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Joint models of longitudinal and time-to-event data have received a lot of attention

in epidemiological and clinical research under a linear mixed-effects model with the

normal assumption for a single longitudinal outcome and Cox proportional hazards

model. However, those model-based analyses may not provide robust inference when

longitudinal measurements exhibit skewness and/or heavy tails. In addition, the data

collected are often featured by multivariate longitudinal outcomes which are significantly

correlated, and ignoring their correlation may lead to biased estimation. Under the

umbrella of Bayesian inference, this article introduces multivariate joint (MVJ) models

with a skewed distribution for multiple longitudinal exposures in an attempt to cope with

correlated multiple longitudinal outcomes, adjust departures from normality, and tailor

linkage in specifying a time-to-event process. We develop a Bayesian joint modeling

approach to MVJ models that couples a multivariate linear mixed-effects (MLME) model

with the skew-normal (SN) distribution and a Cox proportional hazards model. Our

proposed models and method are evaluated by simulation studies and are applied to

a real example from a diabetes study.

Keywords: Bayesian inference, longitudinal and survival data, Markov Chain Monte Carlo, multivariate joint

models, skew-normal distribution

1. INTRODUCTION

In epidemiologic and clinical studies, a lot of attention is focused on developing the specific patterns
of the longitudinal measurements and the associations between those patterns and the time to a
certain event, such as diagnosis of disease, time to transplantation, or death. Those studies have
been in a highly active research area (Henderson et al., 2000; Brown and Ibrahim, 2003; Tsiatis and
Davidian, 2004; Rizopoulos, 2011, 2012). For example, in diabetes studies, repeated measures of
continuous exposures such as the children’s growth (height and weight) and time to type 1 diabetes
(T1D) are collected.

During the last two decades, the research on joint modeling of longitudinal and time-to-
event data has been received rapid and considerable development. In literature, various joint
models and associated statistical methods have been introduced to analyze such longitudinal and
survival data. However, the following issues may stand out. (i) Most joint models focus on a single
longitudinal variable associated with a time-to-event outcome (Henderson et al., 2000; Brown and
Ibrahim, 2003; Tsiatis and Davidian, 2004; Rizopoulos, 2011, 2012). However, in practice, many
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studies often collect multiple longitudinal outcomes (Lin et al.,
2002; Brown et al., 2005; Chi and Ibrahim, 2006; Fieuws
and Verbeke, 2006; Albert and Shih, 2010; Rizopoulos and
Ghosh, 2011; Kim and Albert, 2016; Chen and Wang, 2017;
Tang et al., 2017a,b; Proudfoot et al., 2018; Chen et al., 2021)
which may be significantly correlated. For example, the weight
and height repeated measures presented in Figure 1 (left and
middle panels) show significant correlation and it may lead to
biased estimation if their correlation is ignored. In addition,
time-to-event such as the time to T1D depicted in Figure 1

(right panel) may be dependent on the longitudinal weight
and height measures. (ii) In traditional linear mixed-effects
models, within subject measurement errors are often under a
normality assumption due to the mathematical tractability and
computational convenience. However, the normality assumption
may not be realistic. Alternatively, the skew-elliptical (SE)
distributions including skew-normal (SN) distribution (Sahu
et al., 2003) should be more appropriate to model the skewed
data (Azzalini and Capitanio, 2003; Sahu et al., 2003; Arellano-
Valle and Genton, 2005; Huang and Dagne, 2011). Although a
few studies investigated multivariate joint (MVJ) models (Chi
and Ibrahim, 2006; Albert and Shih, 2010; Rizopoulos andGhosh,
2011; Kim and Albert, 2016; Chen and Wang, 2017; Tang et al.,
2017a,b; Chen et al., 2021), they have not considered non-normal
features of longitudinal data.

In statistical literature, longitudinal data analysis has focused
on developing models to capture only specific aspects of the
motivating studies. Inferential procedures may be complex
dramatically if one considers multiple longitudinal outcomes
data with correlation and skewed distributions in conjunction
with an event time in MVJ models. Our Bayesian approach
enables the fitting of such models efficiently and the convergence
problem can be solved.

The rest of the article is organized as follows. In Section 2,
we introduce MVJ models with the SN distribution and discuss
the associated Bayesian inferential method. In Section 3, we

FIGURE 1 | Randomly selected 50 trajectories of weight (left panel) and height (middle panel) from a diabetes study. Kaplan-Meier (K-M) survival plot (right panel) for

type 1 diabetes (T1D).

present the data set from a diabetes study that motivated this
research, apply the specific MVJ model to the data, and report
the results. Section 4 conducts limited simulation studies to
evaluate the performance of the proposed models and method.
Finally, a general discussion and conclusion are presented in
Section 5.

2. JOINT MODELS AND ASSOCIATED
BAYESIAN APPROACH

This section presents the MVJ model and related Bayesian
modeling method in full generality for multiple longitudinal data
with non-normality and correlation and survival endpoint with
censoring to illustrate that our modeling method can be applied
in various applications. To relax the normality assumption, the
multivariate longitudinal model with SN distribution is assumed.
Let yijk denote an observation of the kth longitudinal variable
(k = 1, 2, . . . ,K) for the ith subject (i = 1, 2, . . . , n) at the
jth visit time tijk (j = 1, 2, . . . , ni). Let Y i = (YT

i1, . . . ,Y
T
iK)

T

be the K-variate vector of continuous longitudinal responses,
where Y ik = (yi1k, . . . , yinik)

T . Similarly, we can define Xi and
Zi. Let the vector of population parameters β = (βT

1 , . . . ,β
T
K)

T

with βT
k = (β0k,β1k,β2k, . . . ,βpk)T associated with the kth

longitudinal variable. The vector of subject-specific parameters
by bi = (bTi1, . . . , b

T
iK)

T with b
T
ik = (bi0k, bi1k, bi2k, . . . , biqk)T .

We denote T∗
i as the ‘event’ time, Ci as the censoring time and

Ti = min(T∗
i ,Ci) as the observed time for subject i. Let ρij denote

the indicator for an event, i.e., ρij = 0 when censoring occurs and
ρij = 1 (T∗

i ≤ Ci) when the event is observed. xi is a covariate
vector that may be associated with an event time.

2.1. Multivariate Linear Mixed Effects
Models With SN Distribution
We consider a general multivariate linear mixed-effects (MLME)
model with SN distribution as follows.
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Y ik = Xikβk + Zikbik + ǫik,

bi = (bTi1, . . . , b
T
iK)

T iid∼ NKq(0,6b),

ǫi = (ǫTi1, . . . , ǫ
T
iK)

T iid∼

SNKni

(

−
√

2/π[1K ⊗ 1ni ],6K ⊗ Ini ,1K ⊗ Ini

)

,

(1)

where the random error vector ǫi follows a multivariate SN
distribution with unknown variance-covariance matrix 6K =
(σ 2

kk′ )K×K (k, k′ = 1, 2, . . . ,K, unknown skewness parameter
matrix 1K = diag(δ1, . . . , δK), the skewness parameter vector
δK = (δ1, . . . , δK)T , and 1ni = (1, . . . , 1)T . Note that
−√

2/π[1K ⊗ 1ni ] is considered here in order to make the SN
distribution with mean zero; refer to (Sahu et al., 2003; Huang
and Dagne, 2011; Xu, 2021) for a detailed discussion of SN
distribution. The vector of random-effects bi follows NKq(0,6b)
with 6b being a covariance matrix. In the application below,
we are interested in the height and weight longitudinal data.
Let 12 = diag(δ1, δ2), and δ1 and δ2 quantify skewness of
height and weight, respectively, which is the case represented in
this article.

2.2. Cox Proportional Hazard Model
In survival analysis, the semiparametric Cox hazard model (Cox,
1972; Xu, 2021) has been commonly adopted to explore the
association between survival time and one or more covariates
in medical research. To account for the association between the
multiple longitudinal exposures, we assume that the distribution
of Ti, the time to diagnosis of T1D for subject i, depends on the
random-effects of individual-specific longitudinal processes bik,
and other covariates xi, respectively. The survival model for Ti

here is linked to the multivariate longitudinal model (6) through
the random-effects bi. In addition, assuming that the covariates xi
are associated with the event time. In particular, the conditional
hazard rate of Ti at time ti for the survival component is given by
Xu (2021).

λ(ti|bi, xi) = λ0(ti) exp(ϒT
bi + αT

xi) = λ0(ti) exp(γ T
di), (2)

where λ0(ti) is the baseline hazard function, di = (bTi , x
T
i )

T ,
γ = (ϒT ,αT)T , ϒ and α are unknown parameters linked
with the covariates xi and random-effects bi to the conditional
hazard rate, respectively. The association parameter vector ϒ

linking the random-effects bi measures the association between
the two sub-models. An alternative method can be used to
approximate the Cox proportional hazards model (2) through
the counting process (Clayton, 1991) which is adopted for
our joint modeling and can obviously reduce computational
burdens; a detailed discussion of the alternative method can
be found in Huang (2016), Huang and Chen (2016), and
Zhang and Huang (2021).

2.3. Simultaneous Bayesian Inferential
Approach
Generally, different approaches are applied to link the
longitudinal and survival submodels. The first approach is

under the framework of the likelihood inferential methods,
such as the Expectation-Maximization (EM) algorithm and
Monte Carlo Expectation-Maximization (MCEM) algorithm
(Rizopoulos et al., 2010; Farcomeni and Viviani, 2015; Xu,
2021). A simultaneous inferential method through a joint
likelihood may be favorable, but the computational burden
for proposed MVJ modelings can be very intensive, even
sometimes infeasible, and may cause problems of algorithm
convergence (Brown and Ibrahim, 2003; Wu et al., 2010). The
second approach is Bayesian inference, Bayesian joint modeling
method shows the advantage. Thus, the parameters can be
estimated simultaneously for the MVJ models implemented
by Markov Chain Monte Carlo (MCMC) techniques for the
skew-normal MVJ model. The simultaneous statistical inference
on all unknown model parameters will capture the underlying
association between the longitudinal exposures and the event
time data.

First, bik and ǫik are assumed mutually independent of each
other. To specify the Model (1) for MCMC computational
techniques, by introducing the ni-dimensional random vector
wi based on the stochastic representation of SN distribution
detailed in the publication (Huang and Dagne, 2011), we can
hierarchically formulate the MVJ model, which consists of the
MLME Model (1) and Cox proportional hazard Model (2)
as follows.

Y i|bi,wi∼N
(

Xiβ+Zibi+1K ⊗ [wi−
√
2/π1ni ],6K ⊗ Ini

)

,
wi ∼ Ni(0, Ini )I(wi > 0), bi ∼ NKq (0,6b) ,
Ti ∼ F(ti|di, λ0) =

∫

f (ρi|bi, xi),
(3)

Then, under the Bayesian framework, we need to specify θ =
(β , γ ,6b,6K , δK) as all unknown population parameters in the
joint Model (1) and (2), where δK = (δ1, . . . , δK)T is the vector
of skewness parameters. We assign weakly informative priors to
ensure the property of posteriors. Thus, the prior distributions
for all of the unknown parameters are specified as follows.

β ∼ N
(

β0,�1
)

, γ ∼ N(γ 0,�2), 6b ∼ IW(�3,ω1),
6K ∼ IW(�4,ω2), δK ∼ N(0,�5),

(4)

where the mutually independent Normal (N) and Inverse
Wishart (IW) prior distributions are chosen to facilitate
computations. The super-parameter matrices �1, �2,
�3, �4 and �5 can be assumed to be diagonal for
convenient implementation.

Subsequently, let f (·), f (·|·), F(·|·), and π(·) denote a
density function, a conditional density function, a cumulative
density function (c.d.f), and a prior density function,
respectively. As the elements of θ = {β , γ ,6b,6K , δK}
are assumed to be independent of each other, we have
π(θ) = π(β)π(γ )π(6b)π(6K)π(δK). After we specify the
MVJ model for the observed data and the prior distributions for
the unknown parameters, we can make the Bayesian inference
for the parameters based on their posterior distributions. Thus,
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the joint posterior density of θ based on the observed data
D = {Y i, bi, ρi} can be represented by

f (θ |D) ∝ {
n

∏

i=1

∫

f (Y i|bi,wi)f (bi)

f (wi|wi > 0)f (ρi|bi, xi)dbi}π(θ).
(5)

In general, the integrals in (5) do not have a closed form
and are high dimensional. Since the approximated analysis of
the integrals may not be sufficiently accurate, it is prohibitive
to directly compute the posterior distribution of θ from the
observed data. Alternatively, the MCMC technique can be
used for sampling random-effects bi and population parameters
θ from conditional posterior distributions based on (5), by
employing the Gibbs sampler with the Metropolis-Hastings (M-
H) algorithm together. We repeat this process in iterations
of the MCMC algorithm until convergence is achieved by
adopting the publicly available WinBUGS package (Lunn
et al., 2000). An advantage of the WinBUGS package is that
it does not require explicitly deriving the full conditional
posterior distributions for unknown parameters. Although their
derivations are straightforward based on the joint posterior
(5), they are not presented here to save space due to some
cumbersome algebra.

3. APPLICATION

3.1. Motivating Data Set
The motivated data set is from a diabetes study, which is a
prospective multinational (U.S., Finland, Sweden, and Germany)
cohort to investigate the environmental determinants of T1D
(TEDDY Study Group, 2007; Larsson et al., 2008; Chen et al.,
2021). This study recruited both the first degree relative (FDR)
children and the general population to be screened for genetic
predisposition for T1D-related Human Leukocyte Antigen-
antigen D and isotype R (HLA-DR) genotypes at the time of
birth when they are eligible. The details on the characteristics
of families of the diabetes cohort have been reported (Lernmark
et al., 2011; Baxter et al., 2012). The participants enrolled in this
diabetes study are followed prospectively from birth to 15 years
old, with study visits beginning at 3 months of age, then every
3 months until 4 years of age, and every 6 months thereafter
depending on the development of T1D. The details of screening
and follow-up have been published previously (Kiviniemi et al.,
2007; Hagopian et al., 2011). The collected data at each visit
time include repeated height and weight measurements, time-
to-event outcomes such as the first sign of islet autoimmunity
(IA) and clinical diagnosis of T1D, biological data, dietary
records, demographic and health histories for the children, and
psychological measurements (TEDDY Study Group, 2007). T1D
is a common pediatric chronic disease and is preceded by a
preclinical period of IA in the presence of islet autoantibodies.

In this real data application here, we consider the dataset of
732 children from all subjects who have developed IA which
is the preclinical sign for potentially clinical diagnosis of T1D
and have repeated weight and height values from birth to

age at diagnosis of T1D or most recent visit. The confirmed
T1D is defined as confirmed positive antibodies to insulin,
insulinoma antigen 2, or glutamic acid decarboxylase, which are
analyzed by a radiobinding assay at least 2 consecutive visit times
(Larsson et al., 2008; Elding Larsson et al., 2014; Chen et al.,
2021). For children with an event that occurred, only repeated
measurements up to the date of diagnosis of T1D are included
in the analysis, while for subjects with censoring, repeated
measurements up to the age of 15 are used. A child’s growth
trajectory in early life shows a quadratic pattern approximately
as displayed in Figure 1 (left and middle panels). The pattern of
a subject may be an important clinical implication because of its
association with the T1D risk. Figure 1 (right panel) shows the
Kaplan-Meier (K-M) survival curve for T1D as the event. Among
the 732 subjects, 246 (33.61%) children are progressed to T1D.
Themain risk factors used in the analysis include gender (women
vs. men), country of residence (Finland, Germany, Sweden as
compared to the United States FDR status (yes or no), and HLA
genotype (HLA-DR3/4 genotype compared with others) which
are the most important genetic and environmental factors in this
diabetes study (Larsson et al., 2008; Chen et al., 2021).

3.2. Model Implementation
We illustrate our models and method for the part of longitudinal
data described in Section 3.1. We used an SN MLME model
with random intercept, random slope, and quadric of age and
gender for the longitudinal submodel and adjusted for random
intercept and random slope, gender, HLA genotype, and FDR
status at baseline in the survival submodel. We consider the
following specific bivariate linear mixed-effects models for height
and weight:

yijk = (β0k + bi0k)+ (β1k + bi1k)Ageij

+ β2kAge
2
ij + β3kGenderi + eijk,

for k = 1, 2 ,

(6)

Specifically, where k = 1 and 2 correspond to the respective
height and weight responses. yij1 and yij2 are the respective
standardized height and weight observations for the ith subject
at time tij; the random-effects bi0k and bi1k represent a subject-
specific random intercept and a subject-specific random slope,
respectively. In this model, the mean baseline value (intercept),
mean change rate (slope), and quadratic of age are assumed to be
different between men and women.

The survival analysis of the joint model is explained in
Section 2.3. The Cox proportional hazard model applied in our
study is specified as follows.

λ(ti|bi, xi) = λ0(ti)exp(υ1b0i1 + υ2b1i1 + υ3b0i2

+ υ4b1i2 + α1Finlandi
+ α2Germanyi + α3Swedeni + α4Genderi
+ α5HLAi + α6FDRi).

(7)

where ϒ = (υ1, υ2, υ3, υ4) is the parameters corresponding
to the random-effects bi = (bi01, bi11, bi02, bi12) and other
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risk factors are included in the survival model. Additionally,
α = (α1, . . . ,α6) is corresponding to the risk factors including
country of residence (Finland, Germany, and Sweden), gender
(female= 1), HLA genotype, and FDR status.

In the diabetes study data, height and weight variables exhibit
skewness and outliers. Based on the nature of the diabetes study
data, the two statistical models with different distributions are
implemented to compare their performance as follows.

• Model N: MVJ model with the normal distribution for
random errors.

• Model SN: MVJ model with the SN distribution for the
random errors.

Because a normal distribution is a special case of an SN
distribution when the skewness parameter becomes zero, we
explore how the MVJ model with an SN distribution contributes
to modeling results and parameter estimates in comparison with
that with a symmetric normal distribution.

In order to perform the Bayesian inferential method, we
need to specify the values of the hyper-parameters in the
prior distributions (4). Due to the absence of historical
data, we apply weakly informative prior distributions for the
parameters in MVJ models. In particular, (i) fixed-effects are
taken to be independent normal distribution N(0, 0.01) for
each element of the population parameter vectors β , υ and
α; (ii) the priors for the variance covariance matrices 6K

and 6b follow IW distributions IW(diag(0.01, 0.01), 2) and
IW(diag(0.01, 0.01, 0.01, 0.01), 4); (iii) for each of the skewness
parameters δ1 and δ2, which represent the skewness of height and
weight, respectively, independent normal distributionsN(0, 0.01)
is chosen.

The MCMC sampler is implemented and the program codes
are provided in Appendix. When the MCMC algorithm is
applied to the diabetes study data, the convergence of the
generated samples is assessed using standard tools such as
Gelman-Rubin (GR) diagnostics (Gelman and Rubin, 1992) and
trace plots. Figure 2 shows the dynamic version of GR diagnostic
plots and the trace plots based onModel SN for the representative
parameters β01, β02, δ1, υ4, α1 and α6. We can see from trace
plots (left panel) that the lines of three different chains mix or
cross in the trace, indicating that the algorithmic convergence is
achieved. For the plots of GR diagnostics (right panel) where the
three curves are given. The top curve indicates the ratio (R̂) of the
middle curve and the bottom curve below the dashed horizontal
line (indicated by the value 1) which represent, respectively
the pooled posterior variance (V̂) and average within-sample
variance (Ŵ). It can be seen that R̂ is generally higher than
one at the initial stage of the algorithms, but it tends to 1
eventually, and V̂ and Ŵ tend to stabilize as the number of
iterations increases, suggesting that the MCMC algorithm has
approached convergence.

When these criteria indicate the algorithm convergence of
chains, we propose that, after an initial number of 10,000
burn-in iterations of three chains of length 30,000, every 20th
MCMC sample was retained from the next 10,000 for each
chain. Thus, we obtain a total of 3,000 samples for targeted

posterior distributions of the unknown parameters for statistical
inference. Even though this is a high-dimensional computation
working load, the MCMC algorithm has no problem regarding
the convergence of a solution for the inverse of matrices and
parameter estimates in this application.

3.3. Data Analysis Results
Bayesian joint modeling approach based on MLME models is
used to fit height and weight, as well as time-to-event data jointly.
From the model fitting results, we have seen that, in general,
the longitudinal sub-model provides a reasonably good fit to the
observed data for most participants in the study; in particular,
Figure 3 shows the three randomly selected individual fitting
curves of the height and weight trajectories estimated by the
MVJ modeling approach based on Models N and SN. We can
see that the estimated individual curves for Model SN, where the
model error follows the SN distribution, fit the observed data
more closely than those for Model N where the model error is
normally distributed. The following findings are obtained from
MVJ modeling.

To access the goodness-of-fit of the two models based on the
MVJ modeling approach, the diagnostic plots of observed values
vs. fitted values of height and weight based on Models N and SN
are represented in Figure 4. It is shown from Figure 4 that Model
SN provides a much better fit to the observed values of height and
weight, as compared to Model N.

Table 1 presents the population posterior mean (PM), the
corresponding standard deviation (SD), and 95% equal-tail
credible interval (CI) for the fixed-effects parameters and Cox
proportional hazard model parameters based on Models SN and
N. The following are our findings for the results of estimated
parameters. First, in the multivariate longitudinal model (6),
the results present that these estimates are different from zero
since 95% of CIs do not contain zero. In particular, for the
parameters that are of interest, the estimates of β11 and β12 for
the growth rate of height and weight, respectively, for Model
SN, are slightly smaller than their counterparts for Model N,
while the baseline estimates of β01 and β02 from Model SN are
slightly larger than those from Model N. Second, the estimates
of the within-subject variances σ 2

11, σ 2
22, and covariance σ 2

12 for
Model SN are smaller than their counterparts for Model N. This
is expected because of high variability, heaviness of the tails,
and skewness are pertinent to certain criteria. The estimates of
the skewness parameters δ1 = −4.68 and δ2 = −1.82 are
significantly negative for Model SN. The results provide evidence
of obvious left-skewness exists in our data. Consequently, Model
SN containing the skewness parameters is recommended. Third,
there is an interesting finding in the Cox proportional hazard
model (7) for the time-to-event process. Model SN indicates
that the estimated two association parameters of the height
[−0.27 with 95% CI (−0.33 − 0.21) and 0.95 with 95% CI
(0.69, 1.22)], and one association parameter of weight [0.42 with
95% CI 0.42(0.25, 0.62)] are significantly associated with the
risk of T1D. In the comparison of Model SN and Model N,
there is not too much difference in the parameter estimates of
the Cox proportional hazard model. The estimated results also
show that it is not directly associated with the covariates of

Frontiers in Big Data | www.frontiersin.org 5 April 2022 | Volume 5 | Article 812725

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Huang et al. Bayesian Joint Modeling

FIGURE 2 | Convergence diagnostics with three Markov chains for representative parameters based on Model SN: trace plots (left panel); Gelman-Rubin (GR)

diagnostic plots (right panel), where the middle and bottom curves below the dashed horizontal line (indicated by the value one) represent the pooled posterior

variance (V̂ ) and average within-sample variance (Ŵ), respectively, and the top curve above the dashed horizontal line represents their ratio (R̂).
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FIGURE 3 | The individual estimates of height and weight trajectories for 3 randomly selected patients based on the two models (Model N: dashed line; Model SN:

dotted line). The observed values are indicated by circles.
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FIGURE 4 | The goodness of fit: Observed values verse fitted values of height and weight based on Models N and SN.

Sweden and gender because of the insignificant estimates of α3

and α4.
In order to select the best model which fits the data

adequately, we adopt a Bayesian selection criterion, known as
the deviance information criterion (DIC) (Spiegelhalter et al.,
2002). As we know, DIC is not intended to identify the
“correct" model but is only used to find the one that fits the
data best. the DIC values obtained are also summarized in
Table 1 in order to compare models under different settings.
It is seen that the DIC value in Model SN is smaller than its
counterpart in Models N, suggesting that Model SN produces
a better fit than Model N in terms of DIC value. Thus, the
further results based on Model SN are reported in detail
below.

The estimated results based on Model SN in Table 1 suggest
the skewness parameters in height (−4.68) and weight (−1.82)
are estimated to be significantly negative. This suggests the
skewness with the heavy left tail of height and fairly left tail of
weight. Thus, it may suggest that accounting for a multivariate
linear mixed-effects joint modeling with the SN distribution

offers a better fit to the data which exhibit skewness and, in
turn, provides more reliable parameter estimates. The estimated
results of fixed-effects presented in Table 1 based on Model SN
indicate that the growth rate of height and weight with quadratic
terms of age and gender may be approximated by ŷ1 = 63.63 +
11.69 × Age − 0.37 × Age2 − 1.55 × Gender and ŷ2 = 7.67 +
2.13 × Age + 0.079 × Age2 − 0.58 × Gender, respectively. The
quadratic of age and gender are all significant for the longitudinal
sub-model of the MVJ modeling. Finally, based on the survival
sub-model, the results show that the hazard ratio of the estimated
association parameter υ2 is exp(υ2) = 2.59 with 95% CI being
(1.99, 3.39) which is statistically significant, indicating that a
positive association between estimated change rate of height and
risk of T1D diagnosis is found after the covariates of the country
of residence, gender, HLA genotype, and FDR status are adjusted
in the model. We also find that HR=exp(α5) = 1.40 with 95% CI
(1.06, 1.86) for HLA genotype and HR=exp(α6) = 1.54 with 95%
CI (1.08, 2.14) for FDR are significantly associated with a higher
risk of T1D. However, gender is not significantly associated with
the risk of T1D.
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TABLE 1 | Summary of the estimated posterior mean (PM) and standard deviation (SD) of the population (fixed-effects) parameters, and the corresponding 95% equal-tail

credible interval (CI) as well as deviance information criterion (DIC) values.

Parameter Model SN Model N

PM SD 95% CI PM SD 95% CI

Parameter estimates in longitudinal sub-model

β01 63.63 0.13 (63.38, 63.88) 61.89 0.12 (61.66, 62.15)

β11 11.69 0.05 (11.6, 11.8) 12.74 0.04 (12.66, 12.81)

β21 –0.37 0.01 (–0.38, -0.36) -0.467 0.01 (–0.473, –0.461)

β31 –1.55 0.21 (–1.96, –1.15) –1.52 0.17 (–1.87, –1.18)

β02 7.67 0.07 (7.53, 7.79) 7.01 0.06 (6.89, 7.13)

β12 2.13 0.03 (2.07, 2.19) 2.53 0.06 (2.47, 2.59)

β22 0.079 0.01 (0.077, 0.082) 0.044 0.01 (0.041, 0.046)

β32 –0.58 0.09 (–0.76, –0.40) –0.57 0.08 (–0.73, -0.41)

δ1 –4.68 0.03 (–4.75, –4.61) – – –

δ2 –1.82 0.03 (–1.86, –1.77) – – –

σ 2
11 1.21 0.05 (1.12, 1.33) 9.99 0.11 (9.78, 10.21)

σ 2
12 –0.44 0.02 (–0.48, –0.39) 2.96 0.04 (2.87, 3.04)

σ 2
22 0.74 0.02 (0.74, 0.79) 2.06 0.02 (2.01, 2.10)

Parameter estimates in survival sub-model

υ1 –0.27 0.03 (–0.33, –0.21) –0.35 0.04 (–0.43, –0.27)

υ2 0.95 0.13 (0.69, 1.22) 1.26 0.18 (0.94, 1.67)

υ3 0.42 0.09 (0.25, 0.62) 0.43 0.09 (0.26, 0.63)

υ4 0.32 0.17 (–0.027, 0.65) 0.29 0.18 (–0.07, 0.65)

α1 0.51 0.17 (0.18, 0.84) 0.41 0.18 (0.04, 0.41)

α2 0.58 0.26 (0.037, 1.08) 0.51 0.18 (0.01, 0.52)

α3 –0.15 0.18 (–0.51, 0.19) –0.34 0.18 (-0.70, 0.03)

α4 –0.054 0.14 (–0.33, 0.21) –0.03 0.14 (-0.31, 0.25)

α5 0.34 0.14 (0.061, 0.62) 0.38 0.14 (0.09, 0.66)

α6 0.43 0.17 (0.076, 0.76) 0.45 0.18 (0.10, 0.79)

DIC 122,274 160,068

4. SIMULATION STUDIES

In order to evaluate the performance of the introduced MVJ
models and methods, the following limited simulation studies
are conducted. The design of the simulated data mimics
that of the diabetes data used in Section 3. Specifically,
we choose the sample size n = 500 and assume that
each individual has 32 scheduled longitudinal values. The
time points of measurement are mimicked from the real
application, and the true values of parameters are selected as
follows. β

†T
1 = (β01,β11,β21,β31)T = (59, 11,−0.3, 0.1)T ,

β
†T
2 = (β02,β12,β22,β32)T = (6, 2,−0.5,−0.5)T ,

ϒ = (υ1, υ2, υ3, υ4)T = (−0.2, 1, 0.4, 0.3)T , and
α = (α1,α2,α3,α4,α5,α6)T = (0.7, 0.8,−0.3,−0.4, 0.3, 0.4)T .
Longitudinal data are simulated based on Equation (6), with
each model including individual random intercepts and random
slopes with bi = (bi01, bi11, bi02, bi12)T ∼ N(0, diag(1, 1, 1, 1)),
correlation is induced between the two longitudinal outcomes
by generating the random intercepts and slopes for each
outcome from the multivariate normal distribution; we
simulate the model errors ǫijk under weight sub-model with

Ŵ(2, 0.8) distribution and height sub-model with Ŵ(1, 0.5)
which yield skewed distribution, respectively. To generate
the event time data, the constant baseline hazard of 0.1
is set, and an exponential distribution with a mean of
0.1 is used to generate censoring time. The covariates in
the survival model are simulated depending on variable
types. For example, gender is simulated from a Bernoulli
distribution with p = 0.5, etc. According to the settings
described above, due to the heavy computational burden, we
generate 50 data sets, which are fitted by Models N and SN.
It is noted that the prior distributions are all close to non-
informative similar to those in real data analysis. Thus, the
results are expected to be somewhat robust with respect to
prior distributions.

Table 2 summarizes the simulation results including the
true parameter (TP) values, percent bias (defined by 100 ×
biasl/|TPl|) and percent mean-square-error (MSE) (defined by
100 ×

√
MSEl/|TPl|) of fixed-effects β , ϒ and α. First, it

is seen that the estimated parameters in height and weight
for our two longitudinal outcomes, which means extending
the univariate joint model to MVJ modeling allow us to
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TABLE 2 | Summary of true parameter (TP) values, estimated parameters, Bias, and MSE for Models N and SN based on 50 simulated data sets.

Model Model SN Model N

Parameter TP EST Bias MSE EST Bias MSE

Parameter estimates in longitudinal sub-model

β01 59 59.61 1.04 0.64 59.61 1.04 0.64

β11 11 11.81 7.37 6.21 11.85 7.74 0.60

β21 –0.3 –0.30 –1.56 –0.01 –0.30 –1.60 0.01

β31 0.1 –0.10 –1.32 0.01 0.09 -1.16 0.01

β02 6 6.81 13.52 11.21 6.80 13.41 10.84

β12 2 2.66 33.08 32.11 2.80 39.96 32.24

β22 –0.5 –0.46 8.42 –1.02 –0.45 9.99 1.13

β32 –0.5 –0.54 –9.60 0.73 –0.55 –10.67 0.72

δ1 1.44 – – – – –

δ2 1.57 – – – – –

Parameter estimates in survival sub-model

υ1 –0.2 –0.19 2.80 0.10 –0.20 0.11 0.08

υ2 1 0.66 –33.60 11.54 0.67 –33.22 11.31

υ3 0.4 0.29 –27.42 4.50 0.31 –23.54 3.52

υ4 0.3 0.24 –19.74 1.63 0.24 –19.80 1.64

α1 0.7 0.74 6.04 0.39 0.75 6.55 0.35

α2 0.8 0.90 12.36 1.70 0.91 14.10 1.66

α3 –0.3 –0.15 49.99 10.08 –0.14 52.77 8.44

α4 –0.4 –0.20 49.99 10.08 -0.19 50.63 10.27

α5 0.3 0.30 –0.88 0.37 0.24 –1.94 0.06

α6 0.4 0.32 –19.28 1.54 0.32 –19.78 1.58

EST is the average of estimates, Bias and MSE are quantified by the percent bias = 100× biasl/|TPl | and percent
√
MSE = 100×

√
MSEl/|TPl |, respectively.

incorporate more information and improves the efficiency in
estimation. Second, for the multivariate linear mixed-effects
sub-model, we find that, in comparison to Models SN and
N, Model SN generally outperforms Model N in terms of
smaller bias and MSE. For all the scenarios considered in
this simulation study, it is seen that all estimated biases
for β21, β31, and β22 are negative, suggesting that these
parameters are underestimated, while estimated biases for
β01, β11, β12, and β02 are positive, indicating that these
parameters are overestimated. We note that the larger bias
of the growth rate of height and weight is reasonable,
and this is consistent with the results from the real data
analysis. The average estimates of skewness parameters δ1 =
1.44 for height and δ2 = 1.57 for weight in Model SN
indicate a departure from (symmetric) normal distribution.
Finally, for the estimated parameters in the survival sub-
model, Model SN obviously outperforms Model N for the
association parameters and baseline covariates except υ1, υ2,
and υ3. Some parameters in the survival sub-model are slightly
overestimated and some parameters are slightly underestimated
in both models. In summary, the simulation results confirm
the importance of accounting for the non-normality of the
data. This suggests that adopting the assumption of normal
distribution may lead to inaccurate inference on fixed-effects
of interest, in particular, when longitudinal data exhibit
non-normal features.

5. CONCLUSION

In this study, we propose a Bayesian MVJ model with multiple
longitudinal responses and survival processes. The MLME sub-
model and the survival sub-model are linked through the
random-effects which are served to characterize the underlying
subject-specific longitudinal process (Xu, 2021).We also consider
some important data features such as non-normality which may
impact the discovery of the true disease diagnosis progression.
Comparing with the classic frequentist’s methods, a Bayesian
approach is powerful when the dimension of parameters is
high in the complicated MVJ modeling. Although the joint
modeling for longitudinal and time-to-event data has been
an active area of statistical methodological study (Huang
et al., 2011; Chen et al., 2014; Huang and Chen, 2016;
Zhang and Huang, 2020), this paper extends to investigate
joint models for survival and multivariate longitudinal data
with SN distribution, accounting for multiple data features,
simultaneously. Although this article is motivated by a diabetes
study, the innovations of the proposed multivariate joint
models and methods may help applied researchers analyze
complicated longitudinal and survival data under a wide range
of applications.

The proposed MVJ model offers some advantages in
comparison with traditional joint models. First, the majority
of joint models focus mainly on a single longitudinal outcome

Frontiers in Big Data | www.frontiersin.org 10 April 2022 | Volume 5 | Article 812725

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Huang et al. Bayesian Joint Modeling

associated with the survival endpoint. However, in many clinical
and observational studies, multiple longitude data are collected
together and they may be significantly correlated. The MVJ
model proposed here is able to reduce the bias and can increase
the efficiency in parameter estimation. These interesting findings
have important clinical indications. Our results suggest that there
is a positive association between rates of growth and risk of T1D
(i.e., there is an increased risk of T1D for larger height and
weight at baseline). Second, due to its importance to measure
height and weight appropriately when they show non-normality
with heavy tails, this article considers two statistical models
(Models N and SN) with different scenarios. We find that Model
SN is favorable to model N. In model SN, the estimates of
skewness parameters δ1 and δ2 are statistically significant for
height and weight, indicating that the skewness with a heavy
tail exists in height and weight measurements. Therefore, the
MVJ model with the SN distribution provides more efficient and
accurate estimates of parameters, and, thus, serves as a better
alternative to the normal distribution-based model which is
widely adopted.

We apply the Bayesian MVJ modeling approach to analyze
the diabetes data set in this article. The results demonstrate
the use of the MVJ model to investigate how the patterns
of longitudinal height and weight trajectories are associated
with the risk of T1D. Furthermore, our results indicate that
it is of importance to consider the MVJ model with the
skewed distribution in order to obtain more accurate and
less biased parameter estimates in the presence of non-normal
features in longitudinal height and weight data. Although
this article is motivated by a diabetes study, the fundamental
concepts of the proposed Bayesian modeling method should
have generally broader applications in practice whenever the
two different sources of dependence among longitudinal data
over time and between longitudinal and survival variables are
presented, and the relevant technical specifications are met
(Chen et al., 2021). Our models may have the potential to
extend to more complicated models. For example, (i) the missing
data mechanism may be considered by introducing a non-
ignorable missing data model for longitudinal measurements

(Huang, 2016; Huang and Chen, 2016). (ii) although a single-
type event time is investigated only in this article, the developed
MVJ model may be extended to accommodate competing risks
survival data in the presence of multiple “failure” types of events
(Elashoff et al., 2008; Hu et al., 2009). Although these interesting
topics are beyond the focus of this paper, they are warranted in
our research pipeline under investigation.
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