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Chemical transport models (CTMs) are widely used for air quality forecasts, but these

models require large computational resources and often suffer from a systematic bias

that leads to missed poor air pollution events. For example, a CTM-based operational

forecasting system for air quality over the Pacific Northwest, called AIRPACT, uses

over 100 processors for several hours to provide 48-h forecasts daily, but struggles

to capture unhealthy O3 episodes during the summer and early fall, especially over

Kennewick, WA. This research developed machine learning (ML) based O3 forecasts

for Kennewick, WA to demonstrate an improved forecast capability. We used the

2017–2020 simulated meteorology and O3 observation data from Kennewick as training

datasets. The meteorology datasets are from the Weather Research and Forecasting

(WRF) meteorological model forecasts produced daily by the University of Washington.

Our ozone forecasting system consists of two ML models, ML1 and ML2, to improve

predictability: ML1 uses the random forest (RF) classifier and multiple linear regression

(MLR) models, and ML2 uses a two-phase RF regression model with best-fit weighting

factors. To avoid overfitting, we evaluate the ML forecasting system with the 10-time,

10-fold, and walk-forward cross-validation analysis. Compared to AIRPACT, ML1

improved forecast skill for high-O3 events and captured 5 out of 10 unhealthy O3 events,

while AIRPACT and ML2 missed all the unhealthy events. ML2 showed better forecast

skill for less elevated-O3 events. Based on this result, we set up our ML modeling

framework to use ML1 for high-O3 events and ML2 for less elevated O3 events. Since

May 2019, the ML modeling framework has been used to produce daily 72-h O3

forecasts and has provided forecasts via the web for clean air agency and public use:

http://ozonematters.com/. Compared to the testing period, the operational forecasting

period has not had unhealthy O3 events. Nevertheless, the ML modeling framework

demonstrated a reliable forecasting capability at a selected location with much less

computational resources. The ML system uses a single processor for minutes compared

to the CTM-based forecasting system using more than 100 processors for hours.
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INTRODUCTION

Chemical transport models (CTMs) are widely used to
simulate the temporal and spatial variation of air quality
(Sportisse, 2007). Chemical transport models include various
physical and chemical processes of the atmosphere as well
as known sources and sinks. However, due to the lack
of understanding of the important physical and chemical
processes in the atmosphere (Seinfeld and Pandis, 2016),
CTM simulations can suffer from significant uncertainties
and errors, even though the accuracy of numerical models
seems to improve over time. Most operational air quality
forecast systems are based on CTM and thus can experience
systematic biases and errors that result in failure to forecast
poor air quality events. In addition, there is a high cost
for those forecasts due to the demanding computational
requirements and the need for well-trained personnel to operate
complex models.

The Air Indicator Report for Public Awareness and
Community Tracking (AIRPACT) was developed for air
quality forecasting for the Pacific Northwest (PNW) of
the United States. AIRPACT, operated by Washington
State University, uses the Community Multiscale Air
Quality Modeling System (CMAQ) model with Weather
Research and Forecasting (WRF) meteorological inputs
provided by the University of Washington. The AIRPACT
domain covers Washington, Idaho and Oregon along with
peripheral areas with 4-km horizontal grid cells and 37
vertical levels. AIRPACT uses the Carbon Bond version
5 (CB05) gas chemistry mechanism and AERO6 aerosol
module. It provides 48-h forecasts produced daily, which
are available via the web1 for the public and local air
quality agencies.

Within the AIRPACT domain, Kennewick, Washington
(WA) is part of the Tri-cities metropolitan area with a total
population of about 220,610 [the combined population of
Kennewick (84,960), Pasco (77,100) and Richland (58,550)
in 2020] (Washington State Office of Financial Management,
2020). The city is located 32 km north of Washington state’s
southern border with Oregon and is in a hot and dry portion
of the state. Recent monitoring and a large field study have
shown that O3 mixing ratios can be unhealthy on days in
the summer and early fall (Jobson and VanderSchelden, 2017).
One EPA Air Quality System (AQS) monitoring site measures
the O3 mixing ratios at Kennewick, which identified several
unhealthy air quality events in 2017 and 2018, while the
daily forecasts struggle to identify unhealthy days in this
area: e.g., excluding the wildfire affected days (more details
will be discussed in Section O3 Observations at Kennewick,
WA), there were 10 days when the air quality was unhealthy
for sensitive groups in 2017–2018, but AIPRACT missed all
of them.

Machine learning (ML) models have been used to predict
air quality in recent years (e.g., Feng et al., 2015; Freeman
et al., 2018; Zamani Joharestani et al., 2019). The numerical

1http://lar.wsu.edu/airpact/

air quality models require a huge computational power and
many input data, such as the meteorological and emission data
over the whole domain. Compared to numerical models, ML
methods tend to be more computationally efficient, require less
input data, and perform better for specific events. The ML
models typically incorporate a variety of features, including
observed pollutant levels and various meteorological variables
as the basis for training and applying ML methods. For
example, Feng et al. (2015) used trajectory-based geographic
parameters, meteorological forecasts and associated pollutant
predictors as input to an artificial neural network, to predict
PM2.5 concentrations in Beijing, China. Freeman et al.
(2018) used a recurrent neural network with long short-
term memory to predict 72-h O3 forecasting using hourly
air quality and meteorological data. Zamani Joharestani et al.
(2019) tested three machine learning approaches [i.e., random
forest (RF), extreme gradient boosting, and deep learning]
using 23 features to predict the PM2.5 concentrations in
Tehran, Iran.

In this study, we developed a ML modeling framework to
predict O3 mixing ratios that is based on RF and multiple
linear regression (MLR). Random forest is one of the most
popular machine learning methods and has been used in air
quality modeling and forecast studies. The RF method has
been demonstrated to provide reliable forecasts for O3 and
PM2.5 with lower computational costs compared to physical
models (Yu et al., 2016; Rybarczyk and Zalakeviciute, 2018;
Zhan et al., 2018; Pernak et al., 2019). Random forest consists
of an ensemble of decision trees; decision tree learning is
a method for approximating discrete-valued functions (Kam,
1995; Mitchell, 1997; Breiman, 2001). The RF model can be
used for classification and regression, but it was suggested that
it could lead to the under-prediction of the high pollution
events (Jiang and Riley, 2015; Pernak et al., 2019). Since this
research aims to provide a reliable O3 forecast, especially for
the high pollution events, a MLR or second phase RF model
is also used to improve the model performance for the high
O3 predictions to address the under-predictions of a simple
RF model. Multiple linear regression is a regression method
with one dependent variable and several independent variables.
Previous studies that used MLR models to predict O3 mixing
ratios showed performance that matched more complex machine
learning models (Chaloulakou et al., 1999; Sousa et al., 2007;
Arganis et al., 2012; Moustris et al., 2012). Yuchi et al. (2019) used
RF and MLR for indoor air quality forecasts, and RF provided
better predictions for the data in the training dataset, while
MLR provided better predictions for conditions that were not
represented in the training dataset.

The goal of this study is to develop a reliable air quality
forecast framework using machine learning approaches and
to apply the system for Kennewick, WA with a focus on
the predictability of unhealthy days related to O3. Section
Dataset and Modeling Framework presents the datasets
and the ML forecast framework based on the two machine
learning approaches. Section Results and Discussion presents
the feature selection, evaluation of the model performance
using 10-time, 10-fold cross-validation, and the ensemble
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forecasts at Kennewick. Finally, Section Conclusions
provides conclusions.

DATASET AND MODELING FRAMEWORK

Training Dataset of Kennewick
The training dataset for our ML models includes the previous
day’s observed O3 mixing ratios from AQS data, time
information (hour, weekday, month), and simulatedmeteorology
from daily WRF forecasts from May to September during 2017–
2020 at Kennewick, WA. Because heat and sunlight favor O3

generation (Weaver et al., 2009), the observations for the training
set only include from May to September. Weather Research
and Forecasting meteorological output was obtained from the
University of Washington (Mass et al., 2003), which is used in
AIRPACT as an input to generate emissions and to drive the
CMAQ forecast model. We use temperature (T), surface pressure
(P), relative humidity (RH), wind speed, wind direction, and
planetary boundary layer height (PBLH) in the training dataset.
Time information is included in the training dataset due to
the significant patterns of O3 variations at diurnal, weekly, and
monthly temporal scales.

Machine Learning Modeling Framework
We have developed an air quality forecast modeling framework
that consists of two independent ML models. The first machine
learning model (ML1; Figure 1A) consists of RF classifier and
MLR models. The RandomForestClassifier and RFE functions in
the Pythonmodule scikit-learnwere used (Pedregosa et al., 2011).
In ML1, the WRF meteorology, time information, and previous
day’s O3 mixing ratios were first used to train a RF classifiermodel
to predict AQI categories. Because the AQI category is based on
the 8-h averaged O3, the training data for the RF classifier model
used the previous day’s 8-h averaged O3 mixing ratios. Given
that a highly polluted episode is generally a rare event, it makes
the dataset unbalanced, and the unbalanced training data may
produce a bias toward commonly observed O3 events (Haixiang
et al., 2017). To address this problem, the balanced_subsample
option was used for the RF classifier. The balanced_subsample
gives weights to the AQI category values based on their frequency
in the bootstrap sample for each tree, so that high AQI values with
low frequency in the training dataset are weighted proportionally
more: this is an algorithm-level strategy commonly used in
machine learning to reduce bias for the majority category for
datasets with class imbalance. Without applying this strategy, our
machine learning model fitting can be negatively impacted by a
disparity in the frequencies of the observed classes (here, AQI
classes). Separately, the observed AQI categories were added to
the training dataset to train the MLR model (see the red dashed
line shown in Figure 1A). When used for forecasting, the RF
classifier model was first used to predict the AQI categories,
which, in turn, provided input to the MLR model to predict the
O3 mixing ratios.

The second machine learning model (ML2; Figure 1B)
was based on a two-phase RF regression model. Here, the
RandomForestRegressor function in the Python module scikit-
learn was used (Pedregosa et al., 2011). ML2 used the WRF

FIGURE 1 | (A) ML1 model based on random forest (RF) classifier and

multiple linear regression (MLR) models (B) ML2 model based on a two-phase

RF regression and weighting factors. (MDA8 O3: the maximum daily 8-hour

moving average O3).

meteorology, time information, and previous day’s hourly O3

mixing ratios to train an RF regression model to predict the
concentrations. The entire historical dataset was used to train
the first RF regression model (RF1 in Figure 1B). The training
data were isolated when RF1 predicted O3 mixing ratios that
differ from the observations by more than 5 ppb, and then the
isolated dataset was used to train the second RF regression model
(RF2 in Figure 1B). The training dataset for RF2 was the subset
of the entire training data, so RF2 required more decision trees
(100 trees for RF1 and 200 trees for RF2). We found that using
more decision trees in RF2 led to better performance without
significantly increasing the computational cost. Jiang and Riley
(2015) also used more decision trees in their second-phase model
training (300 trees in the first phase and 500 trees in the second
phase). This is why it is called a two-phase RF regression model.
In ML2, the final O3 mixing ratios are computed using Equation
(1) with a set of weighting factors (a1 and a2).

Hourly prediction = a1 ∗ RF1 + a2 ∗ RF2 (1)

The a1 and a2 are determined in the training process because
the observed ozone data (truth) is available to the models. We
divide the RF1 ozone predictions into three categories (low,
mid, and high) and find the optimal weighting factors at each
category using a linear regression equation in Equation (1).When
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forecasting, RF1 and RF2 are computed first and then the RF1
prediction determines which weighting factors to use and the
hourly O3 prediction is computed using Equation (1).

Computational Requirements
Our ML modeling framework requires much less computational
power than the AIRPACT CMAQ system. The ML models use a
single Intel E5 processor to train and evaluate the model. For the
walk-forward cross-validation (more details will be discussed in
the Supplementary Materials), ML1 takes about 8min of CPU
time to train the model and to predict daily O3 at one location
for the entire 2018–2020 ozone season (425 days in total), while
ML2 takes about 27min of CPU time to predict the same time
period. These times are much less than AIRPACT that requires
360 h of CPU time (120 Intel E5 processors for 3 h) for a single
48-h forecast.

Forecast Verifications for AQI Evaluation
Forecast verifications are used to evaluate the machine learning
models: Heidke Skill Score (HSS), Hanssen-Kuiper Skill Score
(KSS), and Critical Success Index (CSI). Table 1 is a 2 × 2
contingency table that shows a simple unhealthy or good case:
“unhealthy” refers to unhealthy air pollution events, and “good”
refers to good air quality. Equations (2)–(4) show how HSS, KSS,
and CSI are computed (Jolliffe and Stephenson, 2012), where
a, b, c, and d refer to the numbers of hits, false alarms, misses
and correct negatives, respectively; n refers to the total number
of events.

HSS =
a+ d − ar − dr

n− ar − dr
(2)

where ar =
(a+b)(a+c)

n ; dr =
(b+d)(c+ d)

n

KSS =
ad − bc

(b+ d)(a+ c)
(3)

CSI =
a

a+ b+ c
(4)

Heidke Skill Score represents the accuracy of the model
prediction compared with a reference forecast [r in Equation (2)],
which is from the random guess that is statistically independent
of the observations (Wilks, 2011; Jolliffe and Stephenson, 2012).
The range of the HSS is from –∞ to 1. A negative value of
HSS indicates a random guess is better, 0 indicates no skill,
and 1 indicates a perfect score. Hanssen-Kuiper Skill Score
measures the ability to separate different categories (Wilks, 2011;
Jolliffe and Stephenson, 2012). The range is from −1 to 1 where
0 indicates no skill, and 1 indicates a perfect score. Critical
Success Index is the number of hits divided by the total number
of forecast and/or observed events (Wilks, 2011; Jolliffe and
Stephenson, 2012), which shows the model performance for each
category. The range of CSI is from 0 to 1.

The worst O3 level at Kennewick was unhealthy for sensitive
groups (AQI 3) during our study period (2017–2020), excluding
the days when the air quality was affected by wildfire smoke. For

TABLE 1 | A 2 × 2 contingency table for forecast skill.

Forecasts Observations

Unhealthy Good Total

Unhealthy a = hits b = false alarms a + b

Good c = misses d = correct negatives c + d

Total a + c b + d a + b + c + d

TABLE 2 | A 3 × 3 contingency table for forecast skill.

Model AQI Observed AQI

1 2 3

1 n11 n12 n13

2 n21 n22 n23

3 n31 n32 n33

a multi-category case such as in this study [AQI 1—Good, 2—
Moderate, 3—Unhealthy for Sensitive Groups], we use the 3 × 3
contingency table in Table 2 (Doswell and Keller, 1990). The skill
scores are computed as follows (Jolliffe and Stephenson, 2012).

HSS =
(

∑3

i=1
pii −

∑3

i=1
pip̂i

)

/

((

1−
∑3

i=1
pip̂i

))

(5)

KSS =
(

∑3

i=1
pii −

∑3

i=1
pip̂i

)

/

((

1−
∑3

i=1
pipi

))

(6)

CSIi = nii /
(

∑3

i=1
ni +

∑3

i=1
n̂i − n

ii

)

(7)

The pii is the sampling frequency when the observed and model
predicted AQI is i, and pi and p̂i are the observed and model
predicted sample frequency when AQI= i. The nii is the number
of hits for AQIi, and ni and n̂i are the observed and model
predicted event numbers when AQI= i.

RESULTS AND DISCUSSION

O3 Observations at Kennewick, WA
This research covers the O3 observations during the ozone
seasons (May–September) from 2017 to 2020. The boxplot in
Figure 2 shows that the maximum daily 8-h moving average
O3 (MDA8 O3) observations have decreased from 2017 through
2020. The 2017 and 2018 were fire years, which means they had
several regional wildfire events, and there were fewer in 2019 and
2020. The COVID-19 pandemic in 2020 also reduced traffic and
other air pollutant emissions.

The Washington State Department of Ecology explored the
general relationship between O3 level and temperature in the
PNW and found that some MDA8 O3 was beyond the normal
level when the wildfire smoke was presented and there were 4
days identified in 2017–2018: no day identified in 2019–2020.
The days affected by wildfire smoke in 2017–2020 have only
about 0.75% occurrence rate, which is considered too rare to be
predicted well by our ML models. Also, the wildfire smoke effect
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is not easily predictable, so we exclude these 4 days affected by
wildfire smoke from the dataset in this research to avoid the noise
brought by the wildfire effects.

Table 3 presents the general statistics of the MDA8 O3

observations during the simulated period fromMay to September
in 2017–2020. Here, we define a high-O3 day as a day when
the observed AQI category is worse than Moderate (i.e., AQI
category > 2), which is considered an unhealthy O3 event. There
are six “high-O3 days” for sensitive groups (i.e., AQI category 3)
in 2017 and four in 2018. AIRPACT struggled to predict these
high-O3 days, and it missed all of the 10 “high-O3 days”. It is
important to note that there were no unhealthy O3 events in
2019 and 2020, and the forecasting performance of AIRPACTwas
better in 2019–2020 than in 2017–2018. It should also be noted
that 2020 included potential emission reductions associated
with COVID-19 reduced human activities. These emission
changes were not incorporated into the AIRPACT emission
system. However, ML models implicitly capture changes in
emissions when relationships betweenmeteorology and observed
O3 concentrations are updated during regular re-training (see
section Ensemble Forecasts in 2019 and 2020).

Machine Learning Model Evaluation at
Kennewick WA
Cross-validation is commonly used for machine learning model
evaluation by testing on subsets of the data (Raschka, 2015).
Among various cross-validation methods available, we use

FIGURE 2 | Boxplot of observed (obs) MDA8 O3 from May to September in

2017 – 2020.

both the 10-time, 10-fold, and walk-forward cross-validation
techniques to evaluate our modeling framework. The result from
the walk-forward cross-validation methods agrees with the 10-
time 10-fold cross-validation, so we present the walk-forward
cross-validation results in the Supplementary Materials.

For evaluation purposes, these forecasted hourly or 8-h
averaged O3 are computed into MDA8 O3. We compare the
evaluation results of this machine learning modeling framework
against the AIRAPCT air quality forecasts for Kennewick, WA.
This allows us to test how well this new machine learning-
based forecasting system performs with respect to the existing
CTM-based modeling framework.

Feature Selection for Machine Learning
Models
We initially provide 10 types of input data for the RF
classifier and regression models and 11 types of input data
for the MLR model; the additional data in the MLR model
is the AQI classification. Since using too many features can
cause an overfitting problem (Murphy, 2012), we used the
following functions to do feature selection: feature_importances_
in function RandomForestClassifier/RandomForestRegressor and
ranking_ in RFE. The selected features were preprocessed by
MaxAbsScaler in the Python module scikit-learn and then used
as input to train the model (Pedregosa et al., 2011).

For the RF classifier model used in ML1 and RF regression
model in ML2, the feature selection function with the default
setting computed the importance weights, and then the features
with weights greater than the mean weight were selected. In
this study, the mean weight is 0.1, so only features with weights
>0.1 were selected: see the blue lines in Figures 3A–C. Figure 3A
shows the weights of the features for the RF classifier model. The
feature weights changed in each training process, but the ranking
showed very little change. For instance, the previous day’s O3

observation and temperature were always the selected features,
and the relative humidity, surface pressure and wind direction
were selected in some cases.

The feature selection results of two-phase RF regression are
shown in Figures 3B,C. Similar to the RF classifier model,
the previous day’s O3 observation, temperature, and relative
humidity were mostly above the 0.1 weight and thus were
selected, but the ranking of the importance weights varied
in the two phases. For the first phase RF regression model

TABLE 3 | Summary of historical air quality information from May to September in 2017–2020.

Year Simulated days Mean Median 25th percentile 75th percentile # of days for each AQI AQI > 2

1 2 3

2017 100 51 50 42 58 65 29 6 6.0%

2018 148 46 44 39 52 119 25 4 2.7%

2019 136 44 43 38 50 121 15 0 0

2020 142 42 42 35 48 132 10 0 0

Total 526 45 44 38 51 437 79 10 1.9%

The AQI categories are based on O3 mixing ratios only.
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FIGURE 3 | Boxplot of feature weights from (A) RF classifier model in ML1,

(B) the first and (C) the second RF regression model in ML2. The blue lines

show the mean of the feature weights (0.1).

shown in Figure 3B, the previous day’s O3 observation was the
most important feature, while the relative humidity was more
important than temperature. The temperature became the most
important feature in the second phase, while the previous day’s
O3 observation ranked second and the relative humidity was
selected in some cases.

For the MLRmodel used inML1, the built-in feature selection
function chose five features, which were AQI category, previous
day’s O3 observation, relative humidity, and surface pressure for

all training processes, while the fifth selected feature was either
temperature, PBLH, or month.

10-Time, 10-Fold Cross-Validation
The k-fold cross-validation is one of the most commonly used
techniques for machine learning model evaluation (Raschka,
2015). It first divides the dataset into k randomly chosen subsets.
Then k – 1 subsets are used to train the model, while the
remaining portion, which is not used in the training process, is
used to test the model. This process is repeated k times to test
all k subsets: every time, the “test” dataset is not used during
the training process. In this study, we use k = 10, which is
termed a 10-fold cross-validation. The RepeatedKFold function
in the Python module scikit-learn is used to separate the dataset
(Pedregosa et al., 2011). To avoid any bias from data separation,
the 10-fold cross-validation is repeated 10 times (Figure 4) in
this research.

The overall performance statistics of the 10-time, 10-fold
cross-validations of the O3 prediction are presented in Table 4.
The mean normalized mean bias (NMB) and normalized mean
error (NME) are 5.5 ± 0.2 and 16 ± 0.1% for ML1, −0.14 ±

0.05 and 12 ± 0.1% for ML2, respectively. The low standard
deviations show that there is no significant difference between
each of the 10 times training conducted, indicating that the
model performance is stable. The AIRPACT NMB and NME are
1.1% and 17% when using all data points, which is comparable
to the ML performance. Interestingly, AIRPACT has eight
extremely over-predicted O3 days during the period used in this
study. When these extreme values are excluded, its NMB and
NME are changed to −2.2% and 14%, respectively. AIRPACT
with all data points has a poor correlation (R2 = 0.070), but
without the eight extreme values, the R2 is 0.38, which becomes
comparable to results from the ML models (i.e., R2 of 0.43 and
0.54). When comparing all models, ML2 has the highest R2

and the lowest NMB and NME among the three models. We
observe similar performance for the ML models using walk-
forward method as the 10-time, 10-fold cross-validation (see
Supplementary Table 1).

The CSI scores show the model performance for each AQI
category. Based on the CSI values, ML2 performs better for the
days with AQI 1 (which is the category that most of our O3

data fall into), and ML1 performs better for higher O3 (AQI >

1). AIRPACT and ML2 do not capture the days with AQI >

2, while ML1 captures 5 out of 10 high O3 cases. The better
performance of ML1’s high O3 predictions leads to higher HSS
and KSS scores, especially for KSS, which is about two times of
AIRPACT andML2. This makes sense because KSS is sensitive to
high-O3 events.

ML1 performs better in the high-O3 cases, and it is likely due
to the linear relationship used in the MLR model that is not as
sensitive to the range of data in the training data. Conversely, the
RFmodel inML2may not work well when the input data exceeds
the range of the training data as it uses an ensemble of decision
trees and thus can be limited by the training dataset. The indoor
air quality study by Yuchi et al. (2019) that used RF and MLR
models drew a similar conclusion.
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FIGURE 4 | Diagram of 10-time, 10-fold cross-validation.

TABLE 4 | Statistics and forecast verifications of the 10-time, 10-fold

cross-validations of the simulated O3 at Kennewick, WA during 2017–2020.

AIRPACT AIRPACT (w/o eight ML1 ML2

extreme values)

R2 0.070 0.38 0.43 0.54

NMB (%) 1.1 −2.2 5.2 −0.22

NME (%) 17 14 16 12

HSS 0.34 0.34 0.42 0.4

KSS 0.30 0.30 0.61 0.33

CSI 1 0.85 0.85 0.74 0.87

2 0.24 0.24 0.34 0.27

3 0 0 0.28 0

Figures 5A–C show the ratio of the model predictions to the
observations vs. the observed MDA8 O3 for the AIRPACT, ML1,
andML2models. To better compare the performance of the three
models, the y-axis is set to the same range for all figures, so
some extreme values are excluded. Interestingly, all models show
a similar systematic bias: over-prediction of low MDA8 O3 and
under-prediction of high MDA8 O3. This figure also shows that
ML1 tends to predict higher O3 levels than AIRPACT and ML2
for all mixing ratio ranges.

The results above demonstrate that our ML-based forecasts
are comparable to AIRPACT except for the high-O3 cases where

theMLmodels clearly perform better. This means theMLmodels
may not outperform the AIRPACT model if there is no high-
O3 event. Additionally, given the systematic biases shown in
Figures 5A–C are strongly associated with the O3 levels, the
model performance will definitely vary by the distribution of the
observed O3 levels. Since the average O3 levels have decreased
from 2017 to 2020 and the year 2019 and 2020 did not have
any high-O3 event (AQI > 2; see Section O3 Observations
at Kennewick, WA for the details), we perform the 10-time,
10-fold cross-validations for each year from 2017 to 2020 to
explore the changes in the model performances (see Table 5).
In addition to the AIRPACT, ML1, and ML2 models, Table 5
includes a “combined” model that is based on our forecast
modeling framework that uses ML1 forecasts when the predicted
MDA8 O3 is higher than 70 ppb and ML2 forecasts for all other
cases. The time series of MDA8 O3 in Figure 6 shows that both
AIRPACT and the combined ML predictions follow the trend
of observations. Machine Learning predictions are generally
closer to the observations and do not largely over-predict the
MDA8 O3; however, AIRPACT generates several extremely over-
predicted O3 events in 2017 and 2020. It should be noted that the
“combined” results are available for only 2017 and 2018 because
there are no unhealthy O3 events in 2019 and 2020, so that only
the ML2 model is used for those years.

Table 5 shows how the model performance can vary year-
to-year due to changes in O3 distribution. The changes in the
model performance can be explained by the systematic biases
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FIGURE 5 | Ratio plots of model prediction to observations vs. observations

for three models (A) AIRPACT, (B) ML1, and (C) ML2.

trend. As the O3 levels go down from 2017/2018 to 2019/2020,
the model performance moves from under-prediction to over-
prediction: models tend to over-predict the lower O3 levels. The
walk-forward method performs similarly to the 10-time, 10-
fold cross-validation (see Supplementary Figure 1). Compared
to theMLmodels, AIRPACT shows larger variations in the yearly
performance, which is likely to be influenced by other changes in
the AIRPACT simulations (Munson et al., 2021). The NMB of
AIRPACT in 2017 is close to 0 (−1.7%). This is because of its
extreme over-prediction in some cases. If they are excluded from
the statistics, the NMB of AIRPACT is −12% in 2017. The same

reason is attributed to the 12% over-prediction in 2020, and it is
7.3% after removing the extreme predictions. So, excluding the
extreme predictions, the NMB from AIRPACT generally reveals
the over-prediction of lower O3 level and under-prediction of
higher O3 level. Similarly, ML1 and ML2 show higher NMB in
2019/2020 than in 2017/2018.

Despite these differences, the yearly validation results still
show similar performance for the ML models: ML1 performs
better for AQI> 2 while ML2 performs better for the other cases.
There are unhealthy O3 cases (AQI 3) in 2017 and 2018, and
ML1 captures half of them. This leads to mostly better statistics
than AIRPACT and ML2. The KSS score of ML1 is significantly
higher than other models, which is because it is sensitive to the
high-O3 predictions. ML2 has a good performance for low-O3

predictions, and the CSI1 and CSI2 scores are close or better
than AIRPACT. Although the R2 values of ML2 decrease in 2019
and 2020, the high CSI1 scores (∼0.9) still show its accurate
low-O3 predictions.

ML2 performs better for the low-O3 predictions and has
higher CSI1 scores than ML1, while ML1 can capture more high-
O3 events with good CSI3 scores. The combined approach keeps
the high CSI1 scores as ML2 and captures some unhealthy O3

events in 2017 and 2018. The R2 of the combined model (R2 =
0.57 and 0.58 in 2017 and 2018) is better thanML1 (R2 = 0.44 and
0.46), but slightly worse than ML2 (R2 = 0.58 and 0.64), because
ML2 performs better for the low-O3 days that are dominant in
the observation datasets.

Ensemble Forecasts in 2019 and 2020
Beginning in May 2019, the ML modeling framework has been
used to provide 72-h “ensemble” operational O3 forecasts each
day for Kennewick, which uses 27 WRF ensemble forecasts from
the University of Washington2. The ensemble WRF forecasts use
multiple initial and boundary conditions, and various physical
parameterizations and surface properties (Mass et al., 2003). We
predict O3 levels with each WRF member to compute a 72-
h forecast and then these individual forecasts are combined to
yield an ensemble mean forecast with an associated uncertainty
range. The forecasts are available to the public3, with the ability
to sign up for email alerts if “unhealthy for sensitive groups”
or worse AQI levels are forecasted. To increase the size of the
training dataset and improve the forecast accuracy, we include
the new observational data from the previous day and re-train
the models daily.

We present the evaluation of the operational ensemble
forecasts coveringMay to September in 2019 and 2020 inTable 6.
The meteorology data used in the cross-validation is extracted
from the WRF output that provided input data for AIRPACT,
and it is named WRFRT. Most of the statistical variables in
Table 6 show that the performance of the ensemble mean is close
to the single WRFRT forecasts. By using the ensemble WRF
forecasts in the ML forecasting system, the variations of the
meteorological forecasts are taken into consideration, although

2https://a.atmos.washington.edu/wrfrt/ensembles/info.html
3http://ozonematters.com
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TABLE 5 | Annual statistics and forecast verifications of the 10-time, 10-fold cross-validations at Kennewick, WA.

AIRPACT ML1 ML2 Combined*

2017 2018 2019 2020 2017 2018 2019 2020 2017 2018 2019 2020 2017 2018

R2 0.0053 0.46 0.43 0.029 0.44 0.46 0.34 0.33 0.58 0.64 0.43 0.44 0.57 0.58

NMB (%) −1.7 −7.5 2.5 12 2.3 4.3 6.6 7.1 −6.3 −1.8 1.4 5.3 −4.5 −0.36

NME (%) 25 14 12 19 15 15 16 18 12 10 11 14 13 11

HSS 0.30 0.31 0.47 0.28 0.41 0.55 0.31 0.31 0.30 0.51 0.32 0.35 0.30 0.52

KSS 0.26 0.22 0.43 0.45 0.45 0.73 0.59 0.77 0.25 0.43 0.24 0.35 0.27 0.44

CSI 1 0.72 0.86 0.90 0.86 0.65 0.81 0.72 0.77 0.73 0.89 0.89 0.91 0.73 0.89

2 0.24 0.17 0.35 0.23 0.37 0.45 0.27 0.24 0.24 0.35 0.22 0.25 0.14 0.32

3 0 0 – – 0.30 0.25 – – 0 0 – – 0.30 0.25

*Combined refers to using the ML1 predicted MDA8 O3 predictions for high-O3 days and the ML2 predictions for all other days.

FIGURE 6 | Time series of MDA8 O3 from observation, AIRPACT and combined ML model predictions from May to September in 2017–2020.

TABLE 6 | Statistics and forecast verifications in 2019–2020.

ML1 (mean) ML1 (WRFRT) ML2 (mean) ML2 (WRFRT)

R2 0.33 0.35 0.49 0.48

NMB (%) 6.9 8.0 5.2 5.7

NME (%) 17 18 12 13

HSS 0.31 0.28 0.41 0.47

KSS 0.64 0.66 0.39 0.44

CSI 1 0.75 0.70 0.90 0.91

2 0.26 0.24 0.30 0.34

Note that mean is the ensemble means of the MDA8 O3 forecasts of the ensemble

members, and WRFRT is the single WRF data that drives AIRPACT.

the overall difference between the averaged MDA8 O3 and the
ensemble members is not significant (within 5%).

The distributions of the averaged ensemble MDA8 O3

predictions are shown in Figures 7A,B. Due to the missing
data for some ensemble members, 21 ensemble members are
presented in total. TheML1 distributions have two peaks because
it first classifies the AQI categories using the RF classifier model.

The peaks from ensemble members are higher than the averaged
distribution in Figure 7A, and the ensemble-averaged prediction
can relatively weaken the bias from a single ensemble WRF
member. The distribution of ML2 is close to AIRPACT as shown
in Figure 7B. Both ML1 and ML2 do not over-predict MDA8 O3

very much, while AIPRACT can severely over-predict some high
MDA8 O3 events.

CONCLUSIONS

Chemical transport models are widely used for air quality
modeling and forecasting, but they may fail to properly forecast
pollution episodes, plus they are computationally expensive.
AIRPACT is a CTM-based operational forecasting system for
the Pacific Northwest, but it has a history of failing to predict
high-O3 events at Kennewick, WA during summer and fall. In
this research, we developed machine learning models that use
historical WRF meteorology and O3 observation data to build
a more reliable forecast system with much less computational
burden. The new forecast framework consists of two ML models,
ML1 and ML2, that predict the O3 mixing ratios and AQI
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FIGURE 7 | Distributions of observed and (A) ML1, (B) ML2 model predicted

MDA8 O3 in 2019 and 2020.

categories. To evaluate and demonstrate this new forecast system,
we applied the system to observations from Kennewick,WA over
several years.

The O3 observations and archived WRF meteorology data
(temperature, surface pressure, relative humidity, wind speed,
wind direction, and PBLH from 2017 to 2020) were used in the
training dataset. ML1 uses both RF classifier and MLR models,
and ML2 uses a two-phase RF regression model with weighting
factors. The 10-time, 10-fold, and walk-forward cross-validation
methods were used to evaluate the modeling framework, and the
results agree with each other.

Comparing the statistics of the three models, ML2 has the
highest R2 (0.54) and lowest NMB (−0.22%) and NME (12%).
The CSI values from the 10-time, 10-fold cross-validation showed
that ML1 performs better for the high MDA8 O3 prediction
(CSI3 = 0.28), and ML2 performs better for the low MDA8 O3

predictions (CSI1 = 0.87). Given this, our operational forecast
system combines ML1 when O3 is higher than 70 ppb with ML2
for all other cases.

The ML models provided improved predictions (most R2

> 0.5) and correctly predicted 5 out of 10 high pollution
events, while AIRPACT misses all these events. Also, the model
performance of the ML modeling framework was more stable
without extreme predictions: AIRPACT predicts eight extremely
high MDA8 O3 in 2017 and 2020.

Interestingly, we find similar systematic biases from all
models; they tend to over-predict the low O3 levels and

under-predict high O3 levels. Due to the systematic biases and
decreasing trend of O3 from 2017 to 2020, our ML modeling
framework performs better than AIRPACT in 2017 and 2018, but
shows no improvement in 2019 and 2020. Without unhealthy-
O3 events in 2019 and 2020, the MLmodeling framework cannot
demonstrate its superior capability for high O3 events.

With about 4min of CPU time, the ML modeling framework
makes it possible to provide the ensemble daily forecast of O3

level at Kennewick WA; AIRPACT needs 120 processors for 3 h
(360 h of CPU time) throughout the PNW for one single WRF
output. The 72-h “ensemble” operational O3 forecasts have been
provided by this ML modeling framework each day since May
2019. The ensemble mean forecasts take the ensemble model
configurations of WRF forecasts into consideration.

Overall, our ML modeling framework is shown to be well-
suited for predicting ground-level O3 at a specific location using
much less computational resources and fewer input datasets
than CTMs. Our ML modeling framework has been successfully
expanded to predict O3 as well as PM2.5 at various AQS
sites throughout the PNW region, which will be presented in
a subsequent paper. We find that our ML models provide
comparable predictability as CTMs (and even excels in some
cases) at the locations we have studied (i.e., AQS monitoring
sites). However, compared to CTMs, our ML models have a few
obvious weaknesses. For instance, ML methods cannot provide
predictions over a large domain where there are few monitoring
stations, and these methods do not include physical and chemical
processes. There are other excitingML innovations that may help
to overcome such weaknesses. We believe MLmodels can replace
CTMs for some specific tasks (e.g., forecasts at specific locations)
and a hybrid modeling approach of ML and CTM models could
be very beneficial to overcome some of the continuing challenges
in traditional atmospheric models.
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