
ORIGINAL RESEARCH
published: 11 February 2022

doi: 10.3389/fdata.2022.688496

Frontiers in Big Data | www.frontiersin.org 1 February 2022 | Volume 5 | Article 688496

Edited by:

Evangelos Papalexakis,

University of California, Riverside,

United States

Reviewed by:

Panos Markopoulos,

Rochester Institute of Technology,

United States

Jamie Haddock,

Harvey Mudd College, United States

*Correspondence:

Nithin Govindarajan

nithin.govindarajan@kuleuven.be

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Big Data

Received: 30 March 2021

Accepted: 07 January 2022

Published: 11 February 2022

Citation:

Govindarajan N, Vervliet N and De

Lathauwer L (2022) Regression and

Classification With Spline-Based

Separable Expansions.

Front. Big Data 5:688496.

doi: 10.3389/fdata.2022.688496

Regression and Classification With
Spline-Based Separable Expansions
Nithin Govindarajan 1*, Nico Vervliet 1,2 and Lieven De Lathauwer 1,2

1Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering (ESAT), KU

Leuven, Leuven, Belgium, 2Group Science, Engineering and Technology, KU Leuven Kulak, Kortrijk, Belgium

We introduce a supervised learning framework for target functions that are well

approximated by a sum of (few) separable terms. The framework proposes to

approximate each component function by a B-spline, resulting in an approximant where

the underlying coefficient tensor of the tensor product expansion has a low-rank polyadic

decomposition parametrization. By exploiting the multilinear structure, as well as the

sparsity pattern of the compactly supported B-spline basis terms, we demonstrate

how such an approximant is well-suited for regression and classification tasks by using

the Gauss–Newton algorithm to train the parameters. Various numerical examples are

provided analyzing the effectiveness of the approach.

Keywords: B-splines, tensor decompositions, canonical polyadic decomposition, supervised learning,

gauss-newton, classification, regression

1. INTRODUCTION

Approximating multivariate functions in high dimensions quickly becomes infeasible due to the
curse of dimensionality. Negative results in the literature (DeVore et al., 1989; Yarotsky, 2017)
reveal that to approximate a generic n-times differentiable function in D variables within ǫ-
tolerance (measured in the uniform norm), one typically would require M & ǫ−D/n parameters.
Fortunately, in machine learning practice, many target functions are of inherently low complexity
if examined through the right lens. That is, by selecting a suitable architecture for the approximant
such that it resembles the underlying structure of the true function, the curse of dimensionality
can typically be avoided. For instance, a common architecture, adapted particularly by deep neural
networks (Schmidhuber, 2015), is to express the approximant as a sequence of compositions of
simpler functions. The success of such kind of networks in supervised learning tasks has been
profound and can be largely attributed to the fact that many phenomena in nature are the result of
a sequence of simpler operations; see (Mhaskar and Poggio, 2016).

In this paper, we study another commonly occuring structure in which the target function f (x)
essentially has low rank and can be expressed as a sum of few separable terms, i.e.,

f (x) =
R
∑

r=1

(

D
∏

d=1
φ(d)r (xd)

)

=:
[[

8(1)(x1), . . . ,8
(D)(xD)

]]

, (1)

where 8(d)(xd) =:
[

φ
(d)
1 (xd) · · · φ(d)R (xd)

]

and x =
[

x1 · · · xD
]

. Sums of separable functions

describe continuous, infinite-dimensional analogs of (canonical) polyadic decompositions (CPD)
of higher-order tensors (Kolda and Bader, 2009; Cichocki et al., 2015; Sidiropoulos et al., 2017), and

a direct discretization of the univariate component functions φ
(d)
r (xd) results in an approximant

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.688496
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.688496&domain=pdf&date_stamp=2022-02-11
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nithin.govindarajan@kuleuven.be
https://doi.org/10.3389/fdata.2022.688496
https://www.frontiersin.org/articles/10.3389/fdata.2022.688496/full

Govindarajan et al. Spline-Based Separable Expansions

that takes the form of a tensor product expansion, where
the underlying coefficient tensor has a low-rank polyadic
decomposition parameterization. Low-rank approximations are
a key ingredient to the success of tensor-based scientific
computing (Hackbusch, 2012; Grasedyck et al., 2013;
Khoromskij, 2018), and they provide a means to capture
low complexity patterns in higher-dimensional datasets.

We present our initial findings on how one can effectively
approximate functions of the type (Equation 1) in the context of
supervised learning, appearing either in the form of regression
or classification tasks. As opposed to earlier work on this topic
(Beylkin et al., 2009; Garcke, 2010; Kargas and Sidiropoulos,
2021), a key feature in our framework is the choice to use
B-splines or, equivalently, piecewise polynomials, as a means
to discretize the individual component functions. B-splines
have been a fundamental tool in computational geometry and
numerical analysis for many years (De Boor, 1978), however,
their explicit usage in pure machine learning applications
has been fairly limited, despite the close connections between
deep ReLU networks and nonuniform linear splines with
adaptive knots (Unser, 2019). B-splines satisfy, in comparison to
approximation by pure polynomials, some favorable properties as
they are compactly supported—B-splines are nonzero only on a
small interval—and allow for more adaptive local approximation
of nonlinearities in a function. Furthermore, they are less prone
to the unwanted high-oscillatory behavior that may occur in
interpolatory fits of function data using high-degree polynomials.

We present an optimization framework to train the model
parameters of the proposed approximant given data samples of
a specific regression or classification problem. By introducing
the low-rank structure, the problem can be viewed as a special
case of a linear system with a CPD constrained solution (Boussé
et al., 2018) or the computation of a CPD of an incomplete
tensor with linearly constrained factor matrices (Vervliet et al.,
2017). By exploiting the resulting multilinear structure of the
quadratic objective function in a similar way as in Boussé et al.
(2018) and Vervliet et al. (2017), we show that the training of
the model parameters in the regression problem can be handled
effectively with the Gauss–Newton (GN) algorithm with dog-
leg trust region (Nocedal and Wright, 2006). In comparison to
prior work which used alternating least squares (ALS) scheme
(Beylkin et al., 2009; Garcke, 2010) as means to train the model
parameters, the GN algorithm is known to exhibit superior
convergence properties (see e.g., Sorber et al., 2013; Vervliet
and De Lathauwer, 2019). Building on the results for the GN-
based computation of a CPD using alternative cost functions
(Vandecappelle et al., 2021), we show that our algorithm can be
altered to accommodate logistic cost functions which are more
suitable for classification problems.

The use of tensor decompositions in machine learning
problems has been explored in various directions in the past.
In Lebedev et al. (2015) and Jaderberg et al. (2014) tensor
decompositions were used to accelerate convolutional layers of
a neural network. Furthermore, the concept of using tensor
decompositions is closely related to sum-product networks
(Delalleau and Bengio, 2011; Poon and Domingos, 2011; Gens
and Domingos, 2012; Gens and Pedro, 2013). Apart from the

former work on sums of separable functions (Beylkin et al.,
2009; Garcke, 2010; Kargas and Sidiropoulos, 2021), the utility
of other types of tensor decompositions have also been studied
in the literature. In Hendrikx et al. (2019), symmetric tensor
decompositions were used to exploit structure in multivariate
polynomial functions. In Grelier et al. (2018), Liu et al.
(2019), and Hou and Chaib-Draa (2015), (hierachical)-Tucker
decompositions were considered in machine learning contexts,
whereas (Oseledets, 2013; Novikov et al., 2016; Chen et al., 2017)
looked into tensor train decompositions instead. More general
tensor networks were also examined in Reyes and Stoudenmire
(2021) and Stoudenmire and Schwab (2016). Adaptive methods
to learn tensor networks from data has also been studied in
Hashemizadeh et al. (2020). Finally, Karagoz and Batselier (2020)
considered using B-splines in combination with tensor networks
for applications in system identification. However, none of the
prior works have considered using B-splines in the context of
machine learning applications.

The paper is organized as follows. First, in Section 2, we cover
some basic mathematical preliminaries on B-splines, low-rank
separable expansions, and tensors. Subsequently, the regression
and classification frameworks are introduced in Sections 3 and
4, respectively. Herein, we cover also some numerical examples
illustrating the utility of the proposed learning framework. The
conclusions are provided in Section 5.

Notation
The following notation is adopted throughout this paper. The
symbol R is reserved to denote the reals. C([0, 1]D) is used to
denote the space of continuous function on the unit hypercube
[0, 1]D. Scalars, (column) vectors, matrices and tensors are
denoted by lowercase, bold lowercase, bold uppercase and
calligraphic characters, respectively; e.g., s ∈ R, v ∈ R

I , M ∈
R
I×J and T ∈ R

I1×I2×...×ID . 1N ∈ R
N denotes the vector

with all entries set to one. The symbols ⊗ and ⊗ denote the
outer product and Kronecker product, respectively. The symbol
∗, on the other hand, denotes the Hadamard (or element-wise)
product. The mode-d tensor-matrix product ·d between a tensor
T ∈ R

I1×I2×...×ID and a matrix M ∈ R
J×Id has the following

elementwise definition for S = T ·dM ∈ R
I1×...×Id−1×J×Id+1×...ID :

si1 ,...,id−1 ,j,id+1 ,...,iD =
ID
∑

id=1
ti1 ,...,id−1 ,id ,id+1 ,...,iDmj,id .

A polyadic decomposition can be written compactly as

[[

Ŵ(1), . . . ,Ŵ(D)
]]

:=
R
∑

r=1
γ (1)
r ⊗ · · · ⊗ γ (D)

r ,

where factor matrix Ŵ(d) =
[

γ
(d)
1 · · · γ (d)

R

]

collects factor

vectors γ
(d)
r as its columns. The bracket notation is also used to

compactly express sums of separable functions, i.e.,

[[

8(1)(x1), . . . ,8
(D)(xD)

]]

:=
R
∑

r=1

(

D
∏

d=1
φ(d)r (xd)

)

,

Frontiers in Big Data | www.frontiersin.org 2 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

y

N=2, M=14

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

y

N=3, M=14

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

y

N=4, M=14

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

y

N=5, M=14

FIGURE 1 | The B-spline basis terms (Equation 2) are compactly supported. Shown are the basis terms for orders N = 2, 3, 4, 5. The knots T = {ti}N+Mi=0 are

distributed uniformly: ti = 0 for i = 0, . . . ,N − 1, ti = (i − N + 1)/(M− N + 2) for i = N, . . . ,M, and ti = 1 for i = M+ 1, . . . ,N. Shown also in black is the sum of all the

B-spline basis terms, i.e.,
∑M

m=0 Bm,N (x) = 1.

where8(d)(xd) =
[

φ
(d)
1 (xd) · · · φ(d)R (xd)

]

.

2. PRELIMINARIES: B-SPLINES, LOW
RANK SEPARABLE EXPANSIONS AND
TENSORS

In this section, we cover the basic mathematical prelimaries for
our proposed regression and classification frameworks which are
discussed in Sections 3 and 4, respectively.

2.1. B-splines
A spline is a piecewise polynomial function stitched together
in a way such that it maintains a certain degree of smoothness
over the approximation interval. A convenient way of expressing
splines is through B-splines. A B-spline of orderN on the interval
[a, b] is constructed as follows. Let T = {ti}N+Mi=0 denote the set of
knots which satisfy the order relation

a = t0 = . . . = tN−1 ≤ tN ≤ tN+1 ≤ . . . ≤ tM+1 = . . .
= tM+N = b.

The B-spline basis terms {Bm,N}Mm=0 are given by the
recursion formula

Bm,N(x) :=
x−tm

tm+N−tm
Bm,N−1(x)+

tm+N+1 − x

tm+N+1 − tm+1
Bm+1,N−1(x),

(2)
where

Bm,0(x) :=
{

1 x ∈ [tm, tm+1)

0 otherwise
.

In Figure 1, the B-spline basis terms are graphically depicted for
various orders and knot configurations. The B-spline basis terms
satisfy the interesting property of being compactly supported. In
particular, Bm,N can only attain nonzero values on the interval
[tm, tm+N+1), i.e.,

Bm,N(x) = 0, x ∈ (−∞, tm) ∪ [tm+N+1,∞). (3)

To put this into perspective, a polynomial basis can never satisfy
such a property: if a polynomial function is zero on a nonempty
interval, then it must be zero everywhere. A general B-spline S(x)
of order N is formed by taking weighted linear combinations of
the basis elements (Equation 2). We have the expression:

S(x) =
M
∑

m=0
cmBm,N(x),

which we denote more concisely in the vectorized notation

S(x) =
[

B0,N(x) · · · BM,N(x)
]







c0
...
cM






= BT,N(x)c. (4)

For the sake of readability, we omit the subscripts T,N in B
T,N

in the remainder of the text, i.e., B(x) = B
T,N

(x). However, one

must keep in mind that a spline always implicitly involves a set of
knots T and an order N.

It is well-known that Equation (4) is a universal approximator
and has the ability to approximate any continuous function
with arbitrary accuracy (De Boor, 1978). This fact should

Frontiers in Big Data | www.frontiersin.org 3 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

come as no surprise, since (Equation 4) describes a piecewise
degree N − 1 polynomial, and polynomials themselves are
universal approximators as a consequence of the Weierstrass
theorem. However, there is a fundamental feature of splines
which allow functions to be approximated in a way that pure
polynomials cannot: while the approximation power of pure
polynomials can only be increased by raising the degree, in
the case of splines, one has additional flexibility to raise the
total number of polynomial pieces used on the approximation
interval. This increase is effectively realized by increasing the
knot density.

There are several advantages of being able to control
the amount of polynomial pieces. First, it allows for local
approximation of regions over which the function experiences
dramatic change, since changes to the coefficients in Equation
(4) affect the function only locally. Second, by keeping the degree
low and increasing the number of knots, one can avoid some of
the numerical issues faced by high-degree polynomials. A major
drawback of high-degree polynomials is the possible appearance
of large (non-physical) oscillations in an interpolatory fit of a
function which increase in magnitude as the polynomial degree
increases. This undesirable property is commonly referred to
as Runge’s phenomenon in the approximation theory literature
(see e.g., Trefethen, 2019) for a more detailed exposition on the
subject. In the context of machine-learning, large oscillations
between the sample points can have an adverse effect on
the generalization error. Henceforth, any use of high-degree
polynomials in such contexts must keep Runge’s effects at
check, i.e., the method of approximation becomes of paramount
approximation. This can be achieved in various ways; e.g.,
by overparameterizing the polynomial and adding a derivative
penalty to the polynomial fit (Chandrasekaran et al., 2013;
Rajagopal, 2019), or by using structured interpolation points
such as Chebyshev nodes if one has the freedom to pick the
function samples freely (Trefethen, 2019). Another alternative
is to switch to splines, in which case, the issue is completely
bypassed altogether if one keeps the order of the spline low.
Third, resolving local phenomena such as kinks, discontinuities,
and sharp transitions is difficult using polynomials due to their
global nature. Splines, however, can capture local phenomena
more easily thanks to their compact support, particularly
if the knots are chosen to align with the boundaries of
such features.

The performance of a given B-spline for a regression
task is dependent on the chosen set of knots and order
of the spline. In practice, one typically wants to optimize
the number of knots as well as their respective positions in
order to avoid under or overfitting of the data. Typically,
the idea is to increase the knot frequency at data-dense
regions where the underlying function tends to exhibit a high
degree of variation. The problem of optimal knot allocation
is, however, highly non-trivial and the literature has suggested
various approaches to do adaptive knot selection (see Zhou
and Shen, 2001) and the references therein. Fortunately, in
most cases, decent performance can already be achieved by
distributing the knots evenly with respect to the provided
data (De Boor, 1978).

2.2. Multivariate Splines and Tensors
There are several ways to extend B-splines to the multivariate
case. Instead of forming piecewise polynomials on a set of
intervals, one constructs a smooth function in a higher-
dimensional space by stitching together piecewise polynomials
on a collection of polygonal domains. One well-studied
framework is to define splines on so-called triangulations which
partitions a domain into simplices (Lai and Schumaker, 2007).

A more basic approach, which is more amenable to our
pursuit of low-rank approximations, is to take Cartesian tensor
products of univariate B-splines. This effectively results in a
construction where polynomials are defined piecewise on box-
shaped domains. To define a tensor product B-spline on a feature
space [a1, b1]× . . .× [aD, bD], a set of knots Td for each variable
xd, d = 1, . . . ,D, is defined first. Amultivariate function can then
be approximated by

S(x) =
M1
∑

m1=0

M2
∑

m2=0
· · ·

MD
∑

mD=0
cm1m2···mD

D
∏

d=1
B
(d)
md ,Nd

(xd).

The above expansion can be expressed more concisely by using
tensor notation.With the help ofmode-d tensor-matrix products,
we write

S(x) = C ·1 B(1)(x1) ·2 B(2)(x2) · · · ·D B(D)(xD), (5)

where C ∈ R
(M1+1)×...×(MD+1) denotes the Dth order coefficient

tensor, and B(d)(xd) =
[

B
(d)
1,Nd

(xd) · · · B(d)Md ,Nd
(xd)

]

for some knot

setT(d), d = 1, . . . ,D. Similar to how (Equation 4) is an universal
approximator of any continous function on an interval, Equation
(5) describes an universal approximator for any multivariate
continuous function on the feature space [a1, b1]×· · ·×[aD, bD].
Likewise, as a consequence of Equation (3), the basis elements of
Equation (5) are also compactly supported.

2.3. Low-Rank Separable Expansions and
CPDs
The number of entries in the coefficient tensor
C ∈ R

(M1+1)×···×(MD+1) equals
∏D

d=1(Md + 1) and grows
exponentially with the dimension D of the function domain.
This exponential blow-up of the parameter space, which also
occurs in splines on triangulations (Lai and Schumaker, 2007),
is commonly known as the curse of dimensionality (CoD) by
the tensor research community. CoD makes problems such
as construction and evaluation of the tensor product B-spline
Equation (5) intractable. Regardless, for functions which are
expressible by a sum of a few separable terms (Equation 1), i.e.,

f (x) =
R
∑

r=1

(

D
∏

d=1
φ(d)r (xd)

)

,

approximation by the expansion (Equation 5) is grossly
inefficient. For such functions, the tensor C in Equation (5) is of

Frontiers in Big Data | www.frontiersin.org 4 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

low rank and has a more concise parameterization in the form of
a polyadic decomposition into R terms:

C(Ŵ(1), . . . ,Ŵ(D)) =
[[

Ŵ(1), . . . ,Ŵ(D)
]]

=
R
∑

r=1
γ (1)
r ⊗ · · · ⊗ γ (D)

r ,

(6)
in which Ŵ(d) are the factor matrices of the CPD. To confirm that
such a low-rank parameterization is actually possible, one simply

has to approximate each component function φ
(d)
r in Equation

(1) by a B-spline

φ(d)r (xd) ≈ B(d)(xd)γ
(d)
r . (7)

Substituting (Equation 7) into (Equation 1) results then into the
more compact approximant

f̂ (x;Ŵ(1), . . . ,Ŵ(D)) = C(Ŵ(1), . . . ,

Ŵ(D)) ·1 B(1)(x1) ·2 · · · ·D B(D)(xD), (8)

where C :R
(M1+1)×R × · · · × R

(MD+1)×R → R
(M1+1)×···×(MD+1)

is now described by the polyadic decomposition (Equation
6). Indeed, in comparison to Equation (5), the approximant
(Equation 8) can have orders of magnitude fewer parameters if R
is low, i.e., less than R(

∑D
d=1Md + 1) parameters will be needed.

The ability to approximate functions efficiently through
Equation (8) rests on the assumption that the number of
separable terms R in Equation (1) are small. Classical results
in approximation theory reveal that the level of difficulty in
approximating a function can be characterized roughly by
its degree of smoothness. Specifically, the rate at which a
multivariate function can be approximated by a tensor product
expansion of an orthogonal (polynomial) basis is proportionally
tied to how many continuous derivatives the function possesses
(measured in the Sobolev norm) (Mhaskar and Pai, 2000).
Subsequently, a very smooth function which has a commensurate
number of continuous derivatives with respect to the number of
variables can be very compactly approximated with a few terms
in Equation (1). However, such an analysis does not describe the
whole picture at all.

The smoothness of a function does not alone capture the
“rank of a function.” The class of functions well representable
through Equation (1) is much richer, as a function can be
easily nonsmooth but still of low rank; for example, any
function of a sum of separable terms in which several of the
component functions are nonsmooth. The work in Beylkin and
Mohlenkamp (2005), Boussé et al. (2017), and Khoromskij (2018)
discusses some interestingmechanisms under whichmultivariate
functions can have good low-rank approximations, which are,
for instance, achieved through sums of exponentials or sinc
functions. At a very intuitive level, the low-rankness of a function
captures the low complexity of a function. The bottom line is that
negative results in DeVore et al. (1989) and Yarotsky (2017) (see
introduction) put a fundamental “speed limit” to general robust
approximation of a function, which is exponential in the number
of dimensions, but simultaneously attenuated by the degree of
smoothness. Any approach more effective must somehow utilize

some additional structure in some way. In the case of Equation
(8), this additional structure comes in the form of a low-rank
tensor, which forms the basis of the success of tensor-based
scientific computing (Hackbusch, 2012; Grasedyck et al., 2013;
Khoromskij, 2018).

3. REGRESSION

In a regression context, the aim is to learn a function f̂ (x) as
defined in Equation (8) that approximates the unknown target
function f ∈ C([0, 1]D) defined on a D-dimensional feature

space, from a set of I samples
{

(xi, yi)
}I

i=1 ⊂ [0, 1]D × R. To
achieve this, we minimize the quadratic objective

Q(Ŵ(1), . . . ,Ŵ(D)) := 1

2

I
∑

i=1

(

f̂ (xi;Ŵ(1), . . . ,Ŵ(D))− yi

)2
. (9)

This problem can be interpreted in two ways as discussed in
Subsection 3.1. Next, we derive the GN-based algorithm that
exploits the low-rank and B-spline structure. Technical details
have beenmoved toAppendix A for readability. To conclude this
section, the practical feasibility of the proposed combination of
low-rank and B-spline structure is illustrated numerically using
synthetic and real-life data in Section 3.3.

3.1. Two Interpretations
While a GN-based algorithm is derived in the next subsection, it
can be fruitful to discuss links with two other frameworks. First,
the objective function (Equation 9) can be seen as a linear system
of which the solution has a CPD constraint, i.e.,

Ac = y,

in which the solution c = vec (C) = vec
([[

Ŵ(1), . . . ,Ŵ(D)
]])

, and

y =
[

y1 . . . yI
]⊤

. Using the definition of the mode-d tensor-

matrix product, we can see that a row a⊤i in A ∈ R
I×
∏

d=1(Md+1)

is given by

a⊤i =
D
⊗
d=1

B(d)(xi,d) (10)

in which⊗ is the Kronecker product andB(d)(xi,d) is a row vector
of evaluated B-splines in point xi,d. While a general solver such
as Boussé et al. (2018) can be used, exploiting the Kronecker
structure is crucial for achieving an efficient algorithm (see, e.g.,
Hendrikx et al., 2019) for a polynomial example that also involves
symmetry. As Equation (10) does not involve symmetry, a new
algorithm is derived here by exploiting the Kronecker structure
as well as the B-spline basis structure.

Second, problem (Equation 9) can be seen as a decomposition
of a Dth-order incomplete tensor Y in which the dth dimension
Jd is the number of unique values xi,d over all samples i, hence
Jd ≤ I. The number of known entries in Y is equal to I. By
denoting the evaluated spline basis matrices B(d) in these unique
values xi,d by B̂(d) and by using multilinear calculus to rewrite

Frontiers in Big Data | www.frontiersin.org 5 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

(Equation 8), an incomplete tensor fitting problem is obtained in
which a linear constraint is imposed on each factor matrix:

min
{Ŵ(d)}D

d=1

1

2

∥

∥

∥
S ∗

(

Y −
[[

B̂(1)Ŵ(1), B̂(2)Ŵ(2), . . . , B̂(D)Ŵ(D)
]])∥

∥

∥

2

F
,

(11)

where S is a binary sampling tensor which is one if the entry
is known or sampled, and zero otherwise. A GN algorithm
for solving problem (Equation 11) is presented in Vervliet
et al. (2017). In this paper, we improve upon this result by
further exploiting the sparsity of the basis matrices thanks to the
B-spline structure.

3.2. Gauss–Newton Algorithm
A basic descent algorithm to solve (Equation 9) is the alternating
least squares (ALS) scheme (Harshman, 1970). In ALS, one
exploits the multilinear structure (Equation 6) by freezing all
but one of the factor matrices, so that the problem essentially
becomes linear at each sub-iteration. Alternatively one may also
approach the problem using a GN procedure, which has been
shown to have superior convergence properties for tensor related
problems with respect to ALS (see, e.g., Sorber et al., 2013;
Vervliet et al., 2017; Vervliet and De Lathauwer, 2019).

In this section, we derive the necessary ingredients—the

gradient g
(d)
r and the GN step p

(d)
r , r = 1, . . . ,R, and d =

1, . . . ,D—for a GN type algorithm for solving (Equation 9). The
dogleg trust region approach is used to ensure global convergence
as this has proven successful in a tensor context (Sorber et al.,
2013; Vervliet and De Lathauwer, 2019). As the dogleg algorithm
is a standard algorithm in optimization—see, e.g., Nocedal and

Wright (2006)—we assume variables γ
(d)
r are updated from

iteration l to l+ 1 as

γ
(d)
r,l+1 ← γ

(d)
r,l
+ u

(d)
r,l
, r = 1, . . . ,R, d = 1, . . . ,D,

in which u
(d)
r,l

is the dogleg step. (In the remainder, the iteration
subscript l is dropped for simplicity of notation).

To show that the GN approximation is an appropriate choice
for solving problem (Equation 9), consider first the Newton step

p̃
(d)
r , which is obtained by solving the linear system of equations

D
∑

d̃=1

R
∑

r̃=1





∂2Q(Ŵ(1), . . . ,Ŵ(D))

∂γ
(d)
r ∂γ

(d̃)
r̃



 p̃
(d̃)
r̃ = −

∂Q(Ŵ(1), . . . ,Ŵ(D))

∂γ
(d)
r

= −g(d)r , (12)

for r = 1, . . . ,R and d = 1, . . . ,D. The left-hand-side matrix
is the Hessian of Equation (9), while the right-hand side is the

gradient g
(d)
r . Because of the low-rank structure in the coefficient

tensor C, both the gradient and Hessian terms in Equation (12)
are highly structured. A meticulous derivation of these quantities
allows us to express them concisely. Let us define

v
(d)
r;i = v

(d)
r (xi;Ŵ(1), . . . ,Ŵ(D)) :=

D
∏

k=1,k 6=d
B(k)(xi,k)γ

(k)
r ,

w
(d,d̃)
r,r̃;i = w

(d,d̃)
r,r̃

(xi;Ŵ(1), . . . ,Ŵ(D)) :=











0 d = d̃

ψ (d,d̃)(xi;Ŵ(1), . . . ,Ŵ(D)) r = r̃

0 r 6= r̃

,

ψ
(d,d̃)
i = ψ (d,d̃)(xi;Ŵ(1), . . . ,Ŵ(D)) :=

D
∏

k=1,k 6=d,d̃

B(k)(xi,k)γ
(k)
r̃

.

The gradient and Hessian terms can then be expressed as

∂Q(Ŵ(1), . . . ,Ŵ(D))

∂γ
(d)
r

=
I
∑

i=1
ηiv

(d)
r;i B

(d)⊤(xi,d), (13)

∂2Q(Ŵ(1), . . . ,Ŵ(D))

∂γ
(d)
r ∂γ

(d̃)
r̃

=
I
∑

i=1
ξi

(

v
(d)
r;i B

(d)⊤(xi,d)
) (

v
(d̃)
r̃;i B

(d̃)(x
i,d̃
)
)

+ ηiw(d,d̃)
r,r̃;i B

(d)⊤(xi,d)B
(d̃)(x

i,d̃
), (14)

in which ηi ∈ R is the residual, and ξi ∈ R is a weight term:

ηi = η(xi, yi;Ŵ(1), . . . ,Ŵ(D)) := f̂ (xi;Ŵ(1), . . . ,Ŵ(D))− yi, (15)

ξi := 1. (16)

(The weight ξi will be important for the classification case; see
Section 4.) Note that Equation (13) and (14) consist of only I
terms, i.e., the number of samples.

In the GN procedure, the second term in the Hessian is
dropped so that Equation (14) reduces to the Gramian of the
Jacobian:

G
(d,d̃)
r,r̃

:=
I
∑

i=1
ξi

(

v
(d)
r;i B

(d)⊤(xi,d)
) (

v
(d̃)
r̃;i B

(d̃)(x
i,d̃
)
)

. (17)

This Gramian can be a good approximation of the Hessian as
the second term depends on the residual ηi, which becomes
small near a global optimum and zero if an exact solution
exists, i.e., if Q(Ŵ(1), . . . ,Ŵ(D)) = 0. Moreover, the term

w
(d,d̃)
r,r̃;i is often zero. The Gramian is positive semidefinite and

allows for a locally convex approximation of the objective
function. By dropping the second term in Equation (14),
the system

D
∑

d̃=1

R
∑

r̃=1
G
(d,d̃)
r,r̃ p

(d̃)
r̃ = −

∂Q(Ŵ(1), . . . ,Ŵ(D))

∂γ
(d)
r

,

r = 1, . . . ,R, d = 1, . . . ,D, (18)

is solved in lieu of Equation (12).
There are several provisions taken to solve the linear system

(Equation 18) in an effective manner. Similar to earlier work
(Sorber et al., 2013; Vervliet and De Lathauwer, 2019), system
(Equation 18) is solved iteratively using the conjugate gradient
(CG) method. The CG matrix only requires evaluations of
matrix-vector products—in Equation (18), the matrix is the
Gramian—which can be computed efficiently by exploiting the
structure in the problem in analogous way as done in Hendrikx

Frontiers in Big Data | www.frontiersin.org 6 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

FIGURE 2 | A R = 3 separable expansion is necessary to obtain a fit that is capable of capturing the global features of the function (Equation 19). We used 8,000

random function samples for our training set. The fits were obtained with a B-spline basis comprising of a uniformly distributed knot set and M = 35, N = 4. The plots

depict the absolute error between the true function (Equation 19) and the obtained approximation using (Equation 8).

et al. (2019) and Vervliet et al. (2017); see Appendix A for the
exact algorithmic details.

While CG requires a positive definite matrix, the method
works for the positive semidefinite Gramian as well in practice, as
both the starting point—the Cauchy point—for the CG method
and the right hand side of Equation (18) are both orthogonal
to the null space of the Gramian. As the trust-region approach
ensures sufficient decrease, which is needed for convergence of
the GN method, the number of (inner) CG iterations can be
limited, lowering the computational cost further.

A key benefit of using splines is that the Gramian
(Equation 18) enjoys an additional sparsity structure on top
of the multilinear structure already caused by CPD constraint
(Equation 6). If one exploits the sparsity pattern in the spline
basis (recall that, unlike polynomials, the spline basis elements
are compactly supported), the time complexity for evaluating
the gradient and Gramian-vector product are both O(INRD)
flop. Herein, N := maxd Nd denotes the maximum order of
the splines used in Equation (8). In practice, N is intentionally
kept low (typically N = 4) in order to avoid usage of high-
degree polynomials in the approximation. The complexity then
effectively reduces down to O(IRD) flop. These savings are
significant if one takes into consideration the maximum number
of spline coefficients in the univariate component functions, i.e.,
M := maxd Md. A failure to take advantage of the sparsity
structure would have increased the complexity to O(IMRD)
flop. This illustrates another advantage of B-splines over pure
polynomials as there is no sparsity pattern to be exploited in the
latter case.

3.3. Numerical Examples
A Matlab implementation of the proposed GN algorithm for the
objective function (Equation 9) has been made. For the tensor

and optimization related functions we use Tensorlab 3.0 (Vervliet
et al., 2016). Next, we cover some interesting examples that
examine the behavior of the proposed regression framework.

3.3.1. Case Study I
We will start off with a function which is nonsmooth but of low
rank, i.e.,

f (x) = |x1||x2| + sin(2πx1) cos(2πx2)+ x21x2,

x ∈ [−1, 1]× [−1, 1]. (19)

The function (Equation 19) has a kink on the lines x1 = 0 and
x2 = 0 which is caused by the first separable term |x1||x2|. Despite
of its nonsmooth features, it is still of low rank, particularly
R = 3. Subsequently, Equation (19) can be well approximated
withO(M) terms using Equation (8), instead of theO(M2) terms
needed with Equation (5). In Figure 2 we actually demonstrate
this numerically. The figure contains a plot of the absolute
error between the obtained approximant (Equation 8) by solving
(Equation 9) using the GN algorithm with random initialization
and the true function (Equation 19). For our experiment, we
took 8,000 random samples of the function uniformly over the
domain for our training set. For each of the component functions
(Equation 7), we chose a uniform knot distribution withM = 31
and N = 4. From the plots, one can clearly see that the first
two low-rank approximations (i.e., R = 1, and R = 2) are
of poor quality. This is expected, since a rank-one or a rank-
two approximation cannot capture the full complexity of the
function. In fact, the results will not even improve if more data
samples are taken and the number of knots are increased for
each of the component functions (Equation 7). The rank-three
approximation is on the other hand of significantly better quality.
This is expected because the true function (Equation 19) also

Frontiers in Big Data | www.frontiersin.org 7 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

1.2

y

true

Chebyshev basis of degree 50

B-spline M= 50, N= 4 with uniform knot distribution

FIGURE 3 | If an ordinary least-squares objective function is used to construct an approximation, high-degree polynomials become more susceptible to the Runge’s

phenomenon, resulting in wild oscillations near the boundary of the approximation interval. By keeping the order of the B-splines low, the Runge’s effects can be

circumvented. Shown in the plot is a least-squares fit of the function f (x) = |x| on the interval [−1, 1]. We used 160 random function samples (using a uniform

distribution) to perform the regression. The samples are plotted in black dots.

contains three separable terms. Furthermore, the higher-rank
approximations with R > 3 do not seem to add much value to
the approximation. This also exhibits the property that the rank
can be overestimated without loss in quality.

To test the effectiveness of using B-splines, we compared our
results with an approximation using Chebyshev polynomials.
It is well-known that the function f (x) = |x| can be easily
subjugated to the Runge phenomenon. Without delving too
much into the technical details, bad fits can particularly arise
if the points picked are uniformly distributed and the degree
of the polynomials is close to the number of function samples;
see Figure 3. Intuitively, one would expect that Runge’s effects
would re-appear also in the fit of Equation (19). In Figure 4, this
is actually confirmed. Apart from the quality of approximation,
Figure 5 displays the average computation time required to
pass through a single iteration of the GN algorithm for the B-
spline basis as well as the Chebyshev basis. From the figure
it can be clearly deduced that the computation time grows
proportionally with the size of the Chebyshev basis, whereas it
remains constant for the spline basis if only the number of knots
are increased.

3.3.2. Case Study II
The next example which we consider looks very similar to our
first example, the only exception being that the first separable
term is “rotated” by 45 degrees:

f (x) =
∣

∣

∣

√
2
2 x1 −

√
2
2 x2

∣

∣

∣

∣

∣

∣

√
2
2 x1 +

√
2
2 x2

∣

∣

∣
+ sin(2πx1) cos(2πx2)

+x21x2, x ∈ [−1, 1]× [−1, 1]. (20)

This change is significant, however, since the rotation breaks
the rank-one structure of the first term. Unlike our previous
example, the function (Equation 20) has rank strictly greater

than R = 3. Given that the nonsmooth portion of the
function is no longer aligned with the coordinates x1 and
x2, one would expect that an approximation with Equation
(8) would do quite poorly. In comparison to Case study I,
this is also the case. Figure 6 displays the obtained results for
different rank values using the exact same configuration as in
Figure 2. The absolute errors are clearly larger. Surprisingly,
however, the global trends of the function are still well-
captured with a rank R = 3 approximation. Furthermore,
a rank R = 6 approximation is of comparable quality
to its counterpart of Figure 2. The results indicate that,
even if a function may be mathematically of high rank,
good approximations that capture the global features of
the function can already be achieved with relatively few
rank-one terms.

3.3.3. Case Study III: NASA Airfoil Self Noise
The final example which we consider is the task of fitting
an experimentally obtained dataset. We examine the NASA
dataset (Brooks et al., 1989) obtained from the UCI machine
learning repository (Dua and Graff, 2019) which is comprised
of data concerning different size NACA 0012 airfoils subjected
to various wind tunnel speeds and angles of attack. The
goal is to model the sound, or self noise generated by the
airfoil, as a function of the frequency, angle of attack, chord
length, free-stream velocity, and the suction-side displacement
thickness. The dataset has been normalized and contains 1,503
measurements in total. We randomly split the dataset into a
training dataset (1,202 samples) and a test dataset (301 samples).
Figure 7 displays the obtained results by using the approximant
(Equation 8) to fit the data by means of minimizing the objective
function (Equation 9). As in the previous examples, a uniformly
distributed knot distribution was chosen for the component

Frontiers in Big Data | www.frontiersin.org 8 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

functions (Equation 7), and shown in Figure 7 is the root mean
squared error (RMSE) and maximal absolute error obtained for
various configurations. Generating a fit directly with Equation
(5) would have been prohibitively expensive, since the dependent
variable is a function of five variables. However, Figure 7 reveals

5 10 15 20 25 30 35

no. of basis terms M

10
-3

10
-2

10
-1

10
0

R
M

S
E

B-spline, 400 samples

Chebyshev, 400 samples

B-spline, 800 samples

Chebyshev, 800 samples

FIGURE 4 | Runge’s effects, as illustrated graphically in Figure 3, resurface

again when the function (Equation 19) is approximated with a sum of

separable terms (Equation 8) where the B-spline basis is replaced with a

Chebyshev basis. This occurs due to the non-analytic term |x1||x2| which
makes (Equation 19) non-differentiable on the lines x1 = 0 and x2 = 0. If a fit is

generated through minimizing the least-squares objective function (Equation

9), a Chebyshev basis will, unlike for B-splines, start exhibiting degrading

performance when the number of basis terms becomes large with respect to

the size of the dataset. This can be observed in the plot above, which shows

the median RMSE obtained over 50 experiment, in each of which a different

random set of function samples (derived from a uniform distribution) were

used. For the experiments, the B-spline basis comprised of a uniformly

distributed knot set. The oscillations in RMSE curve for the B-spline basis can

be attributed to the fact that the knots will not always lie exactly on the

non-differentiable region of the function.

that the target function possesses low-rank structure, and can
be well modeled by R = 5 separable terms, where we see
a sudden drop in the training and test error. Furthermore,
it shows that the inclusion of any additional separable terms
does not amount to significant performance improvements of
the fit.

4. CLASSIFICATION

If the goal is to classify samples into two classes, other loss
functions than least-squares (Equation 9) are more suitable. In
Subsection 4.1, we show how the logistic loss function can be
combined with B-splines and the low-rank approximation of
the coefficient tensors following Equation (8). Next, the GN
algorithm is generalized to accommodate this loss function in
Subsection 4.2. Finally, the utility of low-rank approximations
in combination with B-splines for classification problems is
illustrated via numerical experiments.

4.1. Logistic Cost Function
A (binary) classification function defined on a D-dimensional
feature space can be modeled as the map g :[0, 1]D → {0, 1}
given by

g(x) =
{

0 f (x) ≤ 0

1 f (x) > 0
,

where f ∈ C([0, 1]D) is a continuous function whose zero level
set partitions the domain into the two classification sets. Instead
of enforcing a hard threshold between the two sets, one can
smoothen this transition by replacing the step function with the
logistic function σα : t 7→ 1/(exp(−αt)+ 1), i.e.

gα(x) := (σα ◦ f)(x) = σα(f (x)),

20 40 60 80 100 120 140 160 180 200

M

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

C
o
m

p
.
ti
m

e
 (

s
)

Chebyshev basis

spline basis

FIGURE 5 | The exploitation of the sparsity in the B-spline basis matrix A(d)
: =

[

B(d)⊤(x1,d) · · · B⊤ (d)(xI,d)
]

significantly accelerates the GN step. The left plot shows

the average required computation time to pass through one cycle of the GN algorithm for a B-spline basis of order N = 4 and a Chebyshev basis. We used 1,000

random data points to fit the function (Equation 19). The rank is set to R = 3. The right plots provide a glimpse of the sparsity structure of the matrix A(d) for a specific

d. This sparsity is exploited in the implementation. In the case of the Chebyshev basis, there is no sparsity pattern to be exploited.

Frontiers in Big Data | www.frontiersin.org 9 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

FIGURE 6 | Replacing the term |x1||x2| in Equation (19) with
∣

∣

∣

√
2
2 x1 −

√
2
2 x2

∣

∣

∣

∣

∣

∣

√
2
2 x1 +

√
2
2 x2

∣

∣

∣
destroys the rank-three structure of Equation (19). Yet, an R = 6

separable expansion is sufficient to get a an approximation that is capable of capturing the global features of Equation (20). We used 8,000 random function samples

for our training set. The fits were obtained with a B-spline basis comprising of a uniformly distributed knot set and M = 35, N = 4. The plots show the absolute error

between the true function (Equation 19) and the obtained approximation using (Equation 8).

where the parameter α > 0 controls the gradient in the transition
zone. To incorporate the low-rank constraint and the B-spline
basis, the function gα is replaced by the approximant

ĝα(x;Ŵ(1), . . . ,Ŵ(D)) := σα ◦ f̂ (x;Ŵ(1), . . . ,Ŵ(D)), (21)

where f̂ refers again to Equation (8). Given a collection of data

samples
{

(xi, yi)
}I

i=1 ⊂ [0, 1]D × {0, 1}, where yi ∈ {0, 1} denote
the labels, the performance of a classifier ĝα can be characterized
by the tendency of the quantity

0 ≤
∏

yi=0

(

1− ĝα(xi;Ŵ(1), . . . ,Ŵ(D))
)

∏

yi=1
ĝα(xi;Ŵ(1), . . . ,Ŵ(D)) ≤ 1,

to lean toward unity. By applying a logarithmic transformation,
the recovery of a good classifier ĝα can hence be obtained by
minimizing the objective function

Lα(Ŵ
(1), . . . ,Ŵ(D)) := −

I
∑

i=1
yi log ĝα(xi;Ŵ(1), . . . ,Ŵ(D))

+(1− yi) log
(

1− ĝα(xi;Ŵ(1), . . . ,Ŵ(D))
)

.

(22)

4.2. Generalized Gauss–Newton Algorithm
Even though the GN algorithm is derived for least-squares
problems, it can be generalized easily to accommodate other

loss functions. Following general results in Schraudolph (2002)
and for tensor decompositions (Vandecapelle et al., 2020;
Vandecappelle et al., 2021), the generalized GN algorithm can
be derived similarly to the strategy in Subsection 3.2. In the

dogleg trust-region framework, the necessary GN direction p
(d)
r

is derived starting from the linear system:

D
∑

d̃=1

R
∑

r̃=1

(

∂2Lα(Ŵ
(1), . . . ,Ŵ(D))

∂γ
(d)
r ∂γ

(d)
r̃

)

p
(d̃)
r̃ = −

∂Lα(Ŵ
(1), . . . ,Ŵ(D))

∂γ
(d)
r

,

r = 1, . . . ,R, d = 1, . . . ,D,

in which the right-hand side is the gradient and is given by

∂Lα(Ŵ
(1), . . . ,Ŵ(D))

∂γ
(d)
r

=
I
∑

i=1
ηiv

(d)
r;i B

(d)⊤(xi,d),

and the blocks of the Hessian in the left-hand side are given by

∂2Lα(Ŵ
(1), . . . ,Ŵ(D))

∂γ
(d)
r ∂γ

(d̃)
r̃

=
I
∑

i=1
ξi

(

v
(d)
r;i B

(d)⊤(xi,d)
) (

v
(d̃)
r̃;i B

(d̃)(x
i,d̃
)
)

+ ηiw(d,d̃)
r,r̃;i B

(d)⊤(xi,d)B
(d̃)(x

i,d̃
).

The main difference with respect to the least-squares objective
(Equation 9) is that the weights ηi, ξi ∈ R are now given by

ηi = ηi(xi, yi;Ŵ(1), . . . ,Ŵ(D)) := α
(

ĝα(xi;Ŵ(1), . . . ,Ŵ(D))− yi

)

,

(23)

Frontiers in Big Data | www.frontiersin.org 10 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

1 2 3 4 5 6 7

R

0.04

0.06

0.08

0.1

0.12

0.14

R
M

S
E

 (
tr

a
in

in
g

)

1 2 3 4 5 6 7

R

0.06

0.08

0.1

0.12

0.14

R
M

S
E

 (
te

s
t)

1 2 3 4 5 6 7

R

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
a

x
.

a
b

s
 e

rr
o

r
(t

ra
in

ig
)

1 2 3 4 5 6 7

R

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
a

x
.

a
b

s
 e

rr
o

r
(t

e
s
t)

M=8

M=12

M=16

M=20

FIGURE 7 | The NASA dataset of the UCI machine learning repository is well modeled by a R = 5 separable function, where we see a sudden drop in the training and

test error. This indicates the benefits of using (Equation 8) over a direct tensor product expansion (Equation 5), where no low-rank structures are exploited. For

generating the results, the knot distribution is kept uniform for all experiments.

ξi = ξi(xi;Ŵ(1), . . . ,Ŵ(D)) := α2ĝα(xi;Ŵ(1), . . . ,Ŵ(D))
(

1− ĝα(xi;Ŵ(1), . . . ,Ŵ(D))
)

.

(24)

Similar to Subsection 3.2, a GN type approximation to the
Hessian can be made by neglecting the second term in Equation
(24), resulting in the linear system

D
∑

d̃=1

R
∑

r̃=1
G
(d,d̃)
r,r̃ p

(d̃)
r̃ = −

∂Lα(Ŵ
(1), . . . ,Ŵ(D))

∂γ
(d)
r

, r = 1, . . . ,R,

d = 1, . . . ,D, (25)

in which

G
(d,d̃)
r,r̃

:=
I
∑

i=1
ξi

(

v
(d)
r;i B

(d)⊤(xi,d)
) (

v
(d̃)
r̃;i B

(d̃)(x
i,d̃
)
)

.

This is again a good approximation to the Hessian as ηi is small
if the residual ĝα(xi;Ŵ(1), . . . ,Ŵ(D)) − yi is small, and many of

the values w
(d,d̃)
r,r̃;i = 0. As a consequence of the positivity of

the weights (Equation 24), the Gramian (Equation 17) associated
with the logistic objective is also positive semidefinite, and the CG
method can again be used to solve the linear system (Equation 25)
iteratively using only matrix-vector products.

4.3. Numerical Examples
The proposed generalized GN has been implemented in Matlab
using Tensorlab 3.0 (Vervliet et al., 2016). We examine
the behavior of the classification framework with some
illustrative examples.

4.3.1. Case Study IV
At first, we assess the performance of the framework on some
synthetically generated datasets. We consider classification sets
that take on increasingly more complex geometric shapes on the
two-dimensional plane. Since the geometric shapes are composed
of simpler geometric operations, it is expected that a low-rank
approximant of type (Equation 21) would be sufficient to obtain
a decent separation between the two classes. In Figures 8–11,
these expectations are confirmed, in which the classification sets
are recovered by minimizing (Equation 22) for some randomly
generated labeled data. The plots in the figures reveal that by
increasing the number of separable terms in Equation (21), better
classification can be achieved. The number of separable terms
needed to get a decent separation between the two classes is
roughly proportional to how “complex” the classification sets
themselves are. The circular shaped set (Figure 8) required only
R = 2 terms for a decent separation. From a theoretical
standpoint, this is expected, since one can model a circular

Frontiers in Big Data | www.frontiersin.org 11 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

FIGURE 8 | For a simple circular shaped classification set, two separable terms suffice for a good classification. Shown are the obtained results on a synthetic dataset

by using the logistic loss function (Equation 22). The recovered classification sets are marked by the yellow and green contours, whereas the labeled data used for

training are marked by red and black dots.

boundary by the level sets of the rank-two separable function

f (x) = e−(x
2
1+x22) − a =

[[[

e−x
2
1 1
]

,
[

e−x
2
2 −a

]]]

.

On the other hand, the donut-shaped set (Figure 9) required
R = 3 terms. Again, this is expected, since the donut-shaped
set can be modeled through the level sets of the rank-three
separable function

f (x) = e−(x
2
1+x22) − e−b(x

2
1+x22) − a

=
[[[

e−x
2
1 e−bx

2
1 1
]

,
[

e−x
2
2 e−bx

2
2 a
]]]

.

The no-entry sign shaped classification set (Figure 10)
and the final example (Figure 11) are more complex,
but interestingly require only R = 4 and R = 5 terms,
respectively. Similar to the regression problem, overestimation
of the rank values do not seem to lead to a performance
degradation.

In Figure 12, the performance of the classifier (Equation
21) is also compared with existing techniques such as support
vector machines (SVMs) using an RBF or polynomial kernel,

and a single hidden layer neural network (NN). By considering
the classification problem in Figure 11 and taking the median
result over 50 experiments (in each of which randomly
generated training and test datasets were taken from a uniform
distribution), the top two plots in Figure 12 show the obtained
fraction incorrect (FiC) for the various methods as a function
of the number of training samples. From the plots, it is evident
that the classifier (Equation 21) with R = 7, M = 16
(224 parameters) consistently achieves lower training and test
errors for this problem, when compared to a NN with 50
nodes (200 parameters) or an RBF-kernel-based SVM. These
lower error rates are obtained with relatively shorter CPU
time for completing the training. In particular, the required
CPU time grows at a milder pace (with respect to the
training dataset size) when compared to SVMs; see bottom
plot in Figure 12. Another observation is that, in the case
of the CPD spline model, the FiC for the training dataset
slightly increases with the number of training samples. We
associate this phenomena with overparameterization. For small
datasets, it is always possible to find some fit for which
all training samples are classified exactly. However, this does
not imply that the classification has been done correctly,

Frontiers in Big Data | www.frontiersin.org 12 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

FIGURE 9 | For a donut-shaped classification set, three separable terms are enough for a good classification. Shown are the obtained results on a synthetic dataset

by using the logistic loss function (Equation 22). The recovered classification sets are marked by the yellow and green contours, whereas the labeled data used for

training are marked by red and black dots.

FIGURE 10 | For a classification set shaped in the form of a no-entry sign, at least four separable terms are required for a good classification. Shown are the obtained

results on a synthetic dataset by using the logistic loss function (Equation 22). The recovered classification sets are marked by the yellow and green contours, whereas

the labeled data used for training are marked by red and black dots.

Frontiers in Big Data | www.frontiersin.org 13 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

FIGURE 11 | For this particular classification set, at least five separable terms are required for a decent classification. Shown are the obtained results on a synthetic

dataset by using the logistic loss function (Equation 22). The recovered classification sets are marked by the yellow and green contours, whereas the labeled data

used for training are marked by red and black dots.

and this reflected in the poor FiC of the test dataset in
those cases.

4.3.2. Case Study V
In the next example, we subject the classification problem
considered in Figure 11 to noise. We examine how the classifier
(Equation 21) behaves if the boundary between the two classes
is ambiguous or if a small random subset of the samples in
both classes is intentionally mislabeled. Figures 13, 14 display
the obtained results. From the figures it can be observed that
under these noisy circumstances, the performance of Equation
(21) degrades in the same rate as those of established methods
of classification.

4.3.3. Case Study VI: Banknote Authentication
The last example that we consider is the task of training a
classifier to separate genuine and forged banknotes from each
other. The UCI machine learning repository (Dua and Graff,
2019) contains a dataset where a collection of banknote images
(forged and genuine) have been postprocessed in order to
determine their variance, skewness, kurtosis, and entropy. These
four features may be used to train a classifier. In Figure 15,
the labeled dataset is displayed in the top four plots. The
dataset has been normalized and split into a training set
consisting of 1097 samples and a test dataset consisting of
275 samples. The bottom two plots in Figure 15 display the
obtained results by using the approximant (Equation 21) to

fit the data by means of minimizing the objective function
(Equation 22). The classification error is shown for various
configurations of R and M, which denote the number of
rank-one and spline basis terms, respectively. A uniform knot
distribution was chosen for the component functions (Equation
7) and the order is set to N = 4. From the plots it
can be observed that as few as R = 2 separable terms
are sufficient to get a complete separation between the two
classes. In other words, the dataset may live in a higher-
dimensional space (4D), but loosely speaking the classification
problem is of comparable complexity with respect to the earlier
synthetic example in Figure 8, which also only required two
rank-one terms.

5. CONCLUSIONS AND FUTURE WORK

We have introduced a supervised learning framework for
regression and classification tasks which aims to approximate
target functions with a sum of (few) separable terms. Each of
the univariate component functions in the separable terms were
discretized by a B-spline, resulting in an approximant where the
underlying coefficient tensor of the tensor product expansion
has a low rank polyadic decomposition parametrization.
By taking advantage of the multilinear structure and the
sparsity pattern of the compactly supported B-spline basis,

Frontiers in Big Data | www.frontiersin.org 14 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

10
2

10
3

10
4

no. of training samples

0

1

2

3

4

5

6

7

8

9

10

F
iC

 t
ra

in
in

g
 (

%
)

10
2

10
3

10
4

no. of training samples

0

5

10

15

F
iC

 t
e
s
t
(%

)

10
2

10
3

10
4

no. of training samples

10
-2

10
-1

10
0

10
1

10
2

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

CPD spline with R=7, M=16

SVM with RBF kernel

SVM with order 9 polynomial kernel

Patternet with 50 nodes

FIGURE 12 | The classifier (Equation 21) is competitive with well-established techniques in terms of classification accuracy and computation time. Shown is the

median result obtained from 50 randomly generated training and test datasets for the classification problem in Figure 11. Specifically, for the SVMs and NN, the

built-in Matlab routines fitcsvm and patternnet were used to develop the results. Whereas the top two plots display the obtained fraction incorrect (FiC) for the

training and test dataset, respectively, the bottom plot shows the required CPU time to complete the training. The test dataset size always equals 5000 samples.

a Gauss–Newton algorithm was introduced to train the
model efficiently.

We have provided some illustrative examples which reveal
the rationale behind the proposed framework and the low-rank
mechanisms that are at play. In particular, the presented real-
life experiments show that low-rank structures do appear in
practice and using approximants of the type (Equation 8 or
21) do have their merit as they allow one to break the curse
of dimensionality that is imposed by a direct tensor product

B-spline basis (Equation 5). Henceforth, further development
of this framework of supervised learning is worthwhile
and could address more sophisticated, real-life machine
learning problems.

There are several directions in which the present work can
be extended or further explored. These include particularly
matters such as appropriate (adaptive) knot selection heuristics.
Furthermore, an extension to multiclass classification using
softmax regression has not yet been considered to keep the

Frontiers in Big Data | www.frontiersin.org 15 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

0 0.02 0.04 0.06 0.08 0.1

Noise strength

0

1

2

3

4

5

6

7

8

9

10

F
iC

 t
ra

in
in

g
 (

%
)

0 0.02 0.04 0.06 0.08 0.1

Noise strength

0

5

10

15

F
iC

 t
e

s
t

(%
)

CPD spline with R=7, M=16 SVM with RBF kernel SVM with order 9 polynomial kernel Patternnet with 50 nodes

FIGURE 13 | Similar to well-established techniques for classification, the classifier (Equation 21) is capable of separating classification sets with ambiguous

boundaries. Shown are the obtained results for the classification problem considered in Figure 11, however, now the data samples are randomly perturbed by a

vector of specific length (indicated by noise strength). The perturbation generates an ambiguous boundary between the two classes. The number of samples for the

training and test dataset is set to 1000.

0 1 2 3 4 5

percentage mislabeled data (%)

0

1

2

3

4

5

6

7

8

9

10

F
iC

 t
ra

in
in

g
 (

%
)

0 1 2 3 4 5

percentage mislabeled data (%)

0

5

10

15

F
iC

 t
e

s
t

(%
)

CPD spline with R=7, M=16 SVM with RBF kernel SVM with order 9 polynomial kernel Patternnet with 50 nodes

FIGURE 14 | Similar to well-established techniques for classification, the classifier (Equation 21) is robust against mislabeled data. Shown are the obtained results for

the classification problem considered in Figure 11, however, now in a situation where a particular percentage of data is intentionally mislabeled. The number of

samples for the training and test dataset is set to 1,000.

current exposition concise, but is relatively straightforward to do.
Finally, more complicated tensor decomposition architectures
can be explored and further investigated. Particularly those of a

hierarchical nature sound promising, given that many complex
decision processes can be viewed as the consequence of smaller
intermediate steps.

Frontiers in Big Data | www.frontiersin.org 16 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

1 2 3 4 5 6 7

R

0

5

10

15

20

25

F
iC

 t
ra

in
in

g
 d

a
ta

 (
%

)

1 2 3 4 5 6 7

R

0

5

10

15

20

25

30

F
iC

 t
e
s
t

d
a
ta

 (
%

)

M=2

M=6

M=10

M=14

FIGURE 15 | Even though the labeled data of the banknote problem live in a four-dimensional space, the classification problem can still be effectively “solved” with a

low-rank classifier (Equation 21). Specifically, as seen in the bottom plot, an R = 2 separable expansion is sufficient to obtain a well-performing classifier with marginal

error rates. The top four plots display the labeled data associated with the banknote dataset from the UCI machine learning repository.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://archive.ics.uci.edu/ml/index.php. The
code used for the experiments and to generate the figures in this
paper can be found on www.tensorlabplus.net.

AUTHOR CONTRIBUTIONS

NG and NV conjointly developed the theory and Matlab
implementation. NG is the main contributor to the numerical
experiments and also wrote the first draft of the manuscript.
NV reworked the presentation of the algorithms. LD

conceived the idea and supervised the project. All authors
contributed to manuscript revision, read, and approved the
submitted version.

FUNDING

This work was supported by the Research Foundation Flanders
(FWO) via projects G086518N, G086318N, and via postdoc grant
12ZM220N; KU Leuven Internal Funds via projects C16/15/059
and IDN/19/014; Fonds de la Recherche Scientifique—FNRS
and the Fonds Wetenschappelijk Onderzoek—Vlaanderen
under EOS project no. 30468160 (SeLMA). This research
received funding from the Flemish Government under

Frontiers in Big Data | www.frontiersin.org 17 February 2022 | Volume 5 | Article 688496

https://archive.ics.uci.edu/ml/index.php
www.tensorlabplus.net
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

the Onderzoeksprogramma Artificiële Intelligentie (AI)
Vlaanderen program.

ACKNOWLEDGMENTS

We would like to thank Muzaffer Ayvaz, Martijn
Boussé, Michiel Vandecappelle, Raphaël Widdershoven,

and Ethan Epperly for their useful remarks
and suggestions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.
2022.688496/full#supplementary-material

REFERENCES

Beylkin, G., Garcke, J., andMohlenkamp, M. J. (2009). Multivariate regression and

machine learning with sums of separable functions. SIAM J. Sci. Comput. 31,

1840–1857. doi: 10.1137/070710524

Beylkin, G., and Mohlenkamp, M. J. (2005). Algorithms for numerical analysis in

high dimensions. SIAM J. Sci. Comput. 26, 2133–2159. doi: 10.1137/040604959

Boussé, M., Debals, O., and De Lathauwer, L. (2017). Tensor-based large-scale

blind system identification using segmentation. IEEE Trans. Signal Process. 65,

5770–5784. doi: 10.1109/TSP.2017.2736505

Boussé, M., Vervliet, N., Domanov, I., Debals, O., and De Lathauwer, L.

(2018). Linear systems with a canonical polyadic decomposition constrained

solution: algorithms and applications. Numer. Linear Algebra Appl. 25, e2190.

doi: 10.1002/nla.2190

Brooks, T., Pope, D., and Marcolini, A. (1989). Airfoil self-noise and prediction.

Technical Report RP-1218, NASA.

Chandrasekaran, S., Jayaraman, K. R., and Mhaskar, H. N. (2013). Minimum

Sobolev norm interpolation with trigonometric polynomials on the torus. J.

Comput. Phys. 249, 96–112. doi: 10.1016/j.jcp.2013.03.041

Chen, Z., Batselier, K., Suykens, J. A., and Wong, N. (2017). Parallelized tensor

train learning of polynomial classifiers. IEEE Trans. Neural Netw. Learn. Syst.

29, 4621–4632. doi: 10.1109/TNNLS.2017.2771264

Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., et al.

(2015). Tensor decompositions for signal processing applications: from two-

way to multiway component analysis. IEEE Signal Process. Mag. 32, 145–163.

doi: 10.1109/MSP.2013.2297439

De Boor, C. (1978). A Practical Guide to Splines, Vol. 27. New York, NY; Springer-

Verlag.

Delalleau, O., and Bengio, Y. (2011). “Shallow vs. deep sum-product networks,” in

Advances in Neural Information Processing Systems (Granada), 666–674.

DeVore, R. A., Howard, R., and Micchelli, C. (1989). Optimal nonlinear

approximation.Manuscripta Math. 63, 469–478. doi: 10.1007/BF01171759

Dua, D., and Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA:

University of California, School of Information and Computer Science.

Available online at: http://archive.ics.uci.edu/ml

Garcke, J. (2010). “Classification with sums of separable functions,” in Joint

European Conference on Machine Learning and Knowledge Discovery in

Databases (Barcelona, Springer), 458–473.

Gens, R., and Domingos, P. (2012). “Discriminative learning of sum-product

networks,” in Advances in Neural Information Processing Systems (Lake Tahoe,

NV), 3239–3247.

Gens, R., and Pedro, D. (2013). “Learning the structure of sum-product networks,”

in International Conference on Machine Learning (Atlanta, GA), 873–880.

Grasedyck, L., Kressner, D., and Tobler, C. (2013). A literature survey of

low-rank tensor approximation techniques. GAMM Mitteilungen 36, 53–78.

doi: 10.1002/gamm.201310004

Grelier, E., Nouy, A., and Chevreuil, M. (2018). Learning with

tree-based tensor formats. arXiv preprint arXiv:1811.04455.

doi: 10.14293/P2199-8442.1.SOP-MATH.JHXASX.v1

Hackbusch, W. (2012). Tensor Spaces and Numerical Tensor Calculus, Vol. 42.

Cham: Springer.

Harshman, R. A. (1970). Foundations of the parafac procedure: models and

conditions for an “explanatory" multimodal factor analysis. UCLA Working

Papers Phonetics 16:1–84.

Hashemizadeh, M., Liu, M., Miller, J., and Rabusseau, G. (2020). Adaptive tensor

learning with tensor networks. arXiv preprint arXiv:2008.05437.

Hendrikx, S., Boussé, M., Vervliet, N., and De Lathauwer, L. (2019). “Algebraic

and optimization based algorithms for multivariate regression using symmetric

tensor decomposition,” in Proceedings of the 2019 IEEE International Workshop

on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP

2019) (Le gosie: IEEE), 475–479.

Hou, M., and Chaib-Draa, B. (2015). “Hierarchical Tucker tensor regression:

application to brain imaging data analysis,” in 2015 IEEE International

Conference on Image Processing (ICIP) (Quebec City, QC: IEEE), 1344–1348.

Jaderberg, M., Vedaldi, A., and Zisserman, A. (2014). “Speeding up convolutional

neural networks with low rank expansions,” in Proceedings of the British

Machine Vision Conference. (Findlay, OH: BVMA Press).

Karagoz, R., and Batselier, K. (2020). Nonlinear system identification

with regularized tensor network b-splines. Automatica 122:109300.

doi: 10.1016/j.automatica.2020.109300

Kargas, N., and Sidiropoulos, N. D. (2021). Supervised learning and canonical

decomposition of multivariate functions. IEEE Trans. Signal Process. 69,

1097–1107. doi: 10.1109/TSP.2021.3055000

Khoromskij, B. N. (2018). Tensor Numerical Methods in

Scientific Computing, Vol. 19. Berlin; Boston, MA: Walter

de Gruyter GmbH & Co KG. doi: 10.1515/97831103

65917

Kolda, T. G., and Bader, B. W. (2009). Tensor decompositions and applications.

SIAM Rev. 51, 455–500. doi: 10.1137/07070111X

Lai, M.-J., and Schumaker, L. L. (2007). Spline Functions on Triangulations.

Cambridge: Cambridge University Press.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lempitsky, V.

(2015). “Speeding-up convolutional neural networks using fine-tuned CP-

decomposition,” in 3rd International Conference on Learning Representations

(San Diego, CA: Springer).

Liu, Y., Pan, J., and Ng, M. (2019). Tucker decomposition network: expressive

power and comparison. arXiv preprint arXiv:1905.09635.

Mhaskar, H. N., and Pai, D. V. (2000). Fundamentals of Approximation Theory.

Boca Raton, FL: CRC Press.

Mhaskar, H. N., and Poggio, T. (2016). Deep vs. shallow networks:

An approximation theory perspective. Anal. Appl. 14, 829–848.

doi: 10.1142/S0219530516400042

Nocedal, J., and Wright, S. (2006). Numerical Optimization. : Berlin/; Heidelberg:

Springer Science & Business Media.

Novikov, A., Trofimov, M., and Oseledets, I. (2016). Exponential machines. arXiv

preprint arXiv:1605.03795.

Oseledets, I. V. (2013). Constructive representation of functions in low-rank tensor

formats. Construct. Approx. 37, 1–18. doi: 10.1007/s00365-012-9175-x

Poon, H., and Domingos, P. (2011). “Sum-product networks: a new deep

architecture,” in 2011 IEEE International Conference on Computer Vision

Workshops (ICCVWorkshops) (Barcelona: IEEE), 689–690.

Rajagopal, A. (2019). High-Dimensional Polynomial Approximation with

Applications in Imaging and Recognition (Ph.D. thesis). University of

California, Santa Barbara, CA.

Reyes, J. A., and Stoudenmire, E. M. (2021). Multi-scale tensor network

architecture for machine learning. Mach. Learn. Sci. Technol. 2, 035036.

doi: 10.1088/2632-2153/abffe8

Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural

Netw. 61, 85–117. doi: 10.1016/j.neunet.2014.09.003

Schraudolph, N. N. (2002). Fast curvature matrix-vector products for

second-order gradient descent. Neural Comput. 14, 1723–1738.

doi: 10.1162/08997660260028683

Frontiers in Big Data | www.frontiersin.org 18 February 2022 | Volume 5 | Article 688496

https://www.frontiersin.org/articles/10.3389/fdata.2022.688496/full#supplementary-material
https://doi.org/10.1137/070710524
https://doi.org/10.1137/040604959
https://doi.org/10.1109/TSP.2017.2736505
https://doi.org/10.1002/nla.2190
https://doi.org/10.1016/j.jcp.2013.03.041
https://doi.org/10.1109/TNNLS.2017.2771264
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1007/BF01171759
http://archive.ics.uci.edu/ml
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.14293/P2199-8442.1.SOP-MATH.JHXASX.v1
https://doi.org/10.1016/j.automatica.2020.109300
https://doi.org/10.1109/TSP.2021.3055000
https://doi.org/10.1515/9783110365917
https://doi.org/10.1137/07070111X
https://doi.org/10.1142/S0219530516400042
https://doi.org/10.1007/s00365-012-9175-x
https://doi.org/10.1088/2632-2153/abffe8
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1162/08997660260028683
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Govindarajan et al. Spline-Based Separable Expansions

Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.

E., and Faloutsos, C. (2017). Tensor decomposition for signal processing

and machine learning. IEEE Trans. Signal Process. 65, 3551–3582.

doi: 10.1109/TSP.2017.2690524

Sorber, L., Van Barel, M., and De Lathauwer, L. (2013). Optimization-

based algorithms for tensor decompositions: canonical polyadic

decomposition, decomposition in rank-(Lr , Lr , 1) terms, and a

new generalization. SIAM J. Optimizat. 23, 695–720. doi: 10.1137/

120868323

Stoudenmire, E., and Schwab, D. J. (2016). “Supervised learning with tensor

networks,” in Advances in Neural Information Processing Systems, Vol. 29, eds

D. Lee, M. Sugiyama, U. Luxburg, L. Guyon, and R. Garnett (Red Hook, NY:

Curran Associates, Inc.).

Trefethen, L. N. (2019). Approximation Theory and Approximation Practice, Vol.

164. Philadelphia, PA: SIAM.

Unser, M. (2019). A representer theorem for deep neural networks. J. Mach. Learn.

Res. 20, 1–30.

Vandecapelle, M., Vervliet, N., and De Lathauwer, L. (2020). A second-

order method for fitting the canonical polyadic decomposition with

non-least-squares cost. IEEE Trans. Signal Process. 68, 4454–4465.

doi: 10.1109/TSP.2020.3010719

Vandecappelle, M., Vervliet, N., and Lathauwer, L. D. (2021). Inexact generalized

gauss–newton for scaling the canonical polyadic decomposition with non-

least-squares cost functions. IEEE J. Select. Top. Signal Process. 15, 491–505.

doi: 10.1109/JSTSP.2020.3045911

Vervliet, N., and De Lathauwer, L. (2019). Numerical optimization-

based algorithms for data fusion. Data Handling Sci.

Technol. 31, 81–128. doi: 10.1016/B978-0-444-63984-4.

00004-1

Vervliet, N., Debals, O., and De Lathauwer, L. (2017). Canonical polyadic

decomposition of incomplete tensors with linearly constrained factors. Technical

Report 16-172, ESAT-STADIUS, KU Leuven, Leuven.

Vervliet, N., Debals, O., Sorber, L., Van Barel, M., and De Lathauwer, L. (2016).

Tensorlab 3.0. Available online at: https://www.tensorlab.net.

Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks.

Neural Netw. 94, 103–114. doi: 10.1016/j.neunet.2017.07.002

Zhou, S., and Shen, X. (2001). Spatially adaptive regression splines and

accurate knot selection schemes. J. Am. Stat. Assoc. 96, 247–259.

doi: 10.1198/016214501750332820

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Govindarajan, Vervliet and De Lathauwer. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Big Data | www.frontiersin.org 19 February 2022 | Volume 5 | Article 688496

https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1137/120868323
https://doi.org/10.1109/TSP.2020.3010719
https://doi.org/10.1109/JSTSP.2020.3045911
https://doi.org/10.1016/B978-0-444-63984-4.00004-1
https://www.tensorlab.net
https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/10.1198/016214501750332820
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Regression and Classification With Spline-Based Separable Expansions
	1. Introduction
	Notation

	2. Preliminaries: B-splines, Low Rank Separable Expansions and Tensors
	2.1. B-splines
	2.2. Multivariate Splines and Tensors
	2.3. Low-Rank Separable Expansions and CPDs

	3. Regression
	3.1. Two Interpretations
	3.2. Gauss–Newton Algorithm
	3.3. Numerical Examples
	3.3.1. Case Study I
	3.3.2. Case Study II
	3.3.3. Case Study III: NASA Airfoil Self Noise

	4. Classification
	4.1. Logistic Cost Function
	4.2. Generalized Gauss–Newton Algorithm
	4.3. Numerical Examples
	4.3.1. Case Study IV
	4.3.2. Case Study V
	4.3.3. Case Study VI: Banknote Authentication

	5. Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

