absence of gene (given

a value of 0) or presence of gene (given a value of 1) for the

TABLE 4 Classification report for XGBoost and SVM.

Classification Precision Recall F1-score Support

XGBoost

0 0.55 0.97 0.70 78

1 1.00 0.91 0.95 664

SVM

0 0.50 1.00 0.67 78

1 1.00 0.88 0.94 664

person’s givenmedication as defined by CPIC (CPIC, 2021). This

indicated a better balance of precision and recall for the XGBoost

model shown in Table 4.

Figure 3 illustrates the ROC curves for the XGBoost model

that showed an optimal threshold of 0.319.

The combined ROC curves for the five models shown in

Figure 4 are almost overlapping with each other indicating all

model performances were in the acceptable range.

Once presence of gene contraindicated with the medication

was added to the XGBoost model it showed higher AUC scores

(0.972) as compared to the first model without the gene variable

(0.766). Table 5 shows the area under the curve scores for the

XGBoost model.

AUC scores were also compared on test data before and

after applying SMOTE. Results indicated that resampling did not
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FIGURE 3

ROC Curve for XGBoost model.

FIGURE 4

ROC for all model comparison.

TABLE 5 ROC-AUC scores for XGBoost.

XGBoost

Training dataset Testing dataset

Model 1 0.746 0.766

Model 2 0.975 0.972

impact the model. The full results of the analysis can be found

with the supplementary material accompanying this paper.

Therefore, we can conclude that adding genetic variable

(presence/absence of gene contraindicating with person’s

medication) into the model improved prediction of PAE. The

optimal threshold probability was obtained by using ROC scores

and maximizing the sum of sensitivity and specificity. We got an

optimal cut off probability of 0.319. The ROC-AUC score on the

training dataset was 0.975 and the testing dataset was 0.972. The

recall and sensitivity were 0.920 which means 92% of PAE’s were

identified by this model. The precision was 0.990 which means,

TABLE 6 Classification report for final model.

Classification Precision Recall F1-score Support

0 0.59 0.94 0.73 78

1 0.99 0.92 0.96 664

FIGURE 5

Confusion matrix for final XGBoost model.

of all PAE’s identified by the model 99% were true cases. The

F1 score was 0.960. The predictors based on their importance

were gene, number of total medications, diabetes, HIV followed

by number of conditions, cancer, and cardiovascular disease.

Therefore, we can conclude that adding genetic variable into the

model improved prediction. For the final model, the F1 score

without the gene variable was 0.73 with a precision of 0.59 and a

recall of 0.94. After gene was added to the model, the F1-score

was 0.96 with a precision of 0.99 and recall of 0.92 (Table 6).

The classification or categorization of labels is based on presence

(value of 1) or absence (value of 0) of contraindicated gene for

the person’s medication based on CPIC guidelines.

Figure 5 illustrates the confusion matrix for the final

XGBoost model.

Feature selection showed in order of importance variables,

gene allele followed by number of medications a person was

on. The conditions seemed to be close to each other in

feature importance. Figure 6 depicts the feature selection for the

final model.

To do additional exploration between variables, bivariate

chi-square tests were performed between dependent variables

and categorical independent variables. Results indicated

PAE was significantly related to “GeneAllele” (variable for

presence/absence of gene contraindicated with medication)

with a p-value < 0.001. For explaining the impact of each

feature variable on the target variable PAE, Shapely Additive
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Explanations (SHAP) was utilized on the final XGBoost

model. SHAP values were generated using TreeExplainer. A

beeswarm plot was generated to visualize the global feature

importance. The plot in Figure 7 shows “GeneAllele” (variable

for presence/absence of gene contraindicated with medication)

as the topmost important feature that impacts prediction

of PAE.

FIGURE 6

Feature Selection for Final Model. GeneAllele = Variable for

presence/absence of gene contraindicated with medication,

Nbr_of_TotalMeds_scaled = scaled variable for number of total

medications, hiv = presence/absence of hiv, diabetes =

presence/absence of diabetes, cvd = presence/absence of

cardiovascular disease, anyca = presence/absence of cancer,

Nbr_of_Conditions_scaled = number of total

disease conditions.

Discussion

Reflections on an integrated framework

Most people access healthcare at some point in their lives.

Healthcare utilization typically increases with aging, and its

operational efficiency directly affects quality of life and wellbeing

(Hallo and Gorod, 2020). Therefore, it is of utmost importance

that we apply expertise of different disciplines to enhance

the efficiency and output of the healthcare industry. Previous

work has shown that innovation is the least studied category

in health-related operations research (Brownlee and Garber,

2019). Application of methods like predictive analytics that have

been successfully used in other industries have been slow in

being adopted in healthcare. One main reason for this is the

complexity of the healthcare system. Predictive modeling and

comparison of different types of models has not been applied

to clinical decision making in the pharmacogenetic domain in

outpatient care at the VA. This research is one step in the attempt

to apply these methods to improve patient care efficiency.

The VA serves more than 13 million veterans with

more than 1600 points-of-care nationwide. Routine patient

care does not typically incorporate factoring genetic data

to make decision strategies (Dong et al., 2021). Several

institutional initiatives are looking to incorporate genetic

data (Zhang, 2016), but they are generally restricted to

specific sites. Previous studies show that if patient care is

personalized based on the genetic constitution of the person,

then outcomes are more successful. Fewer resources are

spent in addressing adverse reactions and additional care

brought on by the least optimal decision. A data framework

integrated with genetic data decision support aided with

FIGURE 7

SHAP values for XGBoost model. GeneAllele = Variable for presence/absence of gene contraindicated with medication,

Nbr_of_TotalMeds_scaled = scaled variable for number of total medications, hiv = presence/absence of hiv, diabetes = presence/absence of

diabetes, cvd = presence/absence of cardiovascular disease, anyca = presence/absence of cancer, Nbr_of_Conditions_scaled = number of

total disease conditions.
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machine learning methods can aid patient care decisions

guided by pharmacogenetics. In many healthcare systems

around the world, even with best human clinical expertise

the outcome of treatments is not always satisfactory, whereas

systemically when operational efficiency of healthcare systems

is high, treatment outcomes are much better (Tolk et al.,

2015). Therefore, based on this study’s evaluation we propose

wholesome data frameworks that systemically support informed

clinical decision making.

Conclusion

Tree-based ensemble ML models closely mirror a human’s

decision making and have better explainable-ability and

predictive performance along with being robust to outliers.

For this study five different machine learning algorithms

were trained to explore better performing models for

predicting outcomes. The model performance on all the

machine learning models was acceptable based on the

ROC-AUC scores. XGBoost performed relatively better but

all model predictions were acceptable, indicating that the

methodology may be an effective way to utilize the power

of machine learning for predicting PAE in an integrated

data framework.
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