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Weather Normalized Models (WNMs) are modeling methods used for assessing air

contaminants under a business-as-usual (BAU) assumption. Therefore, WNMs are used

to assess the impact of many events on urban pollution. Recently, different approaches

have been implemented to develop WNMs and quantify the lockdown effects of

COVID-19 on air quality, including Machine Learning (ML). However, more advanced

methods, such as Deep Learning (DL), have never been applied for developing WNMs.

In this study, we proposed WNMs based on DL algorithms, aiming to test five DL

architectures and compare their performances to a recent ML approach, namely Gradient

Boosting Machine (GBM). The concentrations of five air pollutants (CO, NO2, PM2.5,

SO2, and O3) are studied in the city of Quito, Ecuador. The results show that Long-Short

Term Memory (LSTM) and Bidirectional Recurrent Neural Network (BiRNN) outperform

the other algorithms and, consequently, are recommended as appropriate WNMs to

quantify the effects of the lockdowns on air pollution. Furthermore, examining the variable

importance in the LSTM and BiRNN models, we identify that the most relevant temporal

and meteorological features for predicting air quality are Hours (time of day), Index (1 is

the first collected data and increases by one after each instance), Julian Day (day of the

year), Relative Humidity, Wind Speed, and Solar Radiation. During the full lockdown, the

concentration of most pollutants has decreased drastically:−48.75%, for CO,−45.76%,

for SO2, −42.17%, for PM2.5, and −63.98%, for NO2. The reduction of this latter gas

has induced an increase of O3 by +26.54%.

Keywords: air pollution,machine learning, deep learning - artificial neural network (DL-ANN), data-drivenmodeling

and optimization, COVID-19

INTRODUCTION

In recent years, millions of deaths around the world have been caused by the polluted environment
due to toxic emissions from industries, traffic, and the growing human population (Piqueras and
Vizenor, 2016; WHO, 2021a,b). Among the most common atmospheric pollutants are carbon
monoxide (CO), nitrogen oxides (NO and NO2), sulfur dioxide (SO2), ozone (O3) and particulate
matter (PM), predominantly fine particulate matter (with aerodynamic diameter ≤ 2.5µm,
PM2.5). These pollutants, at certain established concentration levels, can damage respiratory and
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cardiovascular systems (Pope et al., 2012; Lelieveld et al., 2015).
Furthermore, recent studies have shown that bad air quality
could aggravate the symptoms of the coronavirus disease 2019
(COVID-19) (Gardiner et al., 2020; Wu et al., 2020).

In 2020, while the COVID-19 spread throughout the world,
Ecuador was one of the most affected countries, with 50,183
confirmed cases and 4,199 deaths, reported on June 21st (WHO,
2020). To reduce the disease spread, the country implemented the
first exceptionally strict lockdown between March 15 and June
2, 2020, and from thereon, has been progressively relaxing the
security measures (until September 2020)1. This situation makes
Quito, the capital city of Ecuador, an excellent case study to assess
the effects of different levels of lockdown.

The simplest approach to assessing the impact of the
COVID-19 lockdowns on air quality is to compare the average
concentration of a pollutant before and during the lockdown
(Gkatzelis et al., 2019; Zalakeviciute et al., 2020). More
advanced methods consist of developing a model to predict the
pollution level assuming a business as usual (BAU) scenario
and quantifying the lockdown effects. Air quality prediction is
traditionally based on the application of atmospheric chemical
transport models (CTMs), which provide a mathematical
framework for the description of emission patterns, meteorology,
chemical transformations, and removal processes (Seinfeld and
Pandis, 2016). Such CTMs can be combined with higher
resolution dispersion models to provide local air quality levels in
street canyons (Gidhagen et al., 2021). More recently, statistical
methods, such as Machine Learning (ML) (Barré et al., 2021;
Betancourt et al., 2021; Lovrić et al., 2021; Nitheesh et al., 2021;
Rybarczyk and Zalakeviciute, 2021), have proven their efficiency
and reliability in predicting the concentrations of pollutants in
the atmosphere.

Meteorological normalization is a method that uses
meteorological features to predict the concentrations of air
contaminants under BAU conditions (Grange et al., 2018).
Since we take into account the actual meteorological condition
during the lockdown, it allows us to obtain Weather Normalized
Models (WNMs). So far, the WNMs have been built from ML
algorithms, such as Random Forest and Gradient Boosting
Machine (GBM). Grange et al. (2018) proposed WNMs based
on Random Forest algorithm for PM10 analysis. Afterwards,
Rybarczyk and Zalakeviciute (2021) and Barré et al. (2021)
used GBM for developing the WNMs to quantify the effects of
COVID-19 lockdowns on air quality.

More recently, DL algorithms have shown a better
performance than ML on several predicting problems. For
example, Convolution Neural Network (CNN) fits well for
image and signal processing (LeCun et al., 1998; Qin et al.,
2019). Long-Short Term Memory (LSTM) is more adapted
for time series prediction (Kuremoto et al., 2014; Ong et al.,
2016) and natural language processing (NLP) (Hochreiter and
Schmidhuber, 1997). Bidirectional Recurrent Neural Network
(BiRNN) is mainly applied for timeseries data (Li et al., 2019),

1https://ourworldindata.org/grapher/covid-stringency-index?tab=

chart&country=~ECU

signal processing (Schuster and Paliwal, 1997), automated
translation (Sundermeyer et al., 2014), NLP (Liwicki et al.,
2007), and bioinformatics (Pollastri and McLysaght, 2005). In
addition to that, the architecture of each DL method can be
customized to improve model accuracy. In recent years, DL has
received much attention for developing air quality prediction
models. Recurrent Neural Network (RNN) has been applied
for air quality monitoring (Kristiani et al., 2020) and air quality
classification (Fan et al., 2017; Zhao et al., 2018). CNN has
been used for air pollution index prediction and NO2 estimation
(Ragab et al., 2020). Meanwhile, LSTMwas applied for predicting
CO, NO2, O3, PM10, SO2 and pollen concentrations in Madrid
(Navares and Aznarte, 2020), and for modeling air quality in
India (Krishan et al., 2019). Finally, some studies used DL for
predicting air quality with BiRNN (Tong et al., 2019), Gated
Recurrent Unit (GRU) (Athira et al., 2018) and multi-source data
for forecasting PM2.5 (Sun et al., 2021). Considering that DL has
the potential to provide higher accuracy, we propose DL-based
WNMs by testing five DL architectures. Another motivation for
using a DL-based approach is its modeling flexible, such as new
data can be included in the training without having to scan the
whole dataset.

This paper aims to develop WNMs based on DL for studying
the effect of COVID-19 on air quality. The accuracy of GBM
and five DL algorithms is compared to identify the best models
for predicting air pollution under BAU conditions. The objective
is to obtain a more accurate assessment of the effect of the
lockdowns (strict and relaxing) on air quality, using the capital
city of Ecuador as a case study. Five representative pollutants of
the urban air quality are studied: NO2, SO2, CO, O3, and PM2.5.
Afterwards, we use SHapley Additive exPlanations (SHAP)2

to discover the feature importance of the inputs for the best
model, which can reveal the interrelations between predictors
and pollutant concentrations. Finally, the impacts of the COVID-
19 lockdown are quantified by calculating the difference between
the real and predicted values of the pollutant concentrations
under the BAU assumption.

In summary, the main goals of this study are outlined
as follows:

• Developing WNMs based on DL to estimate air pollution for
the five most representative urban pollutants.

• Assessing the impacts of the COVID-19 lockdowns on air
quality in Quito by selecting the best WNMs.

• Identifying the feature importance for the best WNMs and
analyzing the relationship between temporal, meteorological
features, and air pollutants.

The remainder of this paper is organized into three sections.
Section Materials and Methods includes a description of the
site and instrumentation, data collection, data processing, and
implemented methods. Section Results and Discussions presents
the results and discussion. Our conclusions and future work are
presented in the final section.

2https://github.com/slundberg/shap
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MATERIALS AND METHODS

Site Description and Instrumentation
The Ecuadorian capital, Quito, is located in South America
right on the equator. The climate is mild and stable in terms
of daily temperature variations, with wet (September–May) and
dry (June–August) seasons (Zalakeviciute et al., 2018a). It is
a high elevation city in the Andes mountains at 2,850 meters
above mean sea level (m.a.s.l.), housing a population of 2.2
million people (EMASEO, 2011; INEC, 2011). Due to the reduced
availability of oxygen (70%) at this altitude (Andes mountains),
and poor-quality diesel and gasoline, the city is known for its
long-term air pollution problems (Zalakeviciute et al., 2018a,b).

The city successfully manages a long-term air quality
monitoring network, functioning in accordance with the
requirements of the Environmental Protection Agency of the
United States (U.S. EPA) (Secretaria de Ambiente, dd). The study
site - Belisario (m.a.s.l 2,835m, coord. 78◦29’24” W, 0◦10’48” S)
is in a central traffic-busy district and is the best representative of
the capital city of Ecuador.

Air quality monitoring instruments were set on the patio
of a local school. A ThermoFisher Scientific 48i instrument
was used to acquire the concentrations of CO (EPA method
No. RFCA-0981-054). A ThermoFisher Scientific 43i was used
for SO2 (EPA method No. EQSA-0486-060). ThermoFisher
Scientific 49i was used for O3 (EPA method No. EQOA-0880-
047). ThermoFisher Scientific 42i was used for NO2 (EPAmethod
No. RFNA-1289-074). Finally, Thermo Scientific FH62C14-DHS
was used to obtain PM2.5 concentrations (EPA No. EQPM-0609-
183). Apart from the air quality data, meteorological parameters
were also measured in the same monitoring station. For that,
a complete automatic weather station was used. Wind speed
and direction were measured using a MetOne instrument.
Relative humidity, temperature and precipitation were measured
by Thies Clima equipment. Finally, a Kipp Zonen radiometer
measured solar radiation, and Vaisala equipment measured
atmospheric pressure.

Data
The data include meteorological, temporal variables, and five air
pollutant concentrations. The seven meteorological features are:
Solar Radiation (SR), Wind Direction (WD), Wind Speed (WS),
Atmospheric Pressure (p), Precipitation (Prec), Temperature (T)
and Relative Humidity (RH). The four temporal variables are
Julian Day (or Day of the Year), Weekday, Hours (or Time
of Day), and Index (the index is started from 1 January 2016
and incremented by one at each instance). These temporal
variables are additional variables in WNMs, not directly affecting
the atmospheric concentration, but reflecting cyclic emission
patterns. Hours account for emissions at rush hours. The Julian
Day is a periodic term that represents seasonal emissions. The
Weekday reflects the difference in human mobility between
weekends and weekdays. The Index variable is denoted as a
trending feature. The predicted features are the concentrations
of NO2, SO2, CO, O3, and PM2.5.

The dataset includes 4 years and 9 months of hourly data
between 2016 and 2020. Instances with empty values for certain

features are eliminated from the cleaned dataset. Afterwards, we
divided the data into three parts. The first part is the training set,
from 1 January 2016 to 15 January 2020 (2 months before the
COVID-19 lockdown). The second part, which is the testing set,
is from 16 January 2020 to 15March 2020 (the day of the national
lockdown). In WNMs, the months before the application of
interventions are commonly used for the testing set (Petetin et al.,
2020; Barré et al., 2021; Rybarczyk and Zalakeviciute, 2021). The
third part is the full lockdown (from 16March to 1 June 2020) and
partial lockdown (from 2 June to 30 September 2020) periods,
which is used to quantify the change of pollutant concentration,
through the best WNMmodels.

Figure 1 illustrates the distribution of the seven
meteorological features for the training and testing sets.
From this figure, we can identify three groups. The first
group of variables indicates that the median of testing data
is higher than that on training data (Figures 1A,E–G).
On the contrary, the second group includes WS and WD
(Figures 1B,C). The median of these features in testing sets
is lower than the median in the training data. The last group
consists of Prec features, where the boxes are small in both
training and testing sets (Figure 1D). This feature is skewed,
which can be caused by the weather characteristics in Quito
with wet and dry seasons. Overall, most distributions of
the meteorological features on the training sets are able to
cover the distributions of the meteorological features on the
testing set.

Figure 2 depicts the distributions of five pollutant
concentrations. There are several outliers in the data. The
outliers consist of data points that are higher than 1.5 times
the interquartile range (IQR). Meanwhile, outlier levels in
air pollutants should be different from 1.5∗IQR (Schmid
et al., 2000). Additionally, it can be seen that the median and
height of the boxes in training and testing data are sharply
similar. This observation allows us to retain all original
pollutant data to develop WNMs and assess the effects of
COVID lockdowns.

Method
Figure 3 represents an overview of our research method. First,
we eliminated empty values and split the data into training
and testing sets. Second, we used the training and testing
data to develop and evaluate the performance of GBM and
DL models. The architecture and implementation of the GBM
and DL models are described in Sections Gradient Boosting
Machine and DL Models. The experimental setups describe how
to tune the parameters of GBM and DL algorithms (Section
Experimental Setups). Third, all models are evaluated to select
the best WNMs, based on the two metrics explained in Section
Evaluation Metrics. Afterwards, the best WNMs are used for
“Variable Importance” and “Assessment of Air Quality Changes”.
The respective importance of each feature for the best WNMs
is obtained by using the SHAP values method (Section SHapley
Additive exPlanations for Model Explanation). Finally, the best
WNMs is used to quantify the pollution change in Quito during
the COVID-19 lockdown. The predicted values from the best
WNMs are considered as pollution levels of contaminants under
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FIGURE 1 | Distributions of meteorological features between training and testing set. (A) SR (W/m2) (B) WD (◦) (C) WS (m/s) (D) Prec (mm) (E) p (mb) (F) temperature

(◦C) (G) RH (%).

BAU conditions. The air quality changes are the differences
between the predicted and the actual values during the
lockdown periods.

Gradient Boosting Machine
GBM is a powerful method of decision tree-based ensemble
learning (Friedman, 2001). It was used in the previous study for
assessing the effect of the COVID-19 lockdown on air quality
(Barré et al., 2021; Rybarczyk and Zalakeviciute, 2021). The
generalization of the algorithm is a stage-wise additive model of
n individual regression trees following the algorithm presented in
Table 1. GBM sequentially builds regression trees for all the data
set features in a fully distributed way, which means that the trees
are built in parallel. At each iteration from 1 toM, the instructions

defined at line 2(a–d) are repeated K times. Equation (1) is used
to obtain the outputs.

f̂ (x) =

N
∑

n=1

f̂
n
(x) (1)

DL Models
In recent years, five kinds of DL methods (CNN, LSTM, RNN,
BiRNN, andGRU) have been widely used in the literature (LeCun
et al., 1998; Ong et al., 2016; Athira et al., 2018; Jogin et al., 2018;
Qin et al., 2019; Tong et al., 2019; Kristiani et al., 2020; Navares
and Aznarte, 2020). Each of these algorithms has its advantages
and drawbacks. For this reason, the proposed approach aims to
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FIGURE 2 | Distributions of pollutant concentrations between training and testing set. (A) O3 (µg/m3 ) (B) CO (mg/m3 ) (C) NO2 (µg/m3 ) (D) SO2 (µg/m3 ) (E) PM2.5

(µg/m3).

FIGURE 3 | Workflow of the data analysis.

compare their performance for air quality prediction. Once the
best model is identified, it is used to assess pollution changes
caused by the different levels of lockdown.

The proposed DL models are based on the five layers
presented in Figure 4. First, an input layer adapts the temporal
andmeteorological features to the DL layer. This layer transforms
the original data into three-dimensional data with Min-Max
Scaler based on the number of features and the number of
“Timesteps.” Second, the DL layer is set up for capturing the

TABLE 1 | GBM procedure in H2O library.

Initialize fk0 = 0, k = 0, 1, . . . , K

For m = 1 to M:

1. Set pk (x) = efk (x)

∑K
l=1

(

efl (x)
) , k = 1, 2, . . . ,K

2. For k=1 to K:

a. Compute

rikm = yik − pk (xi) , i = 1, 2, . . . ,N

b. Fit a regression tree to the targets:

rikm, i = 1, 2, . . . ,N, giving terminal regions Rjim, j =

1, 2, . . . , Jm
c. Compute

γikm = K−1
K

∑

xi∈Rjkm
(rijk)

∑

xi∈Rjkm
|(rikm)|(1−|(rikm)|)

, j = 1, 2, . . . , Jm

d. Update

fkm (x) = fk,m−1 (x) +
∑Jm

j=1

(

γjkm I
) (

x ∈ Rjkm
)

Output: f̂ (x) = fkM (x) , k = 1, 2, . . . ,K

characteristics of the data. CNN, LSTM, RNN, BiRNN and
GRU are used to compare the performance of each of the DL
architectures. Third, a “Drop out” layer is introduced after the DL
layer to reduce the risk of over-fitting. Since the outputs are real
numbers, a Dense layer is added afterwards to adapt the output
of the “Drop out” layer to the predicted targets. Then, the weights
of the WNM are adjusted from the predictive feature to obtain
the best model. Although more complex DL models could be
implemented (e.g., CNN-LSTM or LSTM-LSTM), the intended
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FIGURE 4 | The model with general DL layer.

scope of this study is to focus on a DL layer for a fair comparison
between the DL architectures.

The architectures, advantages, and disadvantages of five DL
methods (CNN, LSTM, RNN, BiRNN, and GRU) are described
in detail in the rest of this section.

Convolution Neural Network
There are two basic types of CNN architecture: CNN1D and
CNN2D. While the former can be used for sequence data, the
latter is applied to image or high dimensional data. Figure 5A
shows the connections inside the CNN1D layer. The CNN1D
cells receive and learn from the inputs. Afterwards, the outputs of
CNN1D are sent to the MaxPooling1D cells. The MaxPooling1D
cells decrease the number of parameters to learn and support the
internal presentations in the CNN1D layer. The outputs from
the MaxPooling1D cells are sent to the “Drop Out” layer. In the
CNN1D layer, there is no connection between the CNN cells.

Recurrent Neural Network Based Architectures
In the RNN architecture, instead of being connected to each
other, the cells are connected to the former sequence of the input
itself (Figure 5C). For example, at time t, the RNN cells link to the
previous state of themselves at the time (t−1). There are many
ways of using RNN efficiently. For the sake of a fair comparison
between the different DL architectures tested here, only one-layer
RNN is used as in Figure 5C.

The LSTM layer is used in the same layer as CNN or RNN.
However, the LSTM cells work differently. The LSTM has two
outputs at time t. The first output is connected to the “Drop Out”
layer in the DL model. The second output forwards information
to the next LSTM cell, and the cell also receives the input from
the previous LSTM cell (Figure 5D).

BiRNN combines two hidden LSTM layers, and each LSTM
layer has an opposite direction. Hence, the BiRNN can get
backward or forward information (Figure 5B). This is a powerful
DL architecture for sequence data with bidirectional context.
However, BiRNN is slower than LSTM, because it runs in both
forward and backward recursion (Li et al., 2019).

GRU is a new version of LSTM with fewer gates inside.
The gates can keep or reject the information from the inputs.
Additionally, the internal structure of GRU is simpler, and
its performance is faster than LSTM because it has fewer
computational operations to update the parameters of the hidden
layers. In our model, the GRU layer is similar to the LSTM layer,
with LSTM cells replaced by GRU cells (Figure 5E).

Experimental Setups
We conducted the experiments on Dell Precision 7550. The
computer has 16 CPUs with Intel Core I7-10875H@2.3 GHz,
with 8 cores and 128 GB memory. Additionally, it includes
Nvidia Quadro T2000 with 4 GB memory. Since the DL models
require GPU devices, our experiments used the whole memory
of the Nvidia card on the computer with the “Timesteps” = 12.
The configuration of each method is described in the rest of
this section.

GBM Tuning
GBM is implemented using the H2O library for Python. The
parameters of the model are shown in Table 2. We set the tuning
of “ntrees” parameters by maximizing 15,000 trees. The learning
rate was tuned to 0.05, in order to satisfy the convergence
criterion quickly. If the GBM model cannot improve, the
model will stop after the “stopping_round” iterations. The other
parameters were used as the sample in the H2O library. These
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FIGURE 5 | Five DL architectures. (A) CNN1D layer (B) BiRNN layer (C) RNN layer (D) LSTM layer (E) GRU layer.

TABLE 2 | Parameters for GBM in H2O library.

Parameters Values

Learning rate 0.05

Balance_classes True

ntrees 15,000

stopping_round 10

parameters are similar to a previous study (Rybarczyk and
Zalakeviciute, 2021).

DL Tuning
All DL models are run with the TensorFlow library (version
2.3.0) on Python programming language. The parameters for all
the DL models are listed in Table 3. We tuned “Timesteps” and
“The number of nodes” to find the best model for each pollutant.
“Epochs” is a parameter used as a condition for stopping the
model. Specifically, the DL stops after 300 iterations if no global
optimization is reached. Otherwise, the Early Stopping Strategy is
applied, based on the “Patience” parameter. This means that the
training model finishes after 20 iterations (Patience = 20) if the
performance cannot improve. The “Drop out” (0.25) eliminates
25% of connections to reduce the overfitting. The learning rate
is 0.05, which increases the speed of convergence in DL models.
“Batch size” controls the gradient error in the models. CNN
requires two additional parameters, which are the kernel size and

TABLE 3 | Parameters for all DL models.

Parameters Values

Timesteps 1, 3, 6, 9, 12

The number of nodes 16, 32, 48, 64, 96, 128

Patience 20

Drop out 0.25

Loss function mse

Learning_rate 0.05

Batch size 500

Epochs 300

Kernel size (only CNN) 1,3

Polling size (only CNN) 1,3

polling size. If “Timesteps” is one, these parameters are one, and
they should be tuned to three if “Timesteps” is greater or equal to
three. A total of 30 models (five “Timesteps” × six “The number
of nodes”) for each DL architecture were created.

Evaluation Metrics
Twometrics were used to evaluate and compare the performance
of the GBM and WNMs (DL-based models): Root Mean Square
Error (RMSE) and coefficient of determination (R2). RMSE
and R2 were computed according to Equations (2) and (3),
respectively. RMSE ranges from zero to plus infinity, and R2
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ranges from 0 to 1. In both equations, yi are predicted values and
yi are actual values of sample i, and p is the size of the testing
set; y are mean of actual values. To obtain the best evaluation, the
RMSE must be as close as possible to zero and the R2 as close as
possible to one.

RMSE=

√

∑p
i = 1

(

ŷi − yi
)2

p
(2)

R2 = 1−

∑p
i = 1

(

ŷi − yi
)2

∑p
i = 1

(

y− yi

)2
(3)

SHapley Additive exPlanations for Model
Explanation
DL has been applied in many research areas, because of its
high performance. On the other hand, DL is considered as a
black box, which makes it difficult to explain why a model has
a good prediction. Nevertheless, the important values for input
features can be disclosed by using SHAP (Lundberg and Lee,
2017). This method is based on Equation (4). In this equation,
ϕj(val) is the SHAP value for feature j; when a feature has
higher ϕj(val), it is assessed as a stronger contributor for the
model; S is the set of features in the model or predictors; p
is the number of input variables; xj is the vector values of
feature j; and val(S) is the output variable with the set S or
pollutant concentrations.

SHAP values are used for interpreting the correlations
between the input and output features. The higher the value
is, the higher the importance is. SHAP values can provide a
deeper understanding of the contribution of meteorological and
temporal variables to pollutant concentrations.

φj

(

val
)

=
∑

S⊆{x1 ,...,xp}\{xj}

|S| !
(

p− |S| −1
)

!

p!

(

val
(

S∪{xj}
)

−val (S)
)
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RESULTS AND DISCUSSIONS

In Section Performance, the performance of five DL architectures
andGBM is compared, based on the lowest RMSE and highestR2.
In order to look into the black boxes, the variable importance for
the best WNMs is carried out in Section Variable Importance.
Finally, these latter models are used for assessing the effects
of COVID-19 lockdowns on air quality in Quito (Section
Quantifying Air Quality Changes).

Performance
The performance of WNMs before the lockdown is presented
in Table 4. Overall, the accuracy of the proposed DL models
is better than that of the GBM. Particularly, BiRNN and
LSTM outperform the GBM algorithm for predicting pollution
concentrations. While BiRNN yields the best results with
respect to O3 concentrations (RMSE = 7.1854; R2 = 0.8628),
NO2 concentrations (RMSE = 7.3644; R2 = 0.5772) and CO

concentrations (RMSE = 0.1830; R2 = 0.7148), the LSTM
gives the best results with respect to SO2 (RMSE = 1.0506; R2

= 0.4702) and PM2.5 concentrations (RMSE = 6.7677; R2 =

0.4310). Consequently, three BiRNNs and two LSTMsmodels are
used for the second part of the study, which consists of identifying
variable importance and assessing the impacts of COVID-19
lockdown on air quality.

Additionally, the predicted performance of the models for O3

(R2 = 0.8628), CO (R2 = 0.7148) and NO2 (R2 = 0.5772)
is better than SO2 (R2 = 0.4702) and PM2.5 (R2 = 0.4310).
This can be affected by the distributions and outliers of the
data in Figure 2. The outliers in training data are more than
the testing data with all pollutants. Especially, these outliers are
much higher in SO2 and PM2.5 than other pollutants. Although
R2 of SO2 and PM2.5 is under 0.5, the RMSE of these pollutants
with LSTM architecture is also lower than other algorithms
during the testing period. This performance suggests that the
WNMs are reliable in estimating the BAU and, consequently, can
provide accurate quantification of the air pollution change during
the lockdowns.

It is to note that the errors in the training set are higher
than the errors in the test set. Besides the outliers on the data as
mentioned above, this can be caused by the “Drop Out” layer and
Early Stopping strategy in DL models. On one hand, the “Drop
Out” of the TensorFlow library helps the model to reduce the
overfitting on the training data, but it is not active in the testing
phase. Therefore, the testing error is lower than the training error
in some situations. On the other hand, the Early Stopping strategy
selects the best parameter setting with the lowest testing error
(Fathi and Shoja, 2018).

Variable Importance
SHAP provided an in-depth method for analyzing the
contribution of each feature to predict pollutant concentrations
in the ML and DL models. Figure 6 shows the mean of
SHAP values of the input features with five best models for
O3 (Figure 6A), CO (Figure 6B), NO2 (Figure 6C), SO2

(Figure 6D) and PM2.5 (Figure 6E). The higher SHAP value
means that the feature is more important in predicting
the outputs. If we consider the top four variables, both
meteorological and temporal features contributed to the best
models. Hours, Index, RH and SR, aremore important than other
variables in the Ozone estimation model (Figure 6A). Ozone
is a secondary pollutant that is issued from photochemical
reactions, confirming the importance of SR and RH in the
concentrations of this feature. Secondly, while SR, WS and
Hours have crucial contributions to NO2 models (Figure 6C),
Index, WS and SR play an important role in predicting SO2

concentrations (Figure 6D). WS is a significant feature in
most of the best WNMs. This is due to the fact that the wind
tends to clean the atmosphere through a ventilation effect.
RH is also a good predictor of four pollutants NO2, O3, SO2,
and CO. The NO2 and CO concentrations are emitted from
motorized vehicles and RH tends to worsen engine efficiency,
especially in high altitude cities (Zalakeviciute et al., 2018a).
Thirdly, the Hours feature was the most significant variable
in estimating NO2, O3, and PM2.5 concentrations. It can be
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TABLE 4 | Performance of GBM and five DL models for evaluation period.

Methods

Pollutant Data Metric CNN LSTM RNN BiRNN GRU GBM

O3 Train RMSE 11.3565 8.1623 10.2825 7.8713 7.8576 7.4504

R2 0.6817 0.8356 0.7391 0.8471 0.8476 0.8630

Test RMSE 10.2842 7.2843 8.9215 7.1854 7.5269 7.9034

R2 0.7189 0.8590 0.7885 0.8628 0.8494 0.8340

NO2 Train RMSE 10.0527 8.2206 9.0477 8.4251 7.7267 7.2283

R2 0.3276 0.5504 0.4553 0.5277 0.6028 0.6524

Test RMSE 8.8637 7.3883 7.9328 7.3644 7.5262 8.2571

R2 0.3875 0.5744 0.5094 0.5772 0.5584 0.4685

CO Train RMSE 0.2942 0.2288 0.2663 0.2344 0.2456 0.2149

R2 0.4274 0.6539 0.5308 0.6366 0.6009 0.6944

Test RMSE 0.2436 0.1893 0.2263 0.1830 0.1983 0.2242

R2 0.4945 0.6949 0.5638 0.7148 0.6652 0.5720

PM2.5 Train RMSE 8.7046 7.7477 8.3617 7.9143 8.1093 8.2775

R2 0.2587 0.4127 0.3159 0.3872 0.3566 0.3297

Test RMSE 7.5264 6.7677 7.3603 7.0452 6.8604 8.4566

R2 0.2963 0.4310 0.3271 0.3834 0.4154 0.1116

SO2 Train RMSE 3.2502 2.9672 3.2161 2.9913 3.1437 2.4698

R2 0.0453 0.2044 0.0652 0.1914 0.1069 0.4487

Test RMSE 1.2214 1.0506 1.2186 1.1048 1.0574 1.0513

R2 0.2838 0.4702 0.2872 0.4140 0.4632 0.4694

The best results are in bold.

explained by the existence of two significant concentration
peaks at the rush hours (around 8:00 a.m. and 6:00 p.m.) in
the city (Rybarczyk and Zalakeviciute, 2018). The SHAP values
of “Hours” are over 0.05 in O3, around 0.01 in NO2 and over
0.002 in PM2.5. Finally, the Julian Day (seasonal) feature is
the highest contributor for the PM2.5 model (SHAP value ≈

0.0042). Since the PM2.5 emitted from traffic is very sensitive
to humidity, the existence of dry and wet seasons can explain
the importance of “Julian Day” in the prediction of these latter
pollutants (Kleine Deters et al., 2017).

Quantifying Air Quality Changes
Figure 7 shows the concentration of PM2.5, NO2, CO, SO2, and
O3 from 16 January 2020 to 30 September 2020. For the 2 months
before lockdown (green area represents the model evaluation
period), the estimated values are closer to observations. This
confirms that the best models (LSTM for PM2.5, SO2 and
BiRNN for O3, NO2, CO) provided accurate referential values
for quantifying the concentration of contaminants without
lockdown (BAU scenario). On the contrary, the concentration of
pollutants decreases drastically during the lockdown period (red
area in Figure 7). The largest drop,−63.98%, is observed for NO2

(Table 5). Meanwhile, CO concentration is reduced by−48.75%.
The decline is a bit lower for PM2.5 and SO2 with −42.17 and
−45.76%, respectively. These improvements in air quality can be
explained by the substantial reduction in the use of public and
private transportations. These results are in line with a previous

study (Rybarczyk and Zalakeviciute, 2021), showing that traffic is
the main source of pollution in the city center of Quito.

In contrast to the other pollutants, the concentration of the
secondary pollutant, O3, increased by 26.54% during the full
lockdown. This is due to the weakness of NOx-O3 titration
process (Cazorla et al., 2021). When the concentration of
NOx/NO2 decreased, the concentration of O3 tends to increase
because of the higher ozone production rates. This is a common
urban effect noticed during weekends when anthropogenic
activities decrease (Huryn and Gough, 2014).

Finally, during the partial lockdown, the pollutant
concentrations displayed in the blue area shows that the
BAU values tend to overlap with the observed concentrations.
As shown in Table 5, the difference of pollutant concentrations
between the actual and predicted values during the partial
lockdown is significantly reduced, especially for O3 (6.55%),
CO (−3.52%), and SO2 (−4.84%). This is due to the gradual
intensification of anthropogenic activities as businesses started
opening up, and more and more people started circulating by
using their motorized fleets.

CONCLUSIONS AND FUTURE WORK

In this research, we proposedWNMs based onDL for quantifying
the air quality changes during the full and partial lockdowns due
to the COVID-19 pandemic in Quito, Ecuador. In the context
of the BAU conditions, the results indicated that DL models
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FIGURE 6 | Variable importance with mean (|SHAP value|) for the five best models. (A) O3 (B) CO (C) NO2 (D) SO2 (E) PM2.5.

are appropriate for assessing the changes in anthropogenic
pollutant concentrations. DL is more accurate in predicting the
concentration of contaminants than the ML algorithms used in
previous studies, namely Random Forest (Lovrić et al., 2021)
and GBM (Petetin et al., 2020; Rybarczyk and Zalakeviciute,
2021). Among the DL algorithms, the LSTM and BiRNN are
the best architectures for simulating the BAU conditions and
can be considered as a promising standard method for assessing
air quality.

The study has also demonstrated that our WNMs can capture
the correlations among meteorological and temporal variables
on five contaminants before the COVID-19 lockdown period.
SHAP library allows us to look into the DL black-box and

estimate the weights of the input features in the final models.
This additional analysis shows that both meteorological and
temporal features are relevant in developing the best WNMs.
Among the top four variables, we can identify WS, SR and RH
for meteorological features and Hours, Index, Julian Day for
temporal features.

Our study shows that the concentration of the pollutants
decreased by 63.98, 48.75, 45.76, and 42.17% for NO2, CO, SO2,
and PM2.5, respectively, during the full lockdown. An increase in
O3 concentration (26.54%) was attributed to the decline in the
NO2 concentrations, also known as the weekend effect. On the
other hand, as soon as the partial lockdownwas implemented and
the relaxed regulations on license plate-based circulation were
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FIGURE 7 | Observed and predicted concentrations of pollutants during the pre-lockdown (green area or validation period), full lockdown (pink area) and partial

relaxation (blue area). The black and red lines are the observed and modeled values, respectively. (A) represents PM2.5 concentrations. (B) represents NO2

concentrations. (C) represents CO concentrations. (D) represents SO2 concentrations. (E) represents O3 concentrations.

TABLE 5 | The effects of two levels of restriction on five pollutants concentrations.

PM2.5 NO2 CO SO2 O3

Full Lockdown −42.17% −63.98% −48.75% −45.76% 26.54%

Partial lockdown −27.22% −14.95% −3.52% −4.84% 6.55%

introduced, the pollution concentrations increased gradually up
to the BAU level. This fact suggests a short inertia between the
alteration of the human mobility and its impact on the air quality
of the city.

Even if DL provides better performance than ML, this
study is still facing some limitations. First, we do not
apply any transformation (e.g., normalization) and remove
outliers from the dataset, considering the similar distribution
between training and testing sets. However, outliers and
skewed data can affect the performance of our models.

Second, the error rate is higher in the training set than in
the testing set, which suggests further tuning for the Drop
Out rate and Patience parameters of DL models. Finally,
more advanced algorithms seem necessary to improve the
prediction of SO2 and PM2.5 (R2 < 0.5). Therefore, future
work will focus on overcoming these limitations, such as
developing WNMs that combine several DL architectures (i.e.,
LSTM+BiRNN or LSTM+GRU), and normalizing PM2.5 and
SO2 concentrations.

To sum up, the outcome of the present study highlights
the fact that air quality in Quito is directly and highly
dependent on the mobility of its population. It suggests further
research to explore and understand the correlations between
traffic, anthropogenic activities, and air pollution. Finally,
the general contribution of this work is to propose a new
method, DL-based WNMs, allowing an accurate assessment
of the effect of any natural event or human intervention on
air quality.
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Lovrić, M., Pavlović, K., Vuković, M., Grange, S. K., Haberl, M., and Kern,

R. (2021). Understanding the true effects of the COVID-19 lockdown on

air pollution by means of machine learning. Environ. Pollut. 274, 115900.

doi: 10.1016/j.envpol.2020.115900

Lundberg, S. M., and Lee, S.-I. (2017). “A unified approach to interpreting

model predictions,” Proceedings of the 31st International Conference on Neural

Information Processing Systems (Long Beach, CA).

Navares, R., and Aznarte, J. L. (2020). Predicting air quality with deep

learning LSTM: towards comprehensive models. Ecol. Inform. 55, 101019.

doi: 10.1016/j.ecoinf.2019.101019

Nitheesh, M. G., Gokulakrishnan, R., and Devadas, P. (2021). “Air prediction

by given attribute based on supervised with classification machine learning

approach,” in Advances in Electronics, Communication and Computing, eds P.

K. Mallick, A. K. Bhoi, G. S. Chae and K. Kalita (Singapore: Springer), 413–420.

Ong, B. T., Sugiura, K., and Zettsu, K. (2016). Dynamically pre-trained deep

recurrent neural networks using environmental monitoring data for predicting

PM 2.5. Neural Comp. Appl. 27, 1553–1566. doi: 10.1007/s00521-015-1955-3

Petetin, H., Bowdalo, D., Soret, A., Guevara, M., Jorba, O., Serradell, K.,

et al. (2020). Meteorology-normalized impact of the COVID-19 lockdown

Frontiers in Big Data | www.frontiersin.org 12 April 2022 | Volume 5 | Article 842455

https://doi.org/10.1016/j.procs.2018.05.068
https://doi.org/10.5194/acp-21-7373-2021
https://doi.org/10.5194/essd-2020-380
https://doi.org/10.1016/j.apr.2020.08.028
https://doi.org/10.5194/isprs-annals-IV-4-W2-15-2017
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1111/imj.15091
https://doi.org/10.1007/s11869-021-01033-7
https://doi.org/10.1525/elementa.2021.00176
https://doi.org/10.5194/acp-18-6223-2018
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.uclim.2014.03.005
https://www.ecuadorencifras.gob.ec/search/Poblaci%C3%B3n,+superficie+(km2),+densidad+poblacional+a+nivel+parroquial/
https://www.ecuadorencifras.gob.ec/search/Poblaci%C3%B3n,+superficie+(km2),+densidad+poblacional+a+nivel+parroquial/
https://doi.org/10.1155/2017/5106045
https://doi.org/10.1007/s11869-019-00696-7
https://doi.org/10.1007/s11227-020-03492-8
https://doi.org/10.1016/j.neucom.2013.03.047
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature15371
https://doi.org/10.1016/j.envpol.2020.115900
https://doi.org/10.1016/j.ecoinf.2019.101019
https://doi.org/10.1007/s00521-015-1955-3
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Chau et al. DL for Pollution During COVID-19

upon NO2 pollution in Spain. Atmosp. Chem. Phys. 20, 11119–11141.

doi: 10.5194/acp-20-11119-2020

Piqueras, P., and Vizenor, A. (2016). The Rapidly Growing Death Toll

Attributed to Air Pollution: A Global Sresponsibility. Policy Brief for GSDR.

WHO, 1–4. Available online at: https://sdgs.un.org/documents/brief-gsdr-

rapidly-growing-death-toll-21621

Pollastri, G., and McLysaght, A. (2005). Porter: a new, accurate server

for protein secondary structure prediction. Bioinformatics 21, 1719–1720.

doi: 10.1093/bioinformatics/bti203

Pope, C. A., Ezzati, M., and Dockery, D. W. (2012). Validity of observational

studies in accountability analyses: the case of air pollution and life

expectancy. Air Qual. Atmos. Health 5, 231–235. doi: 10.1007/s11869-010-

0130-3

Qin, D., Yu, J., Zou, G., Yong, R., Zhao, Q., and Zhang, B. (2019).

A novel combined prediction scheme based on CNN and LSTM

for urban PM 2.5 concentration. IEEE Access 7, 20050–20059.

doi: 10.1109/ACCESS.2019.2897028

Ragab, M. G., Abdulkadir, S. J., Aziz, N., Al-Tashi, Q., Alyousifi, Y., Alhussian,

H., et al. (2020). A novel one-dimensional CNN with exponential adaptive

gradients for air pollution index prediction. Sustainability 12, 10090.

doi: 10.3390/su122310090

Rybarczyk, Y., and Zalakeviciute, R. (2018). “Regression models to predict

air pollution from affordable data collections,” in Machine Learning –

Advanced Techniques and Emerging Applications, ed F. Hamed (London:

IntechOpen), 15–48.

Rybarczyk, Y., and Zalakeviciute, R. (2021). Assessing the COVID-19 impact on air

quality: a machine learning approach. Geophys. Res. Lett. 48:e2020GL091202.

doi: 10.1029/2020GL091202

Schmid, H. P., Grimmond, C. S. B., Cropley, F., Offerle, B., and Su, H. B.

(2000). Measurements of CO2 and energy fluxes over a mixed hardwood

forest in the mid-western United States. Agric. For. Meteorol. 103, 357–374.

doi: 10.1016/S0168-1923(00)00140-4

Schuster, M., and Paliwal, K. K. (1997). Bidirectional recurrent neural

networks. IEEE Transact. Signal Process. 45, 2673–2681. doi: 10.1109/78.

650093

Seinfeld, J. H., and Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From

Air Pollution to Climate Change. Hoboken, NJ: John Wiley & Sons.

Sun, Q., Zhu, Y., Chen, X., Xu, A., and Peng, X. (2021). A hybrid deep learning

model with multi-source data for PM2.5 concentration forecast. Air Qual.

Atmos. Health 14, 503–513. doi: 10.1007/s11869-020-00954-z

Sundermeyer, M., Alkhouli, T., Wuebker, J., and Ney, H. (2014). “Translation

modeling with bidirectional recurrent neural networks,” in Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP) (Doha).

Tong, W., Li, L., Zhou, X., Hamilton, A., and Zhang, K. (2019). Deep learning

PM2.5 concentrations with bidirectional LSTM RNN. Air Qual. Atmos. Health

12, 411–423. doi: 10.1007/s11869-018-0647-4

WHO (2020). Coronavirus Disease. Available online

at: https://www.who.int/docs/default-source/coronaviruse/situation-

reports/20200621-covid-19-sitrep-153.pdf?sfvrsn=c896464d_2 (accessed

March 09, 2021).

WHO (2021a). Air Pollution. Available online at: https://www.who.int/health-

topics/air-pollution#tab=tab_1 (accessed March 09, 2021).

WHO (2021b). Public Health and Environment. Available online

at: https://www.who.int/data/gho/data/themes/public-health-and-

environment (accessed March 09, 2021).

Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., Yang, L., et al. (2020). Nervous

system involvement after infection with COVID-19 and other coronaviruses.

Brain Behav. Immun. 87, 18–22. doi: 10.1016/j.bbi.2020.03.031

Zalakeviciute, R., López-Villada, J., and Rybarczyk, Y. (2018a). Contrasted

effects of relative humidity and precipitation on urban PM2.5 pollution

in high elevation urban areas. Sustainability 10:2064. doi: 10.3390/su100

62064

Zalakeviciute, R., Rybarczyk, Y., López-Villada, J., and Diaz Suarez,

M. V. (2018b). Quantifying decade-long effects of fuel and traffic

regulations on urban ambient PM2.5 pollution in a mid-size South

American city. Atmos. Pollut. Res. 9, 66–75. doi: 10.1016/j.apr.2017.

07.001

Zalakeviciute, R., Vasquez, R., Bayas, D., Buenano, A., Mejia, D., Zegarra, R., et al.

(2020). Drastic improvements in air quality in Ecuador during the COVID-

19 outbreak. Aerosol Air Qual. Res. 20, 1783–1792. doi: 10.4209/aaqr.2020.0

5.0254

Zhao, X., Zhang, R., Wu, J. L., and Chang, P. C. (2018). A deep recurrent neural

network for air quality classification. J. Inf. Hiding Multimedia Signal Process.

9, 346–354.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Chau, Zalakeviciute, Thomas and Rybarczyk. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Big Data | www.frontiersin.org 13 April 2022 | Volume 5 | Article 842455

https://doi.org/10.5194/acp-20-11119-2020
https://sdgs.un.org/documents/brief-gsdr-rapidly-growing-death-toll-21621
https://sdgs.un.org/documents/brief-gsdr-rapidly-growing-death-toll-21621
https://doi.org/10.1093/bioinformatics/bti203
https://doi.org/10.1007/s11869-010-0130-3
https://doi.org/10.1109/ACCESS.2019.2897028
https://doi.org/10.3390/su122310090
https://doi.org/10.1029/2020GL091202
https://doi.org/10.1016/S0168-1923(00)00140-4
https://doi.org/10.1109/78.650093
https://doi.org/10.1007/s11869-020-00954-z
https://doi.org/10.1007/s11869-018-0647-4
https://doi.org/10.1016/j.bbi.2020.03.031
https://doi.org/10.3390/su10062064
https://doi.org/10.1016/j.apr.2017.07.001
https://doi.org/10.4209/aaqr.2020.05.0254
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Deep Learning Approach for Assessing Air Quality During COVID-19 Lockdown in Quito
	Introduction
	Materials and Methods
	Site Description and Instrumentation
	Data
	Method
	Gradient Boosting Machine
	DL Models
	Convolution Neural Network
	Recurrent Neural Network Based Architectures

	Experimental Setups
	GBM Tuning
	DL Tuning

	Evaluation Metrics

	SHapley Additive exPlanations for Model Explanation

	Results and Discussions
	Performance
	Variable Importance
	Quantifying Air Quality Changes

	Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


