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Air pollution is a major concern issue for most countries in the world. In Portugal and

Macao, the values of nitrogen dioxide (NO2), particulate matter (PM) and ozone (O3) are

frequently above the concentration thresholds accepted as “good air quality.” Portugal

follows the European Union (EU) legislation (Directive 2008/50/EC) on air quality and

Macao the air quality guidelines (AQG) from the WHO. Air quality forecasts are very

important mitigation tools because of their ability to anticipate pollution events, and

issue early warnings, allowing to take preventive measures and reduce impacts, by

avoiding exposure. The work presented here refers to the statistical forecast of air

pollutants for three regions: Greater Lisbon Area, Madeira Autonomous Region (both

located in Portugal), and Macao Special Administrative Region (in Southern China).

The presented statistical approach combines Classification and Regression Tree (CART)

and multiple regression (MR) analysis to obtain optimized regression models. This

consolidated methodology is now in operation for more than a decade in Portugal, and

is subject to regular updates that reflect the ongoing research and the changes in the

air quality monitoring network. Recently, the same methodology was applied to Macao

in collaboration with the Macao Meteorological and Geophysical Bureau (SMG). Here,

a statistical approach for air quality forecasting is described that has been proven to be

successful, being able to forecast PM10, PM2.5, NO2, and O3 concentrations, for the next

day, with a good performance. In general, all the models have shown a good agreement

between the observed and forecasted concentrations (with R2 from 0.50 to 0.89), and

were able to follow the concentration evolution trend. For some cases, there is a slight

delay in the prediction trend. Moreover, the results obtained for pollution episodes have

proven that statistical forecast can be an effective way of protecting public health.

Keywords: particulate matter, ozone, nitrogen dioxide, air quality, classification and regression trees, multiple

regression

INTRODUCTION

The Ambient Air Quality Directives of European Union (EU) set standards for key air pollutants.
These values take into account the 2005 WHO guidelines and considerations of technical and
economic feasibility at the time of their adoption.

Air quality forecasting, if reliable and sufficiently accurate, can play an important role as part of
an air quality management system (NOAA, 2001). Its applications can fall into several broad areas,
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such as health alerts—many cities currently provide warnings
to the public when air pollution levels exceed specified levels,
being those warnings directed at specific populations that are
particularly sensitive to air pollution (e.g., asthmatics) (Liu et al.,
2018); in addition, air quality forecasts can supplement existing
emission control programs or emergency responses, with cities
offering free access to public transportation (Quarmby et al.,
2019); on pollution episode days, to reduce vehicle emissions,
and regions implementing the “No-Burn day” (AQMD, 2022);
consisting of a ban period on wood-burning in residential
fireplaces, stoves, or outdoor fire pits, when particulate matter
concentrations are expected to reach unhealthy levels, due to air
emissions and stagnant weather conditions.

To predict the next-day daily average concentrations of
particulate matter (PM10 and PM2.5), daily hourly maximum
concentrations of ozone (O3), and daily hourly maximum
concentrations of nitrogen dioxide (NO2), at air quality
monitoring stations locations, forecast models were developed
based on statistical methods using multiple linear regression
(MR) and Classification and Regression Tree (CART) analysis.

FIGURE 1 | (A) Madeira island air quality observation network (modeled subset); (B) Macao air quality observation network (source: https://www.smg.gov.mo/en/

subpage/182/page/123); and (C) Lisbon air quality observation network.

The NOVA University Lisbon (NOVA School of Science and
Technology), in collaboration with the Portuguese Environment
Agency (APA) and the Portuguese Institute for Sea and
Atmosphere (IPMA), runs and disseminates daily air quality
forecasts based on a statistical approach, first used by
Cassmassi (1987) at South Coast Air Quality Management
District California, USA. This statistical methodology is now
in operation, in Portugal (Neto et al., 2005), for more than
a decade and is the subject of regular updates, reflecting the
ongoing research, and the changes in the air quality monitoring
network. Recently the same methodology was extended to
Madeira Autonomous Region, in Portugal, and was also applied
to Macao Special Administrative Region of the People’s Republic
of China (MSAR), resulting from a collaboration with the Macao
Meteorological and Geophysical Bureau (SMG) (Lei et al., 2019,
2020).

Air pollution is a major concern issue for most countries in the
world. The global burden of disease associated with air pollution
exposure exacts massive toll on human health worldwide: it is
estimated to cause millions of deaths and lost years of healthy
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life annually. The burden of disease attributable to air pollution is
now estimated to be on a par with other major global health risks,
such as unhealthy diet and tobacco smoking, and air pollution
is now recognized as the single biggest environmental threat to
human health (World Health Organization, 2021). In Portugal,
despite improvements in the past two decades, there are still
exceedancesmainly to nitrogen dioxide (NO2) annual limit value,
to particulate matter (PM10) daily limit value, and to ozone (O3)
target value. In Macao, concentrations of these pollutants are
frequently above the thresholds accepted as “good air quality.”

High concentrations of NO2, PM, and O3 in the low
troposphere are an additional risk factor for cardiovascular and
respiratory diseases and contribute to mortality all over the world
(Sheng and Tang, 2013; Lee et al., 2017). Surface O3 is known
by its negative impacts in the respiratory system leading to more
hospitalizations (Entwistle et al., 2019). PM, in particular smaller
fractions such as PM2.5, are a major concern once they can get
deep into lungs and some may even get into the bloodstream
(Wiśniewska et al., 2019). Finally, specific combinations of
concentration levels of these pollutants may be more dangerous
than equally high levels of all the pollutants (Sheng and Tang,
2013). Portugal follows the European Union (EU) legislation
(Directive 2008/50/EC) (European Union Legislation, 2008) on
air quality, and Macao follows the Chinese National Ambient
Air Quality Standards (NAAQS), which in turn are based in the
Interim target-1 Air Quality Guidelines from the WHO (WHO,
2006). EU limit values, legally binding, were set for human health
protection for, among other pollutants and averaging periods,
PM10 as 50 µg/m3 (at a daily basis), PM2.5 as 25 µg/m3 (at
annual basis), NO2 as 40 µg/m3 (at annual basis), and the O3

target value is of 120 µg/m3 (referring to the maximum daily 8-h
mean, represented as O3MAX). The NAAQS has set the threshold
of PM10 at 150 µg/m3 (daily basis), PM2.5 at 75 µg/m3 (daily
basis), NO2 at 40 µg/m3 (annual basis), and O3MAX at 160
µg/m3 (daily maximum 8-hmean). Some of these values contrast
with the recently recommended WHO Air Quality Guideline
levels, updated in 2021, after a systematic review of accumulated
evidence, which are set at 45 µg/m3 for PM10 (daily basis), 15
µg/m3 (daily basis) and 5 µg/m3 (annual basis) for PM2.5, 10
µg/m3 for NO2 (annual basis), and 100 µg/m3 for O3 (daily
maximum 8-h mean) (World Health Organization, 2021).

High-density and high-rise cities have become increasingly
common in Asia (Lee et al., 2017). Air quality is a significant
public health risk in many of these cities (World Health
Organization, 2016). Macao, a coastal city located in southern
China, is one example of a high-density, high-rise city with air
quality issues. Macao was listed as the number one most densely
populated region in the world (Sheng and Tang, 2013), with a
population density of about 20,000 inhabitants/km2, accounting
for a population of 680,000 within an area of 32.9 km2. The
clustering effect is further enhanced by the prevalence of high-
rise buildings. European cities likely have lower pollution and
building densities, and fewer small-scale dispersed pollution
sources, than high-density high-rise cities.

Factors leading to variation in pollution levels are diverse, and
include both human activities andmeteorological factors (Boubel

TABLE 1 | Modeling and validation periods considered by region and air

pollutants forecasted at each air quality monitoring station (AQMS).

Region Modeling

period

Validation

period

AQMS

(Type)

Modeled

Pollutants

Greater Lisbon

Area

2015–2018 2019 Av. Liberdade (UT) PM10, NO2

Entrecampos (UT) PM10, PM2.5, NO2

Olivais (UB) PM10, PM2.5, NO2,

O3

Mem Martins (UB) PM10, PM2.5, NO2,

O3

Madeira

autonomous

region

2016–2018 2019 São João (UT) PM10, PM2.5, NO2

São Gonçalo (UB) PM10, O3

Macao

administrative

region

2013–2018 2019 Macao Roadside

(UT)

PM10, PM2.5, NO2

Macao Residential

(HDR)

PM10, PM2.5, NO2,

O3

Taipa Ambient

(UB)

PM10, PM2.5, NO2,

O3

Taipa Residential

(HDR)

PM10, PM2.5, NO2,

O3

AQMS, Air Quality Monitoring Station; UT, Urban Traffic; UB, Urban Background; HDR,

High Density Residential.

et al., 1994). Meteorology plays a fundamental role in the re-
distribution of air pollutants after their release in the atmosphere
(Boubel et al., 1994). The characterization of local and large
scale circulation winds and vertical atmospheric stability, allows
accounting for transport, mixture, and dispersion processes
(Boubel et al., 1994). Precipitation refers to the natural processes
by which material is removed by atmospheric hydrometeors
(cloud and fog drops, rain, and snow) and delivered to the Earth’s
surface (Seinfeld and Pandis, 2006).

The association between specific meteorological parameters
and air quality can be quantified using a variety of statistical
techniques. Statistical forecast methods analyze the events
without knowing the mechanism of the change; therefore, this
method is not dependent on physical, chemical, or biological
processes (Bai et al., 2018). Instead, methods, such as regression
analysis, investigate relationships between variables. Forecasting
is a requisite part in the science of big data, and can be used to
infer the future development of an object relative to previous
information (Bai et al., 2018). Pollution forecasting can be
understood as an estimation of a pollutant concentration at a
specified future date.

This work aimes to provide an overall description of the
current statistical methods, used by NOVA University Lisbon
air quality group, to forecast air pollutant concentrations. Some
of the discussed aspects are related with data requirements,
steps involved in the model development, advantages and
disadvantages of this approach. Model performance indicators
are presented for each region and pollutant. Finally, examples
of model performance are presented, for pollution episodes
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TABLE 2 | Data sources and variables on a daily temporal scale used in the modeling process.

Data type Source Variables Description

Meteorological

data

Upper air meteorological

observations (Aerological

soundings)

H_1000, H_850, H_700, H_500 Geopotential height at pressure levels (indicator of

synoptic-scale weather pattern) (hPa)

TAIR_925, TAIR_850 and TAIR_700 Air temperature at pressure levels (measure of the

strength and height of subsidence inversion) (◦C)

RH_925, RH_850, RH_700 Relative humidity at pressure levels (%)

DEWP_925, DEWP_850, DEWP_700 Dew point at pressure levels (◦C)

THI_850, THI_700, THI_500 Thickness at pressure levels (associated to the mean

temperature in the layer)

STB_925, STB_850, STB_700 Stability at pressure levels (detector of atmospheric

stability)

Surface meteorological

observations (hourly data)

TAIRMEA, TAIRMIN, TAIRMAX Air temperature, mean, minimum and maximum (air

stability and emission rates from engines) (◦C)

RHMEA, RHMAX, RHMIN Relative humidity, daily mean, maximum and minimum

values (%)

DEWPMEA Mean dew point (◦C)

VMEA, VMAX Wind speed mean and maximum values (horizontal

dispersion) (m/s)

PREC 24h Accumulated Precipitation (pollutant removal

indicator) (mm)

STA1_P-STA2_P Pressure difference between stations (indicator of

synoptic scale weather) (hPa)

Air quality data Surface air quality stations

(hourly data)

PM10_D1, PM10_D2, PM10_D3,

PM10_D12, PM2.5_D1, PM2.5_D2,

PM2.5_D3, PM2.5_D12

Daily mean concentrations for particulate matter (PM10

and PM2.5 ) for the recent past (last 3 days—D1 to D3)

and the last 24h from each days noon (D12) (µg/m3 )

O3_D1, O3_D2, O3_D3, O3_D12,

NO2_D1, NO2_D2, NO2_D3,

NO2_D12

Daily maximum concentrations for ozone (O3) and

nitrogen dioxide (NO2) for the recent past (last 3

days—D1 to D3) and the last 24h from each days noon

(D12) (µg/m3 )

Other data Geographical data and

human behavior descriptors

Daylight Number of hours of daylight (h)

WW Week/Weekend indicator flag (human activity and traffic)

occurred in 2019 over the three studied regions. In this context,
air quality forecast models are relevant tools because of their
ability to anticipate and follow pollution episodes, allowing to
support decisions, such as early warnings to the population,
which can take preventive measures and avoid exposure, and
reducing negative health impacts.

METHODS

Nowadays, forecasting, by statistical methods, has a wide range
of applications and is used all over the world, based on
the application of a multitude of algorithms. These methods
are very accurate and enable a better understanding of
the relationships between air quality data behavior and the
underlying meteorology (Bai et al., 2018). In the present work,
statistical models were developed based on the techniques of
MR and CART. Both techniques rely on the historical data of
meteorological and air quality variables.

Regression analysis methods are based on the association
between pollutant levels, and meteorological and aerometric
variables, which can be quantified by analyzing historical
datasets, using standard statistical analysis packages, as shown

on previous works (Cassmassi, 1987; US EPA, 2003; Choi et al.,
2013; Durão et al., 2016; Oduro et al., 2016). The resultant
multivariant linear regression equation is then used to forecast
future pollution levels. The CART technique identifies those
variables (meteorological or air quality) that are most strongly
correlated with ambient pollution levels. These variables are
then used to predict next day pollution levels, either daily
average or maximum hourly concentrations depending on the
pollutant, based on same day air quality levels and next day
forecasted meteorology.

The referred statistical models were applied to forecast the
average daily concentrations of PM10 and PM2.5, and the hourly
maximum concentrations of O3 and NO2 (referred as O3MAX

and NO2MAX, respectively), for the next day, for each air quality
monitoring station (AQMS) location. For the work presented
here, a set of AQMS were selected in the Greater Lisbon Area
(4 AQMS), Madeira Autonomous Region (2 AQMS), and Macao
(4 AQMS), represented in Figure 1.

The Greater Lisbon Area includes the Portuguese capital,
Lisbon, being the main economical sub region of the country.
It covers 1,376 km2 and it is the most densely populated
Portuguese sub region (with 2,042,477 inhabitants and 1,484
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FIGURE 2 | Flowchart for the model development of air quality forecast by statistical methods.

inhabitants/km2). The Greater Lisbon Area presents a mild
subtropical or a hot-summer Mediterranean climate (Csa),
according to Köppen’s classification (Köppen, 1936), based on
temperature and precipitation mean values. Lisbon summer is
mild to hot with significant temperature variations related, in
part, to coastal distance. The wind blows most frequently from
the north quadrant, according to the 1971–2000 climatological
normals (IPMA, 2022).

Madeira, an autonomous region of Portugal, is an archipelago
comprising four islands off the northwest coast of Africa. This
region comprises a population of 253,945 inhabitants within an
area of 801 km². The capital of Madeira is Funchal that has a
subtropical Mediterranean climate (Csa), according to Koppen’s
classification (Köppen, 1936). Funchal’s climate is predominantly
determined by the Atlantic Ocean and as a result weather
extremes are rare. Temperature usually rises significantly when
the influence of the persistent eastern-winds from northern
Africa is felt. The annual average maximum temperature is
22.1◦C and the average of minimum temperature is 15.8◦C
(IPMA, 2022).

Located along the southeast coast of Mainland China, Macao
is surrounded by water on three sides, with a subtropical oceanic
monsoon climate that is characterized by high temperatures,
high levels of atmospheric moisture and abundant rainfall (SMG,
2022). In winter, Macao is cold and dry with predominant
northern winds, and the summer is presented with heavy rains
due to the strong southwest monsoon. Spring and autumn are

transition periods. The winter northeast monsoon is known to
have the ability to transport pollutants from northern and eastern
China (Tong et al., 2018). In summer season, from June to
August, rainfall increases, providing a better atmospheric mixing,
and persistent southern winds occur, resulting in PM levels to
decrease (Lopes et al., 2016).

Data from 3- to 6-year daily series observations, were used
to develop the forecast models, and each of the models was
evaluated using 2019 data. The time period used to build each
model equation is different for each region and AQMS, according
to data availability (Table 1). The selection of a representative
modeling period is important, being recommended at least 2
years of data.

Regarding the data collection phase, a large set of
meteorological and air quality data was gathered, namely:
(i) meteorological surface observations: hourly observations
from automatic weather stations, such as temperature,
relative humidity, and dew point temperature; (ii) upper-
air observations, such as, geopotential heights, temperature,
relative humidity, and dew point temperature at various altitudes;
and (iii) surface air quality measurements, from AQMS network,
of PM10, PM2.5, NO2, and O3. Other variables were added to the
analysis, as the flag for week/weekend day and the daily sunlight
period duration. A list of independent variables and data sources
used as potential predictors in the modeling phase is presented
on Table 2. The model development flowchart is represented in
Figure 2.
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FIGURE 3 | Classification and Regression Tree (CART) analysis obtained for PM10, Entrecampos.

Series with a low annual efficiency (<75%) on data availability
were rejected. For operational purposes, limitations related to
the expected daily data availability, to perform the forecast, were
also considered. Outliers were identified and excluded from the
data series.

In the process of the MR model development, several of the
initial variables were removed of the final models due to high
correlation values among variables, or due to the commitment
to obtain the simplest model, with the smallest number of
variables that maximizes the explained variance. In addition,
fewer variablesmean that, in operationalmode, missing data have

a lower impact on the quality of the forecast. In MR analysis,
one has to seek for a compromise between model improvement,
obtained by adding variables, and the increase of complexity and
uncertainty introduced by a new variable.

Another important aspect is the effort to achieve accurate
forecast results when higher concentrations are predicted, since
they are related with higher negative health impacts. One of
the advantages of the CART technique is to be able to establish
particular model equations that can accommodate specific
trends caused by meteorological circumstances that trigger high
level concentrations (Choi et al., 2013). This is important to

Frontiers in Big Data | www.frontiersin.org 6 March 2022 | Volume 5 | Article 826517

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


M
e
n
d
e
s
e
t
a
l.

A
ir
Q
u
a
lity

F
o
re
c
a
st

S
ta
tistic

a
lM

e
th
o
d
s

TABLE 3 | Forecast model selected variables for each pollutant and air quality monitoring station.

Location/AQMS/pollutant Model selected weather variables

H TAIR 925 RH 925 DEWP 700 THI 700 STB TAIR RH DEWP MEA V-MAX PREC

1,000 850 500 925 850 700 MAX MIN MEA MIN

Greater Lisbon Area ENT PM10 x x x

AVL x x x

OLI x x x

MEM x x x

ENT PM2.5 x

OLI x x

MEM x x x x

ENT NO2 x x x

AVL x x x x x

OLI x x x

MEM x x x x

ENT O3 x x x x

OLI x x x x x

MEM x x x

Madeira Administrative Region SJO PM10 x x

SGO x x

SJO PM2.5 x x

SJO NO2 x x x x

SGO O3 x x

Macao Autonomous Region M_RES PM10 x x

M_ROA x x

T_AMB x x

T_RES x x

M_RES PM2.5 x x

M_ROA x x

T_AMB x x

T_RES x x

T_RES NO2 x x

M_ROA x x

T_AMB x x

T_RES x x

M_RES O3 x x

T_AMB x

T_RES x x

ENT, Entrecampos; AVL, Avenida da Liberdade; OLI, Olivais; MEM, Mem Martins; SJO, São João; SGO, São Gonçalo; M_RES, Macao Residential; M_ROA, Macao Roadside; T_AMB, Taipa Ambient; T_RES, Taipa Residential; H,

Geopotential height at different pressure levels; TAIR, Air temperature 925 hPa; RH, Relative humidity at 925 hPa; DEWP, Dew Point at 700 hPa; THI, Thickness at 700 hPa, STB, Stability at different pressure levels; TAIR, Temperature,

maximum and minimum; RH, Relative humidity, mean and minimum; DEWPMEA, Mean dew point; V_MAX, Maximum wind speed; PREC, Precipitation.
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TABLE 4 | Model equations obtained for Greater Lisbon Area (Entrecampos), Madeira Autonomous Region (São João), and Macao Administrative Region (Taipa Ambient).

Station Pollutant Model equations

Greater Lisbon Area:

Entrecampos

NO2MAX CART nodes and multiple regression equations:

For NO2D12 ≤ 75.45

NO2MAX = NO2D12 * 0.784 – (STA1_P – STA2_P) * 5.201 + H_850 * 0.015

For 75.45 < NO2D12 ≤ 120.05

NO2MAX = NO2D12 * 0.424 + H_850 * 0.048 – VMAX * 2.169

For NO2D12 > 120.05

NO2MAX = NO2D12 * 0.311 + H_850 * 0.068 – TAIR*
MEA 2.303

PM10 CART nodes and multiple regression equations:

For PM10D12 ≤ 31.45

PM10 = PM10D12 * 0.787 + H_850 * 0.003 – (STA1_P – STA2_P) * 0.717 + TAIR_925 * 0.122

For 31.45 < PM10D12 ≤ 46.30

PM10 = PM10D12 * 0.965 – PREC * 0.421

For PM10D12 > 46.30

PM10 = H_850 * 0.041 – RH_925 * 0.239

PM2.5 CART nodes and multiple regression equations:

For PM2.5D12 ≤ 18.85

PM2.5 = PM2.5D12 *0.860 + H_850*0.001

For 18.85 < PM2.5D12 ≤ 27.25

PM2.5 = PM2.5D12 * 0.975

For PM2.5D12 > 27.25

PM2.5 = PM2.5D12 * 0.873

O3MAX For O3D12 ≤ 51.20

O3MAX = VMAX * 2.122 – STB_700 * 1.511

For 51.20 < O3D12 ≤ 75.55

O3MAX = OMAXD12 * 0.707 + TAIRMAX * 2.144 + THI_700 * 1.595

For O3D12 > 75.55

O3MAX = O3D12 * 0.490 – STB_700 * 1.945 + WW * 9.065

Madeira Autonomous

Region: São João

NO2MAX Multiple regression equation:

NO2MAX = NO2D12 * 0.7950 + H_500* (0.0030) – DEWPMEA * 0.6160 – WW * 1.4930 – Daylight * 0.4520 +

TAIR_925 * 0.4380 – VMAX * 0.1950 – STB_850 * 0.1370

PM10 Multiple regression equation:

PM10 = PM10D12 * 0.9360 + TAIR_925 * (0.4130) – PM10D12 * 0.0960 - DEWPMEA * 0.2520 + PM10D3 *

0.0650 – WW * 0.9360

PM2.5 CART nodes and multiple regression equations:

For PM2.5D12 ≤ 5.95

PM2.5 = PM2.5D12 * 0.895 + TAIR_925 * 0.060

For 5.95 < PM2.5D12 ≤ 9.55

PM2.5 = PM2.5D12 * 1.079 – WW * 0.407 – RH_925 * 0.006

For PM2.5D12 > 5.95

PM2.5 = PM2.5D12 * 0.814 – WW * 1.703 + TAIRMAX * 0.122

Macao Administrative

Region: Taipa Ambient

NO2 Multiple regression equation:

NO2 = NO2_D16 * 0.914 + H_850 * 0.004 + STB-925 * 0.734

PM10 Multiple regression equation:

PM10 = PM10_16D1* 0.905 + H_850 * 0.014 – RHMEA * 0.205

PM2.5 Multiple regression equation:

PM2.5 = PM2.5_16D1* 0.928 + H_850 * 0.006 – RHMEA * 0.093

O3MAX CART nodes and multiple regression equations:

For O3 MAX_16D1 ≤ 105.50

O3MAX = O3MAX_16D1 * 1.034 – O3MAX_23D1 * 0.214 + H_850*0.019 – RHMIN * 0.236

For 105.50 < O3MAX_16D1 ≤ 181.87

O3MAX = O3MAX_16D1 * 0.994 – O3MAX_23D1 * 0.433 + H_850 * 0.051 – RHMIN * 0.529

For O3MAX_16D1 > 181.87

O3MAX = O3MAX_16D1 * 1.006 – O3MAX_23D1 * 0.473 – STB_850 * 8.608
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TABLE 5 | Model performance indicators for validation with 2019 data, by AQMS and pollutant, at Greater Lisbon Area.

Station Type Pollutant Model performance indicators Model type

R2 RMSE MAE BIAS RMAE (%)

Avenida da Liberdade Urban traffic PM10 0.79 5.1 3.8 1.1 14.6 CART + MR

NO2MAX 0.62 23.7 18.3 2.6 17.9 CART + MR

Entrecampos Urban traffic PM10 0.76 5.0 3.6 0.9 16.5 CART + MR

PM2.5 0.50 5.4 3.7 0.4 30.2 CART + MR

NO2MAX 0.71 17.6 13.1 1.0 18.5 CART + MR

O3MAX 0.62 11.6 8.8 2.6 12.8 CART + MR

Olivais Urban background PM10 0.71 5.3 4.1 1.6 21.3 CART + MR

PM2.5 0.52 4.9 3.5 0.9 34.3 CART + MR

NO2MAX 0.69 20.4 13.2 3.6 20.6 MR

O3MAX 0.64 12.0 8.8 0.6 11.4 MR

Mem Martins Urban background PM10 0.81 3.1 2.3 0.1 12.9 CART + MR

PM2.5 0.76 2.1 1.7 0.4 20.4 CART + MR

NO2MAX 0.76 13.0 8.3 −0.2 27.4 MR

O3MAX 0.66 10.8 8.0 −0.4 9.2 CART + MR

TABLE 6 | Model performance indicators for validation with 2019 data, by AQMS and pollutant, at Madeira Autonomous Region.

Station Type Pollutant Model performance indicators Model type

R2 RMSE MAE BIAS RMAE (%)

São João Urban traffic PM10 0.83 4.6 2.6 0.5 13.6 MR

PM2.5 0.85 1.5 1.0 0.2 13.9 CART + MR

NO2MAX 0.82 7.5 6.0 2.2 14.4 MR

São Gonçalo Urban background PM10 0.70 7.4 3.6 −0.2 23.6 CART + MR

O3MAX 0.67 12.1 9.6 −3.2 9.5 MR

TABLE 7 | Model performance indicators for validation with 2019 data, by AQMS and pollutant, at Macao Administrative Region.

Station Type Pollutant Model performance indicators Model type

R2 RMSE MAE BIAS RMAE (%)

Macao Roadside Urban traffic PM10 0.88 8.4 5.6 1.5 11.8 MR

PM2.5 0.87 5.2 3.3 0.2 13.6 MR

NO2 0.89 7.9 5.8 −0.1 9.8 MR

Macao Residential High density residential PM10 0.89 8.8 5.9 −0.1 10.3 MR

PM2.5 0.87 5.2 3.3 0.8 14.0 MR

NO2 0.86 7.7 5.5 0.0 10.9 MR

O3MAX 0.85 23.2 14.0 0.0 22.3 MR

Taipa Ambient Urban background PM10 0.88 7.8 5.1 0.8 14.3 MR

PM2.5 0.86 4.8 3.1 0.2 17.7 MR

NO2 0.87 6.1 4.2 1.0 16.3 MR

O3MAX 0.86 23.7 14.7 −1.6 13.9 CART + MR

Taipa Residential High density residential PM10 0.88 7.9 5.1 0.2 8.7 MR

PM2.5 0.88 5.6 3.5 −0.1 13.1 MR

NO2 0.87 5.6 4.1 0.6 12.8 MR

O3MAX 0.78 20.9 12.7 1.3 19.7 CART + MR
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send advisory recommendations in the anticipation of higher
pollution episodes to avoid excessive exposure.

The CART analysis defines a path with several nodes,
where threshold values on specific variables split into binary
ramifications, based on the largest reduction in variations in the
target variable in each of the new branch (Choi et al., 2013).
CART analysis produces a tree representation, as exemplified
in Figure 3 for PM10, according to some parameterizations,
as the pretended tree depth. The CART analysis and the MR
model development were performed using the IBM software
SPSS (Version 25).

Model performance evaluation was accomplished by
computing the most common scores: (i) bias (Equation 1), (ii)
mean absolute error (MAE) (Equation 2), (iii) root mean square
error (RMSE) (Equation 3), (iv) coefficient of determination
(R2) (Equation 4), and (v) relative mean absolute error (RMAE)
(Equation 5), where f represents the forecasting value, o the
observed value, n the forecast/observation pairs, f the forecasting
mean value, and o the observed mean value. These statistic
measures of agreement were obtained by comparing the
forecasted 2019 validation data set to the observed/monitored
air pollutant levels on that year.

BIAS=
1

n

n
∑

i=1

(

fi−oi
)

(1)

MAE =
1

n

n
∑

i=1

∣

∣fi−oi
∣

∣ (2)
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√

1

n

n
∑

i=1

(

fi−oi
)2
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R2
=

[
∫ n
i=1 (fi−f̄ )−(oi− ō )]∧2

2 [
∫ n
i=1 (fi − f̄ )∧2] [

∫ n
i=1 (oi− ō )∧2]

(4)

RMAE =

(

MAE

ō

)

∗100 (5)

The obtained statistical models allow to perform a daily forecast,
for the next day, of PM10, PM2.5, NO2, and O3 concentrations,
in an operational mode, for the three studied regions. The
prediction models run daily, after 16 h for Macao and 13 h for
both Greater Lisbon Area and Madeira Autonomous Region,
according to the daily schedules in which air quality data is
made available.

In the final stage of the operational process, a forecasted air
quality index (AQI) is produced for each pollutant for the next
day based on the daily air pollutant concentrations, mean or
maximum daily values, depending on the pollutant. The final
AQI, for each location, corresponds to the worst level of air
quality among the forecasted pollutants.

RESULTS

Model Selected Variables and Performance
Indicators
The statistical models based on MR and CART analysis were
developed to forecast NO2, PM10, PM2.5, and O3 concentrations.
The objective is to perform a daily forecast, for the next day,
in an operational mode by running the prediction models after
16 h for Macao and 13 h both Greater Lisbon Area and Madeira
Autonomous Region.

CART analysis was tested mainly to better predict high
concentration levels. For Macao region, CART analysis did not
improve the quality of overall predictions being, in this case, the
prediction models based only on one MR equation. We believe
that in Macao, pollution is frequently due to distant sources
with pollutants being, transported through the advection of air
masses by large scale circulation. Therefore, local meteorology
is not as critical, being one equation sufficient to explain and
enable the prediction of next day pollutant concentrations,
for each monitoring location. The exception was verified for
O3MAX predictions, at two AQMS. In these last cases, CART
analysis allowed to identify split nodes, for which O3 prediction
equations were determined, afterward, by using MR for each
node. Opposing to Macao trend, in Greater Lisbon Area, almost
every AQMS and pollutant are being forecasted with CART
and MR.

The most prevalent variable, being selected at all the forecast
equations, is the one that represents the last 24-h pollutant
concentrations (16 h from yesterday to 15 h today in the case
of Macao, and 11 h of yesterday to 12 h of today for the Great
Lisbon Area and Madeira Autonomous Region). Regarding the
meteorological selected independent variables used as predictors
(Table 3), the geopotential height at 850 hPa (H_850), indicator
of synoptic-scale weather pattern, is frequently present in the
forecast of NO2 and PM, both in Lisbon and Macao. For Lisbon
and Madeira stations, the most common and frequent weather
variable is air temperature at 925 hPa (TAIR_925), a measure of
the strength and height of the subsidence inversion, especially for
PM forecasts. InMacao, in addition to H_850 (the most common
variable), figures the RHMEA, attributing relevance to relative
humidity in the air quality forecast at this region. In Lisbon, the
final set of model selected variables covers 13 weather variables.
In Madeira and Macao, there is a lower variability of different
weather variables: for Madeira TAIR_925 and the average dew
point temperature (DEWPMEA) are the most common with more
four different variables, and in Macao H_850 and RHMEA are the
most common with more seven different variables. In Table 4,
the obtained MR model equations are presented for one AQMS
selected for each studied region.

Models were validated with collected data from 2019. For
validation purposes, it is important to use at least 1 year of
data, to accommodate for all the seasonal variations. Model
performance indicators are summarized, by region, in Table 5

(Greater Lisbon Area), Table 6 (Madeira Autonomous Region)
and Table 7 (Macao Administrative Region). The referred tables
contain the obtained model performance indicators, such as, R2,
RMSE, MAE, Bias, and RMAE. For each station and pollutant,
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FIGURE 4 | Daily observations (OBS) and forecasts (FCST) at three monitoring stations (AVL, Avenida da Liberdade; MEM, Mem Martins; ENT, Entrecampos) in

Greater Lisbon Area, for 2019.

FIGURE 5 | Daily observations (OBS) and forecasts (FCST) at three monitoring stations (Macao Residential, Taipa Residential, and Taipa Ambient) in Macao

Administrative Region, for 2019.
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FIGURE 6 | Daily observations (OBS) and forecasts (FCST) at two monitoring stations (SJO, São João; SGO, São Gonçalo) in Madeira Autonomous Region, for 2019.

FIGURE 7 | Particulate matter (PM10) observed (OBS) and forecasted (FCST) concentrations, with emphasis on the natural dust episode occurred in 2019

(20-25/02/2019), at four air quality monitoring stations at Greater Lisbon Area.
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FIGURE 8 | Particulate matter (PM10) observed (OBS) and forecasted (FCST) concentrations, with emphasis on the natural dust episode occurred in 2019

(22-26/02/2019), at São João air quality monitoring station at Madeira Autonomous Region.

FIGURE 9 | Particulate matter (PM10 ) observed (OBS) and forecasted (FCST) concentrations, with emphasis on the Chinese National Holiday in 2019 (01/10/2019), at

four monitoring stations at Macao Administrative Region.
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FIGURE 10 | Ozone (O3) observed (OBS) and forecasted (FCST) concentrations, with emphasis on the pollution episodes occurred in 2019 (04-08/09/2019 and

12-15/09/2019), at three air quality monitoring stations at Greater Lisbon Area.

FIGURE 11 | Ozone (O3) observed (OBS) and forecasted (FCST) concentrations, with emphasis on the pollution episode occurred in 2019 (01-06/05/2019 and

13-19/05/2019), at São Gonçalo air quality monitoring station at Madeira Autonomous Region.
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FIGURE 12 | Ozone (O3) observed (OBS) and forecasted (FCST) concentrations, with emphasis on the pollution episode occurred in 2019 (18-19/10/2019), at Taipa

Ambient air quality monitoring station at Macao Administrative Region.

the forecasted time series was plotted against observations
(Figures 4–6).

The results show a good agreement between modeled and
observed concentrations, being statistically significant at the 95%
CI. The selected models provide a good relationship between
meteorological and air quality variables, when performing an air
quality forecast under different situations.

The time series plotting displays a good overall correlation
between observations and forecasted values, however, there is a
slight trend to underestimate the maximum peaks. The statistical
scores are comparable across the regions under analysis.

Regarding the obtained R2 for modeled vs. observed
concentrations (Tables 5–7), the following aspects can
be highlighted:

• the R2 is, on average, lower for Lisbon than for Madeira and
Macao, ranging from 0.5 in Olivais for PM2.5 to 0.81 in Mem
Martins for PM10;

• Macao presents R2-values ranging from 0.78 at Taipa
Residential for O3 to 0.89 at Macao Roadside and Macao
Residential (for NO2 and PM10, respectively);

• Madeira R2-values range from 0.67 at São Gonçalo for O3 to
0.85 at São João for PM2.5.

In general, the bias stays very close to zero with the maximum
value being 3.6 achieved for the NO2 at the station Olivais
(Lisbon). When comparing the BIAS and MAE, there are
significant differences between pollutants, some of them related
to different ranges of variation of the daily concentrations. The

RMAE ranges from 8.7% for PM10 at Taipa Residential (Macao)
to 34.3% for PM2.5, at Olivais. Comparing the RMAE for the
different regions, Lisbon displays, on average, higher values
than Macao and Madeira, being PM2.5 the pollutant with the
lowest performance.

Atmospheric Pollution Episodes
As examples of the response of developed models, in situations
where air pollutant concentrations rise significantly, a few
pollution episodes were chosen for each region under study,
considering different pollutants: PM10 and O3.

Long-range transport processes of desert dust from North
Africa are not infrequent, significantly affecting ground level
particle concentrations recorded during these events, in Iberian
Peninsula (Querol et al., 2009). In Portugal, both in Lisbon and
Madeira, these natural dust intrusion episodes are common,
contributing to higher PM10 concentrations, frequently above the
daily limit value of 50 µg/m3, as represented in Figures 7, 8,
often due to the persistence of specific synoptic patterns. Both
in Lisbon and Madeira case studies, forecast models slightly
underestimated PM10 concentrations, but were able to follow
general PM10 evolution profile, showing a small delay in the
prediction trend.

Concerning Macao Administrative Region, a period covering
the Chinese National Holiday was chosen, in which a rise of
PM10 concentrations, to values over 120 µg/m3, was measured
at four air quality monitoring stations (Figure 9). This holiday
is known to be a golden week of tourism, Macao being one of
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the favorite destinations for Chinese tourists (Lee et al., 2017)
and also characterized by the release of a considerable amount
of fireworks. The PM10 peak concentrations, occurred on the 1st

of October, was well predicted for Taipamonitoring locations and
slightly underestimated for Macao stations.

Regarding O3, a set of pollution episodes, occurred in 2019 in
the three case study regions, is presented in Figures 10–12. The
marked high pollution intervals in these figures correspond to
the exceedance of pollutant specific legal thresholds. Mechanisms
for near-surface ozone formation and depletion are complex.
Previous studies have shown that ozone production accelerates
at high temperatures, which may be attributed not only to the
temperature dependence of chemical reactions, but also to the
weak winds which accompany high temperatures and heatwaves,
and cause the atmosphere to stagnate and built up ozone levels
(Pyrgou et al., 2018). In a general mode, all the models have
shown a good agreement between the observed and forecasted
concentrations and were able to forecast the pollution peaks with
a good degree of precision. However, in the case of Madeira,
due to the particular circumstances of being an island with
extreme altitude variations, a meteorological next-day variable
was not found to be integrated in the model and anticipate some
higher ozone levels. Ozone, as secondary pollutant, has a complex
formation process that creates higher forecast difficulties in
certain geographical areas. Therefore, in some of these situations,
the lag shown in Figure 11, between observed and predicted
ozone concentrations, is mostly a consequence of the daily
evolution trend from the day before.

DISCUSSION

The described statistical approach to air quality forecasting
has proven to be successful, being able to forecast next
day NO2, PM10, PM2.5, and O3 concentrations with a good
performance reflected by the presented evaluation scores. The
results differ slightly, between stations and pollutant, but
overall the variables included in each model explain more
than 90% of the variance of the independent variable in
the development stage, value that usually decreases in the
validation period. The application to different regions pretends
to demonstrate the versatility of the methodology. It is expected
a small degradation in the performance of the models when
in operation, due to several factors, such as the uncertainty of
meteorological forecasts.

Statistical models should be updated on a regular basis if
there are, for instance, significant changes on local sources of
air pollution, but can also be improved with the introduction
of new variables, as predictors, in order to better explain part of
pollutant variance.

The forecast models can show a slight delay in response to
the short-term sudden variations on concentrations, once the
previous day concentration is itself the independent variable
considered as the best predictor since it explains most of
the model variance. However, as shown in the selection
of PM10 and O3 pollution episodes, this methodology was
able to reproduce the trend and variations of monitored air

pollutant concentrations. This shows that the regression models
obtained can be reliably applied to forecast next-day pollutants
concentrations across different magnitude levels of air pollution,
being a useful tool for air pollution impacts mitigation.

The method has a few advantages when compared
with numerical modeling, namely the lower complexity of
development and implementation, and the fewer computing
resources needed. On the disadvantages side, it can be pointed
at the high dependence on a good operating air quality
monitoring network and meteorological forecasts. In the
case of Portugal, where next day forecasts provided by the
Portuguese Environmental Agency are calculated by two
methods (deterministic and stochastic) as part of an ensemble
approach for both PM10 and O3, the quality data for 2019 show
that the probability of detection, by the stochastic model was
higher for all the regions (6) within the country except for one.
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