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Land surface evapotranspiration (ET) is one of the main energy sources for atmospheric

dynamics and a critical component of the local, regional, and global water cycles.

Consequently, accurate measurement or estimation of ET is one of the most active

topics in hydro-climatology research.With massive and spatially distributed observational

data sets of land surface properties and environmental conditions being collected from

the ground, airborne or space-borne platforms daily over the past few decades, many

research teams have started to use big data science to advance the ET estimation

methods. The Geostationary satellite Evapotranspiration and Drought (GET-D) product

system was developed at the National Oceanic and Atmospheric Administration (NOAA)

in 2016 to generate daily ET and drought maps operationally. The primary inputs

of the current GET-D system are the thermal infrared (TIR) observations from NOAA

GOES satellite series. Because of the cloud contamination to the TIR observations, the

spatial coverage of the daily GET-D ET product has been severely impacted. Based on

the most recent advances, we have tested a machine learning algorithm to estimate

all-weather land surface temperature (LST) from TIR and microwave (MW) combined

satellite observations. With the regression tree machine learning approach, we can

combine the high accuracy and high spatial resolution of GOES TIR data with the

better spatial coverage of passive microwave observations and LST simulations from

a land surface model (LSM). The regression tree model combines the three LST data

sources for both clear and cloudy days, which enables the GET-D system to derive

an all-weather ET product. This paper reports how the all-weather LST and ET are

generated in the upgradedGET-D system and provides an evaluation of these LST and ET

estimates with ground measurements. The results demonstrate that the regression tree

machine learningmethod is feasible and effective for generating daily ET under all weather

conditions with satisfactory accuracy from the big volume of satellite observations.
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INTRODUCTION

Evapotranspiration (ET) is one of the main components of the
global and regional hydrological cycle (Sato et al., 1989; Rabin
et al., 1990; Bastiaanssen et al., 1998a,b). The latent heat from
evapotranspiration is also one of themost important components
of the energy cycle because it is the largest energy source for
the atmosphere and thus is significant for weather and climate
formation (Wetherald and Manabe, 1988; Sato et al., 1989; Allen
et al., 1998, 2005). Satellite remote sensing of ET has been applied
to monitor regional and global droughts in recent decades and is
probably the most practical and efficient approach to providing
the observational ET data for numerical weather, climate, and
hydrological prediction models.

Based on the Atmosphere-Land Exchange Inversion
(ALEXI) model, NOAA-NESDIS has developed an operational
Geostationary Operational Environmental Satellites (GOES) ET
and Drought (GET-D) product system using thermal infrared
(TIR) observations of the Baseline Imagers on GOES-13 and
GOES-15 satellites (Zhan et al., 2016, 2019; Fang et al., 2019).
This data product system is designed for model validation, data
assimilation in numerical weather and water prediction models,
and drought monitoring applications.

With the primary operational GOES satellites transitioning
to GOES-16 and GOES-17, the Advanced Baseline Imagers
(ABI) on the new generation of NOAA GOES satellites allow
the GET-D system to be significantly enhanced with higher
spatial resolution and better accuracy. The GET-D system has
therefore been upgraded to generate ET data products using ABI
observations at 2 km spatial resolution covering the continental
United States (CONUS). Several scientific advances to the ALEXI
model, the core of the GET-D system, have been made in the past
years and have been integrated into the new system (Anderson
et al., 1997, 2007, 2011).

Given that the current GET-D product is dependent on the
availability of remotely sensed TIR observations, the ALEXI
model can only be executed under clear-sky conditions. As the
demand for an all-weather ET and drought monitoring product
continues to grow, potential techniques have been explored to use
other data sources complementing the GOES ABI observations.

Rapid progress in the fusion of artificial intelligence (AI)
in numerous fields has been achieved in recent years. AI has
shown its growing potential in the exploitation of massive
satellite data and model estimates for applications in numerical
weather prediction (NWP), data assimilation and other Earth
and environmental sciences (Williams et al., 2016; Hall,
2019; Boukabara et al., 2021). Machine learning (ML), as an
important subset of AI, has made significant advances in diverse
applications in the Earth system and remote sensing. ML has
been used in numerous ways to substitute traditional physical
models to derive surface parameters from remotely sensed
observations (Reichstein et al., 2019; Wang et al., 2019; Wimmers
et al., 2019). The ML technique, especially the regression tree
(RT) approach, is innovative and evolutionary, making full use
of massive and dynamic data to determine the relationships
and hidden patterns under different conditions. The ML-
generated satellite products have shown similar behavior as

those derived from traditional physical models (Boukabara et al.,
2021).

Given the potential benefits from AI for Earth observations,
the regression tree machine learning technique has been
developed and evaluated in this study to merge GOES TIR
observations with microwave (MW) and land surface model
(LSM) simulations to derive temperature under both cloud free
and cloud cover conditions. The objectives of this study include
(1) the development of the regression tree model to generate
merged LST maps under all weather conditions; (2) ingesting all-
weather LST into the GET-D system to derive an all-weather ET
product; (3) the validation of the newly derived LST and ET data
sets based on multi-sources of in-situ LST and ETmeasurements.

GET-D SYSTEM AND THE ALEXI MODEL

GET-D System
The GET-D product system was developed by NOAA NESDIS
scientists to operationally generate ET and multi-weekly drought
maps at 8 km spatial resolution over the North America domain
from September 2016. As GOES satellites are transitioning to
the GOES-R series, the GET-D system had to be upgraded by
integrating GOES-16 and GOES-17 ABI thermal observations
to enhance spatial resolution to 2 km (Fang et al., 2019). The
upgraded system has very high consistency with the previous one,
as the spatial correlation for the whole CONUS domain reaches
as high as 0.95 over the testing period from July to October 2017
when both GOES-16 and GOES-13 are available. The enhanced
ET product not only maintains the consistency with the current
one, but also has the capability of capturing much better spatial
detail. Details of system upgrading with GOES-16/17 ABIs can be
found in Fang et al. (2019).

Since the GOES LST product can only be obtained under
cloud-free conditions, the current GET-D system produces ET
maps over clear-sky pixels only. In order to increase the spatial
coverage of the ET product, the other major upgrade to the GET-
D system has been to couple alternative data sources with GOES
to allow the retrieval of surface fluxes under cloud cover. The
details on the machine learning approach use to derive the all-
weather LST and ET and the quality analysis of the new LST and
ET product are reported in this paper.

The ALEXI Model
The core of the GET-D system is the Atmosphere-Land Exchange
Inversion (ALEXI) model (Anderson et al., 1997), which is
an extension to the two-source energy balance (TSEB) model
(Norman et al., 1995). Flux partitioning in the ALEXI model is
guided by the mid-morning rise in surface temperature, which
is then partitioned into soil and vegetation components based
on the surface vegetation fraction (Anderson et al., 2007). The
model is coupled with a simple one-dimensional atmospheric
boundary layer (ABL) model for regional applications. The lower
boundary condition is provided by satellite observed radiometric
temperature at two morning hours, 1.5 h after sunrise and
1.5 h before noon. The ABL model then relates the rise in
air temperature above the canopy during this interval and the
growth of the ABL to the time-integrated influx of sensible
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heating from the surface, and ET is computed as a partial residual
to the energy budget. The energy balance in ALEXI currently
does not apply to snow covered surfaces, thus a snow mask based
on the near real time snow cover data product of the Interactive
Multi-sensor Snow and Ice Mapping System (IMS) is used (Fang
et al., 2019). However, future modifications can incorporate snow
energy balance (Kongoli et al., 2014).

The ALEXI surface flux estimates have been evaluated at the
ALEXI pixel scale (several km) in comparison with ground-
based data and demonstrated reasonable performance over
a wide range of climatic and vegetation conditions (Hain
et al., 2011; Anderson et al., 2013; Fang et al., 2016). A flux
disaggregation technique (DisALEXI; Anderson et al., 2004)
using higher resolution thermal imaging from Landsat to
spatially downscale to the flux tower footprint scale (∼100m)
enables direct comparison with ground observations, indicating
root-mean square errors in daily ET retrievals on the order of
1mm / day (Yang et al., 2017, 2020; Anderson et al., 2018,
2021; Knipper et al., 2020). The implementation of the ALEXI
model in the current GET-D system utilizes thermal channel
observations from geostationary satellites. Since the thermal
channel is sensitive to clouds, the spatial cover of the current
ET product is largely affected by cloud contamination. Therefore,
possible solutions to fill in surface temperature over cloudy
pixels at the two morning hours in the ALEXI model have been
examined and a machine learning technique has been tested in
this study to create all-weather LST maps.

DATA SETS

GOES Observations
GOES-16/17 ABI observations in the thermal channel (Band#13;
10.35µm) are the primary satellite inputs to the ALEXI model
(Hodges and Michalsky, 2016). The upgraded GET-D system can
directly integrate GOES-16/17 land surface (skin) temperature
product in the Continental United States scanning mode. The
GOES LST product over the CONUS domain provides hourly
temperature estimates over cloud clear and probably clear pixels
at a spatial resolution of 2 km.

When the GOES-16/17 LST product is not available, the GET-
D system can trace back to the GOES-R Radiance L1b product.
Atmospheric corrections are applied to the ABI brightness
temperature observations in the longwave infrared spectral
channels. The split-window technique is integrated in the GET-D
system to apply atmospheric corrections similar to that used for
the GOES-LST product, making these system inputs consistent
and comparable. The derived land surface temperature is then
adopted in the ALEXI model.

Both GOES-16/17 brightness temperature products and LST
products are available at the Comprehensive Large Array-
data Stewardship System (CLASS) of NOAA (NOAA CLASS;
available online: https://www.avl.class.noaa.gov).

Microwave Satellite Observations
The Advanced Microwave Scanning Radiometer 2 (AMSR2)
onboard the GCOM-W1 provides highly accurate measurements
of the intensity of microwave emission and scattering (Kawanishi

et al., 2003). AMSR2 sensor visits two times per day (1:30 am and
1:30 pm local time) with more than 99% coverage of the earth
every 2 days. AMSR2 observes the Earth with 6 different spectral
bands and 2 polarizations (McCabe et al., 2005).

Our previous study showed the Ka-band brightness
temperatures at V polarization (Vpol) have higher agreements
with GOES LST than the H polarization (Zhan et al., 2017,
2018; Sun et al., 2019). Therefore, the AMSR2 L1B Brightness
temperature product at Vpol is used in this study to fill in
the surface temperature estimates over cloudy pixels. The
L1B swath data are re-gridded to a global map in geographic
(latitude/longitude) projection, followed by remapping to the
CONUS domain. The pre-processing procedure is applied to
both AMSR2 ascending and descending observations before
transitioning to the regression tree models.

LST Simulations From Land Surface Model
Land surface model (LSM) based LST simulations are one of
the key inputs in our designed data mining models. Selection of
an appropriate LSM LST product took into consideration of the
accuracy and coverage of the data. The Climate Forecast System
Reanalysis (CFSR) product is the third-generation reanalysis
product operationally generated at the National Centers for
Environmental Prediction (NCEP) (Saha et al., 2010, 2014; Dee
et al., 2014). The CFSR implements an improved core model, an
advanced assimilation schemes, and an enhanced atmosphere-
land-ocean-sea ice coupling process. Studies have shown the
CFSR has improved precipitation correlation with more realistic
interannual variability and long-term trends (Wang et al., 2011).
The CFSR temperature simulations are collected in our study to
be integrated with regression tree modeling. The CFSR model
provides 6-h reanalysis and 3-h forecast data at the resolution
of 0.25◦ in GRIB format. The meteorological variables from
CFSR model are extracted and preprocessed before taken by the
core model. The pre-processing of the CFSR data set includes
conversion of GRIB format to binary, the image re-gridding to
the CONUS domain and the temporal interpolation to the two
ALEXI model times (1.5 h after local sunrise and 1.5 h before
local noon).

In-situ Measurements for Evaluation
Multiple ground-based data sets are used to evaluate the
performance of the data mining model. Data from the U.S.
Atmospheric Radiation Measurement (ARM) and the Surface
Radiation Budget Network (SURFRAD) were collected and used
for LST validation. These two networks are among the most
used networks for satellite based LST validation (Faysash and
Smith, 1999; Sun and Pinker, 2003; Pinker et al., 2009) because
of their operational availability, providing a large amount of data
covering a long period of time.

The ARM Cloud and Radiation Testbed (ARM/CART) site,
located at Lamont, Oklahoma (36.607◦N, 97.489◦W), provides
direct skin temperature measurement at a temporal resolution of
30min. The multi-filter radiometer at the ARM facility detects
the diffuse/total upwelling irradiance, which is then converted
to the skin temperature based on the NOAA/Atmospheric
Turbulence and Diffusion Division algorithm (Peppler et al.,
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2001; Hodges and Michalsky, 2016). The uncertainty of the
radiometer is about 5%.

The SURFRAD network records the surface long-wave
radiation, which is converted to skin temperature according to
the Stefan-Boltzmann law (Augustine et al., 2000, 2005). Since the
in-situ fluxes measurements provide a high temporal resolution
of 1min, the time-matching can be very precise by choosing the
closest in-situ observations at 1.5 h after sunrise and 1.5 h before
noon corresponding to the ALEXI model.

As for ET validation data sources, AmeriFlux–the North,
Central and South America part of the FLUXNET- is the most
referred network measuring ecosystem CO2, water, and energy
fluxes over CONUS. The standard flux measurement instrument
of AmeriFlux is the eddy covariance (EC) tower. With help from
our collaborators, data from about 24 AmeriFlux sites have been
collected and processed for validation of GET-D ET outputs.

The EC system continuously measures fluxes every 30min. In
order to compare with daily estimates from the ALEXImodel, the
observed half-an-hour fluxes are integrated into daily estimates
using 48 observations throughout the day. The integrated daily
fluxes are corrected to enforce energy budget closure. There are
multiple ways to force closure including the latent heat closure
method, Bowen Ratio correction, etc. Twine et al. suggested
“Bowen-ratio closure may be the most appropriate” method
to correct ground observed flux components (Twine et al.,
2000). The Bowen-ratio closure method assumes that the ratio
of sensible to latent heat flux is correctly measured by the EC
system so that individual latent flux values can be adjusted to
balance the surface energy equation. After the latent heat flux
component (energy units) is corrected, the ET (in mass units)
is then calculated using the dynamic latent heat of evaporation.
These ground observations of daily ET were used to evaluate
the satellite-derived ET at 2 km. We note, however, that at
some heterogeneous flux sites, the tower footprint may not
be representative at the 2-km model pixel scale. This must
be considered in the assessment of the statistical metrics of
comparison (Section Evaluation of the MW-TIR-LSM Coupled
ET Data Product).

DEVELOPMENT OF MACHINE LEARNING
MODELS TO COUPLE MULTIPLE LST
DATA SOURCES

Multi-Sources Selection for Machine
Learning Models
The Regression tree (RT) is a subset of the machine learning
technique that enables computers to solve complex problems.
It is one of the most broadly used tools available to identify
the relationships among complex environmental data (De’ath
and Fabricius, 2000). Our study uses the RT data mining
method to automatically search patterns and relationships within
the training samples among GOES TIR and candidate LST
data sources.

Before the design of ML RT model, the pros and cons of
potential data sources were carefully weighed and analyzed.
GOES ABI has a very high temporal resolution of every

5min, being able to demonstrate diurnal variations of surface
temperature as shown in Figure 1. Therefore, GOES ABI
observations are well-suited to derive inputs to the ALEXI model
at the two desired timestamps. Although GOES ABI has very
high temporal and spatial resolutions with high accuracy, the
biggest drawback is its sensitivity to the presence of clouds.
Therefore, other data sources are needed to derive LST under
cloudy conditions.

Studies have found a strong correlation between LST and the
Ka-band brightness temperatures, with correlation coefficients
reaching as high as 0.9 (Holmes et al., 2009). Microwave
brightness temperature (TB) observations are largely unaffected
by clouds and are generally easier to atmospherically corrected
than thermal data. In this study, we use the Ka band (36.5GHz, v-
pol) TB data of the Advanced Microwave Scanning Radiometer
(AMSR2) on JAXA’s GCOM-W1 satellite to derive LST for cloudy
days. However, microwave observations have disadvantages as
well. First, AMSR2 has relatively low temporal resolution with
only two observations per day around 1:30 am and 1:30 pm
local time. The two observational timestamps per day, which
are around 5 h and 3 h apart from ALEXI morning rise hours,
would inevitably introduce uncertainties in the regression model
during the time matching. Second, due to lower signal strength
in the microwave region, the accuracy and spatial resolution of
AMSR2 observations are poorer than GOES observations, 9 km
from AMSR2 vs. 2 km from GOES.

Microwave and thermal infrared channels complement each
other, and our experimental results revealed that the regression
model can predict LST within a reasonable range. The big
concern, however, lies in the relatively weak representativeness
of the training sets because GOES TIR cannot provide samples
under cloudy conditions. This weakness motivated us to explore
a third data source that could make up this shortcoming.

The land surface model-based LST has the advantages
of full coverage and high temporal resolution although the
spatial resolution is usually coarse. The characteristics of model
temperature simulations make them well-suited to serve as a
bridge for combining MW and TIR observations. The model-
based LSTs can provide both cloud-free and cloudy samples,
which is a good supplement to GOES TIR observations,
and can better match ALEXI modeling hours, which can
reduce the uncertainties in the time-matching between AMSR2
observational times and ALEXI morning hours.

Each data source has its own strengths and weaknesses which
are outlined in Figure 1B, but by combining these three data
sources together, we hypothesize we can generate LST maps
at high resolution with high accuracy and most importantly
covering all-weather conditions.

Machine Learning Models to Couple MW,
TIR and LSM LST Data
This study has examined two approaches to implementing
the machine learning method for merging GOES-R LST with
other data sources for all-weather coverage. The first is to
directly build RT between GOES LST and AMSR2TB (Figure 2),
while the second is to use CFSR LST to connect AMSR2
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FIGURE 1 | Comparison of different LST data sources for regression tree modeling in terms of their observational times (A) and their strengths and weakness (B).

FIGURE 2 | Data flow of the development of the regression tree model for merging microwave (MW) and thermal infrared (TIR) observations.

and GOES-R observations (Figure 3). The coupling process
includes two steps: the development of the regression tree
(structure, coefficients, etc.), and the application of the RT model
for prediction.

The M5 Model tree and rules are used in our experiments to
build a regression tree from training samples. The original M5
algorithm was invented by Quinlan (1992) with improvements
made by Wang (1997). The M5 Model first grows an unpruned
decision tree by recursively splitting the instance space to
maximally reduce the subset variation in the class variable.
Post-pruning is applied to deal with the overfitting problem by
generating an unpruned and complex tree first and simplifying
it afterwards.

The processing procedure of the first approach for directly
merging MW and TIR observations is presented in Figure 2.
The regression tree is built for each pixel at the resolution of
9 km matching the scale of the AMSR2 brightness temperature
product. The high resolution GOES-16/17 observations are
first upscaled to 9 km using the simple average resampling
method. The training samples are then collected between AMSR2
brightness temperatures and GOES-16/17 TIR observations.
Quality control flags for each of the inputs data sets have been
carefully checked in order to reduce the uncertainties of training
samples. Once the regression tree model is built, it is applied to
AMSR2 brightness temperature at Ka band to predict LST when
GOES LSTs are not available. An all-weather LST map is then
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FIGURE 3 | Data flow of the development of the regression tree model for merging microwave (MW), thermal infrared (TIR) and land surface temperature (LSM)

estimates.

obtained by combining predicted AMSR2 LST and GOES-R LST
retrievals, which is then integrated into the ALEXI core model to
derive ET estimates.

Figure 3 demonstrates the data flow of the RT development
coupling all three data sources. Two regression trees are built
on the scale of AMSR2 product at 9km spatial resolution.
The first training database is built between AMSR2 brightness
temperatures and CFSR LST at the ALEXI model time 1 and
time 2 of the day for both cloudy and cloud free scenarios.
The first RT model is then created from the training data set
to project AMSR2 observations to CFSR LSTs. A second RT
is then developed between CFSR LST estimates and GOES-
R LSTs for clear days. Assuming the clear day RT applies to
cloudy days, it is then applied to estimate LST over cloudy cases.
The representativeness of the training data sets is significantly
enhanced with the integration of CFSR LST estimates by covering
both clear-sky and cloudy samples and with better time-matching
with the ALEXI model hours.

It is worth noting that even though the cloudy region
that is filled by this method is at a 2 km grid resolution, the
actual resolution is 9 km inherited from original AMSR2TB
observations. Future research would explore fusion or
sharpening algorithms to downscale AMSR2TB to a real
2 km spatial resolution before merging with GOES-R TIR
observations. In that way, the all-weather LST map would have a
consistent spatial resolution of 2 km.

The all-weather LST and ET predictions are evaluated by
comparing them with in-situ measurements. The two coupling
methods are inter-compared to analyze the benefit of the
integration of model-based LST. The intercomparison results are
presented in Section MW-TIR-LSM Coupled Method Compared
withMW-TIRMethod. Comprehensive evaluation of all-coupled

LST and ET retrievals are given in Section Evaluation of theMW-
TIR-LSM Coupled LST Retrievals and Section Evaluation of the
MW-TIR-LSM Coupled ET Data Product, respectively.

ALL-WEATHER LST/ET RETRIEVALS AND
EVALUATION RESULTS

This section first evaluates the performance of the two machine
learning methods. The benefit of introducing land surface model
based LSTs into the regression tree model is analyzed by
comparing the accuracy of LST/ET estimates from these two
approaches. Following that, the quantitative evaluation of the
final all-weather LST/ET data products is conducted. The study
domain covers the CONUS domain over the period extending
from July 2017 to July 2019, with an intensive evaluation
period targeting the year of 2018. The all-weather LST retrievals
at the two ALEXI model times are validated against in-situ
measurements after time-matching and the daily all-weather
ET product is compared with in-situ daily ET measurements.
Time series comparisons over sample sites and overall error
statistics are given in this section to evaluate the accuracy of the
satellite retrievals.

MW-TIR-LSM Coupled Method Compared
With MW-TIR Method
The accuracy of LST retrievals derived from microwave
and thermal observations (AMSR2 and GOES16/17) and
three types of data sources (AMSR2, GOES16/17 and
CFSR) are intercompared with in-situ LST measurements.
Additionally, two separate GET-D experiments have been
carried out to use LST data sets based on two-source coupling
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FIGURE 4 | Validation of machine-learning-derived LSTs against in-situ LST measurements over the period from Jan. 26 to Dec. 31, 2018; (A–C) scatter plots of LSTs

derived from MW/TIR (black) compared with those from MW/TIR/LSM (red) over three sample stations; (D) overall error statistics averaged from all validation sites.

(MW/TIR) and three-source combined (MW/TIR/LSM)
separately. The relative accuracy of corresponding ET
retrievals is analyzed by comparing with ground daily ET
measurements as well. The F-test has been applied to the
MW/TIR coupling and MW/TIR/LSM combined retrievals
with an alpha level of 0.05. The differences between these
two data sets have passed the statistical significance test
at 95% confidence level (statistical results are provided in
the Supplementary Material).

As for the LST evaluation, scatterplots of machine-learning-
derived LST against in-situ measurements over three ground
stations are shown in Figures 4A–C, with the overall mean
statistics averaged all measurements over the period from
Jan. 26 to Dec. 31 in 2018 shown in Figure 4D. The level
of agreement varies from site to site, depending in part on
retrieval error and in part on sub-pixel heterogeneity. The

agreement of derived LSTs is much higher at TBL station
in Colorado than that at the other two sites (E33 and C1)
in Oklahoma.

There are a handful of satellite LST retrievals underestimating
the surface temperature by around 10K at the two sites in
OK. They are caused by extremely low observed AMSR2
brightness temperatures of those samples. Adding CFSR LST in
the regression tree model reduced the cold bias at those points by
about 2K.

The ubRMSE of LST derived from combined AMSR2 and
GOES16/17 is 4.69K, while the LST RMSE from MW/TIR/LSM
coupling method is about 4.47K. The introduction of CFSR
model based LST decreased the ubRMSE by 4.7% over the study
period. The statistics also show reduced RMSE and enhanced
correlation after incorporating CFSR LSTs into the regression
tree model.
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TABLE 1 | Error statistics (mean RMSE and correlation) of ET retrievals derived

from MW/TIR and MW/TIR/LSM methods validated against AmeriFlux sites from

Jan. 26 to Dec. 31, 2018.

ET Products RMSE (mm/day) Correlation

ET from coupled MW/TIR 1.93 0.67

ET from coupled MW/TIR/LSM 1.80 0.71

Improvement 6.74% 5.97%

Two experimental GET-D runs were set up to use MW/TIR
coupled LST and MW/TIR/LSM combined LST separately and
the corresponding ET estimates were evaluated by comparing
with in-situ measurements. The RMSE and correlation of the
two sets of ET retrievals are listed in Table 1. The ET estimates
based on all-coupled LST (MW/TIR/LSM) have the RMSE of
1.80 mm/day on average, 6.3% lower than those from MW/TIR
coupled LST as inputs. The validation results show that the
correlation between MW/TIR coupled ET estimates and in-
situ is 0.67, while the r of three-source coupling method
reaches 0.71. Both data sets present decent agreement with in-
situ measurements with the all-coupled method having slightly
higher correlation”.

Machine learning algorithms exploit maximum information
from all data sources to build the relationship within the

training samples. Satellite microwave and thermal channels
provide complementary information, while land surface model
LST simulations play a unique role in connecting them. The
comparative analysis on both LST and ET evaluations indicates
the added value of integrating model-based LST into the ML
model is significant. LST and ET estimates from the all-coupled
approach show better agreement with in-situ observations
with relatively lower RMSE/ubRMSE and higher correlation,
compared with those derived from MW and TIR channels.
Therefore, the all-coupled method (MW/TIR/LSM) is chosen in
our upgraded GET-D system to generate the final all-weather
ET product. The following Sub-Sections (Evaluation of the MW-
TIR-LSM Coupled LST Retrievals and Evaluation of the MW-
TIR-LSM Coupled ET Data Product) will focus on the validation
of GET-D outputs from the MW/TIR/LSM coupling method.

Evaluation of the MW-TIR-LSM Coupled
LST Retrievals
The MW/TIR/LSM coupled LSTs derived by the regression tree
models were analyzed qualitatively and quantitatively in this
section. A visual comparison of the clear-sky LST based on GOES
ABI and all-weather LST from the all-coupled method is shown
in Figure 5 over the CONUS domain (Figures 5A,B) and the
Texas region (Figures 5C,D) on July 3, 2018. The improvement
in data coverage is very notable. Results show the relative
improvement in the data coverage increases by 260% averaged

FIGURE 5 | Visual comparison between GOES LST (A,C) and MW/TIR/LSM coupled LST (B,D) at ALEXI Time 2 (1.5 local hour before noon); (A,B) over the CONUS

domain and (C,D) over the Lower Mississippi Valley region; July 3, 2018.
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FIGURE 6 | Scatter plot (A,C) and time series (B,D) comparison of clear-sky LST (based on GOES16/17 only) and all-weather LST (based on combined

GOES/AMSR2/CFSR), along with in-situ LST measurements over the SURFRAD-TBL station; (A,B) comparison at Time 1 (1.5 hour after sun rise) and (C,D)

comparison at Time 2 (1.5 hour before noon); Unit: K.

over the CONUS domain in 2018. This reduces the number of
pixels that need to be filled by interpolation, providing better
ability to capture rapid changes in surface moisture conditions.
It is encouraging to see that the general pattern over the CONUS
domain is reasonable with a smooth transition between cloud-
free and cloud regions.

The accuracy of the all-weather LST retrievals was further
examined using LST in-situ measurements from 6 sites over
CONUS. The time series comparisons of clear-sky LST (based
on GOES16/17) and all-weather LST (based on combined
GOES/AMSR2/CFSR) over each of the validation site are
provided in the Supplementary Material. One example over
the SURFRAD-TBL site is presented in Figure 6, showing
comparisons at ALEXI time 1 (Figures 6A,B) and time 2
(Figures 6C,D). The temporal data coverage increases by more
than 200% for both ALEXI model times at the SURFRAD-TBL
station over the validation period in 2018. The scatter plots in
Figures 6A,C indicate that LST retrievals under cloudy days do
not show significant bias with the in-situ measurements and
the correlation coefficients at morning hour and noon hour
reach 0.84 and 0.91, respectively. The time series comparison
illustrates that the coupled LST retrievals can better catch the
daily fluctuation after filling in the cloudy days. The all-weather
LST predictions agree well with the in-situ LSTmeasurements for
both warming-up and cooling-down trends.

The error statistics of RMSE and correlation are shown in
Tables 2, 3, respectively. The LST retrievals agree with the in-situ

observations better on cloud-free days than cloudy days. Average
RMSE and correlation coefficients (r) of the ABI only LST
retrievals are respectively 1.2◦ and 0.95 for GET-D Time1 (1.5 h
after sunrise) and 2.36◦ and 0.96 for Time 2 (1.5 hour before local
noon). The corresponding RMSE and r values of the AMSR2
based LST retrievals are respectively 4.5◦ and 0.84 for Time 1
and 4.65◦ and 0.91 for Time 2, respectively. It is understandable
that clear-sky retrievals have lower RMSE and higher correlation
because the uncertainties under cloudy conditions are higher
compared to clear sky situations. In general, the quality of all-
weather LST retrievals is reasonable and acceptable as the mean
correlation under all conditions could reach as high as 0.91.

Evaluation of the MW-TIR-LSM Coupled ET
Data Product
The all-coupled LST data were used in the ALEXI model to
derive ET under all weather conditions. The all-weather ET
outputs were compared with the clear-sky ET product visually
and quantitatively. The two sets of ET retrievals are examined
against AmeriFlux field measurements over CONUS.

One example of clear-sky ET from GOES-16/17 compared
with the all-weather ET over CONUS domain on July 3,
2018, is shown in Figure 7. With the introduction of AMSR2
descending and ascending combined observations, the spatial
coverage increases by around 260%. Most of the Great Plains
and the Northern East Coast regions affected by the cloud have
been filled in with reasonable patterns. Particularly, the states
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TABLE 2 | RMSE of MW-TIR coupled LST validated against in-situ observations (Jan. 26–Dec. 31 2018); statistics of clear sky pixels and cloudy pixels are separated.

RMSE LST15 LST55

Site ID LAT LON Clear sky Cloudy Clear sky Cloudy

C1 36.6 −97.49 1.517 4.121 2.298 4.964

E12 36.84 −96.43 1.044 4.034 2.622 4.120

E33 36.93 −97.08 1.250 5.176 2.305 4.138

E41 36.88 −97.09 1.072 5.471 2.852 5.022

FPK 48.31 −105.1 0.888 5.137 2.386 5.494

TBL 40.13 −105.24 1.397 3.149 1.696 4.165

Average RMSE 1.195 4.514 2.360 4.651

TABLE 3 | Correlation of MW-TIR coupled LST validated against in-situ observations (Jan. 26–Dec. 31 2018); statistics of clear sky pixels and cloudy pixels are separated.

Correlation LST15 LST55

Site ID LAT LON Clear sky Cloudy Clear sky Cloudy

C1 36.6 −97.49 0.953 0.862 0.952 0.865

E12 36.84 −96.43 0.966 0.851 0.963 0.907

E33 36.93 −97.08 0.937 0.755 0.945 0.910

E41 36.88 −97.09 0.936 0.734 0.940 0.878

FPK 48.31 −105.1 0.973 0.907 0.979 0.947

TBL 40.13 −105.24 0.954 0.909 0.969 0.933

Average Correlation 0.953 0.836 0.958 0.906

FIGURE 7 | Visual comparison of clear-sky ET derived from GOES16/17 (A) and all-weather ET derived from GOES/AMSR2/CFSR combined LST (B) on May 30,

2018; Unit: mm/day.

of Washington, North Dakota, South Dakota, Nebraska, and
Minnesota are among the most cloud-contaminated areas and
yet have been almost fully filled in by the all-weather ET map.
The machine-learning predicted ET presents a general increasing
trend from west to east across the CONUS domain, as expected.

The all-weather ET retrievals were evaluated in comparison
with in-situ ET measurements over the validation period from
Jan. 1 to Dec. 31, 2018. Time series of comparison between the

clear-sky and cloud-filled ET data sets are shown for two example
sites in Figures 8, 9, with overall error statistics (RMSE and
r) averaged from all validation sites over the CONUS domain
provided in Table 4.

Figure 8 shows the time series comparison over a pine
plantation site in North Carolina site from the AmeriFlux
network. As shown in the figure, the wine triangles are the
clear-sky ET from GOES 16/17 observations only, while green
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FIGURE 8 | Time series comparison between clear-sky ET and all-weather ET, as well as in-situ ET observations at the AmeriFlux station in North Carolina; (A) over

the period from July 1, 2017 to Dec. 31, 2018; (B) Jan.1 – June 10, 2018; (C) Oct. 22 - Dec. 14, 2018.

FIGURE 9 | Same as Figure 8, but at the station (US-Bi2) in CA.

dots are the all-weather ET retrievals covering both clear and
cloudy days. The all-weather ET retrievals better capture daily
dynamics, providing good agreement with the in-situ records
(Figure 8B). In Dec 2018, there was a period of about 2
weeks (Figure 8C) when the GOES thermal observations were
missing due to persistent cloud cover, yet the all-coupled ET
estimates provided reasonable predictions. Another example
(US-Bi2; Figure 9) shows fluxes over an irrigated corn field
in CA. While we do not expect perfect agreement due to
the scale difference between the tower flux measurement
and model pixel, the general envelope of the fluxes is
well defined.

The relative accuracy of clear-sky ET is compared with that of
all-weather retrievals in terms of the mean correlation coefficient
and RMSE averaged from all the validation stations (Table 4).
While this does not constitute an absolute model accuracy
assessment, given the difference in scale between measurement
and model pixel, it does suggest that the performance of the
all-weather ET retrievals is similar to that of the traditional
clear-sky method, with RMSE of approximately 1.4 mm/day and
correlation of about 0.7. These performance metrics at 2-km
resolution are lower than the ∼ 1 mm/day accuracy reported
when ALEXI is disaggregated to the tower footprint scale (RMSE
∼mm/day and R∼ 0.9; Anderson et al., 2018), better accounting
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TABLE 4 | Statistical comparison of GET-D ET estimates with in-situ measurements over a period from July 2017 to July 2019.

RMSE (mm/day) Correlation ubRMSE (mm/day) MEAN ET (mm/day)

Site ID LAT LON Clear-sky Cloudy Clear-sky Cloudy Clear-sky Cloudy Clear-sky Cloudy

US-ARM 36.606 −97.489 1.090 1.276 0.836 0.703 0.994 1.234 2.712 2.635

US-Bi1 38.099 −121.499 1.611 1.384 0.599 0.739 1.518 1.332 4.389 3.478

US-Bi2 38.109 −121.535 1.178 1.205 0.828 0.792 1.095 1.179 4.108 3.413

US-Hn2 46.689 −119.464 1.745 1.097 0.432 0.565 1.002 0.820 2.761 1.878

US-IB1 41.859 −88.223 0.559 0.994 0.921 0.813 0.487 0.902 3.776 3.263

US-IB2 41.841 −88.241 0.544 0.834 0.972 0.856 0.497 0.826 3.496 3.177

US-KFS 39.056 −95.191 1.884 1.671 0.518 0.396 1.726 1.544 5.049 3.834

US-KLS 38.775 −97.568 1.690 1.630 0.091 0.486 1.065 1.261 3.496 3.120

US-MOz 38.744 −92.200 1.721 1.516 0.880 0.870 0.847 0.928 5.002 4.778

US-NC2 35.803 −76.669 1.944 2.104 0.919 0.808 0.931 1.299 6.067 6.009

US-NC3 35.799 −76.656 1.449 1.674 0.813 0.767 1.392 1.547 4.324 4.297

US-NC4 35.788 −75.904 1.803 2.142 0.844 0.786 1.031 1.340 6.027 5.708

US-NR1 40.033 −105.546 0.945 1.218 0.889 0.624 0.420 0.959 3.459 3.873

US-Rms 43.065 −116.749 1.343 1.273 0.682 0.611 1.173 1.272 3.009 2.730

US-Ro4 44.678 −93.072 1.788 1.580 0.732 0.723 1.117 1.171 3.977 3.386

US-Ro5 44.691 −93.058 0.915 1.143 0.824 0.737 0.903 1.143 3.790 3.112

US-Ro6 44.695 −93.058 1.403 1.088 0.544 0.752 1.401 1.077 3.775 3.100

US-Rws 43.168 −116.713 1.335 1.259 0.686 0.589 0.505 0.724 2.265 2.168

US-Sne 38.037 −121.755 0.832 1.322 0.897 0.895 0.684 0.955 3.566 3.750

US-SRG 31.789 −110.828 0.924 1.108 0.819 0.706 0.770 1.025 2.056 2.140

US-SRM 31.821 −110.866 0.711 0.933 0.796 0.701 0.695 0.920 1.844 1.952

US-Tw3 38.116 −121.647 1.378 1.274 0.541 0.664 1.163 1.115 3.770 3.411

US-Var 38.413 −120.951 2.288 2.265 0.353 0.568 2.185 2.035 3.145 2.793

US-WCr 45.806 −90.080 1.481 1.554 0.827 0.770 1.121 1.286 4.791 3.950

US-Whs 31.744 −110.052 1.244 1.242 0.705 0.605 0.527 0.887 2.183 2.223

US-Wkg 31.737 −109.942 1.600 1.475 0.757 0.593 0.636 1.112 2.582 2.629

Average 1.362 1.395 0.719 0.697 0.996 1.150 3.670 3.339

for sub-pixel heterogeneity effects. Still, using the clear-sky
ALEXI statistics as a benchmark, the relative performance of all-
sky retrievals indicates that themachine learning approach can be
effectively used to combine thermal, microwave, andmodel based
LSTs to generate an ET product under all-weather conditions.

SUMMARY AND DISCUSSION

The GET-D system has been upgraded to provide high-quality
ET estimates at the high spatial resolution of 2 km over the
CONUS domain. Additionally, a RT machine learning approach
has been developed to integrate microwave and LSM LST with
GOES thermal observations to allow the retrieval of surface
energy fluxes under cloud cover. This capability helps to fill
in significant gaps in the cloud-free data product. The all-
weather ET product increases data coverage by around 260%
averaged over the CONUS domain in 2018 compared to the clear-
sky ET product. The significantly improved data availability is
imperative to promote applications of the new ET product.

Comparing to the commonly used microwave and thermal
merging method, land surface model based LST simulations
have been tested and integrated into the regression tree model.

The benefits of the integration of CFSR LST estimates were
quantitatively analyzed by comparing them with MW/TIR
merging method. The evaluation results indicated that the use
of CFSR LSTs helped to reduce the cold bias of the predictions
on the order of 2K to 5K. The all-coupled LST estimates,
which combine the strengths of satellite thermal and microwave
channels and land surface models, agree well with in-situ LST
measurements with the correlation coefficients at morning hour
and noon hour of 0.836 and 0.906, respectively.

With the all-coupled LST inputs, the GET-D run was set up to
generate the all-weather ET product over the testing period from
Jan. 1 to Dec. 31, 2018. The quality of the all-weather ET product
was further evaluated against more than 20 ground stations from
the AmeriFlux network. It is promising to see that the all-weather
ET retrievals not only match the annual trend with the in-situ
records but also capture the daily fluctuations with cloudy days
filled in. The overall statistics of the correlation and RMSE also
illustrated the new ET product has the accuracy at the same level
as the clear-sky product with the correlation coefficient of 0.7
averaged from all validation stations in 2018.

Although our preliminary results indicate that the regression
tree machine learning can be used to merge different satellite
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data, challenges and improvements are worth further discussing.
First, creating training sets is always a challenging topic for
machine learning models because model predictions could be
unreliable when extrapolating beyond the range of the training
samples. In our experiments, highly uncertain observations have
been removed from training samples according to the product
quality control flags, but further investigations is needed on
how to create representative and comprehensive training sets.
Second, recent studies have shown that a better understanding
of the underlying properties of ML models is imperative to
leverage those techniques in the exploitation of satellite earth
observations (McGovern et al., 2017; Samek et al., 2017). Future
research should consider the development of an explainable and
meaningful AI/ML system.

Future evaluation of the ET product will incorporate data
from additional Ameriflux sites, but screening for sites that are
more homogeneous at the 2-km pixel scale. The DisALEXI flux
disaggregation method can also be employed to downscale to
the flux tower footprint over more heterogeneous sites. Finally,
the operational pathway of the upgraded GET-D at the Office of
Satellite and Product Operations (OSPO) of NOAA or the Cloud
will be investigated and identified in the near future.
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