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Large water Cherenkov detectors have shaped our current knowledge of neutrino

physics and nucleon decay, and will continue to do so in the foreseeable future.

These highly capable detectors allow for directional and topological, as well

as calorimetric information to be extracted from signals on their photosensors.

The current state-of-the-art approach to water Cherenkov reconstruction relies on

maximum-likelihood estimation, with several simplifying assumptions employed to make

the problem tractable. In this paper, we describe neural networks that produce

probability density functions for the signals at each photosensor, given a set of

inputs that characterizes a particle in the detector. The neural networks we propose

allow for likelihood-based approaches to event reconstruction with significantly fewer

assumptions compared to traditional methods, and are thus expected to improve on the

current performance of water Cherenkov detectors.

Keywords: experimental particle physics, event reconstruction, water Cherenkov detectors, generative models,

convolutional neural network

1. INTRODUCTION

In high energy physics, several large water Cherenkov detectors have been used since 1980s such as
IMB (Irvine-Michigan-Brookhaven) (Becker-Szendy et al., 1993), Kamiokande (Kamioka Nucleon
Decay) (Oyama et al., 1989), Super-Kamiokande (SK) (Fukuda et al., 2003), and for the near
future Hyper-Kamiokande (HK) (Abe et al., 2018) and proposed THEIA (Askin et al., 2020) and
ESSnuSB (Alekou et al., 2021) experiments. These are a type of detector that uses Cherenkov
radiation produced by charged particles traveling faster than the speed of light in water. Photons
in radiation traverse on a conical surface with its axis in the direction of parent charged particle.
Photomultiplier tubes (PMTs) mounted on the walls of the detector detect these photons. PMTs
produce electric charges proportional to the number of photons detected. The amount of charges
and the arrival times are digitally recorded by electronic circuits. Depending on the direction of the
parent charged particle with respect to the surface instrumented with PMTs, a detected Cherenkov
ring leaves a pattern in the shape of a circle, an ellipse, or a parabola. For ultrarelativistic particles
in water, Cherenkov photons are emitted at an angle of approximately 42◦ with respect to the
particle direction. This angle decreases as particles slow down due to energy losses in the water.
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A good illustration of an atmospheric neutrino detected by the
SK detector is available on the SK official site1. Water Cherenkov
detectors contributed to the first detection of neutrinos from
a supernova (Hirata et al., 1987), the discovery of neutrino
oscillation in atmospheric neutrinos (Fukuda et al., 1998a), the
confirmation of solar neutrino oscillation (Fukuda et al., 1998b)
and search for proton decays (Takenaka et al., 2020).

Neutrino and nucleon decay experiments pose a particular
set of event reconstruction challenges. In order to overcome the
smallness of neutrino cross sections and long nucleon lifetimes,
these detectors are designed to have as much active mass as
possible and, unlike typical collider or fixed-target experiments,
the location of the events within the detector is not known,
even approximately, a priori. This challenge is compounded by
a rich neutrino-nucleus interaction phenomenology (Alvarez-
Ruso et al., 2018) at the energies of interest for many such
experiments, in the order of GeV, which makes the detailed
reconstruction of the events’ final-state topology crucial both for
precision measurements and potential discoveries.

Machine learning (ML) techniques have been increasingly
adopted (Radovic et al., 2018) to tackle these challenges across
several detector technologies, from segmented scintillator
detectors (Aurisano et al., 2016; Perdue et al., 2018; Alonso-
Monsalve et al., 2021) to liquid argon time-projection
chambers (Abi et al., 2020; Abratenko et al., 2021). Most of
these efforts have focused on the discriminative aspect of ML,
with algorithms designed to classify events, for example into
signal and background categories, or to estimate a variable of
interest, such as the energy of an interacting neutrino.

In this work, we investigate a complementary approach
by developing a ML-based generative model that encodes the
likelihood for the measurements at each PMT as a function
of variables describing the event. This likelihood function can
then be used to reconstruct events, for example using gradient-
descent methods to find the event hypothesis that maximizes
the likelihood, or by sampling the likelihood with Markov Chain
Monte Carlomethods. This approach emphasizes interpretability
by allowing for the detailed examination of the likelihood surface
for each event, while guaranteeing powerful discrimination
between competing event hypotheses by virtue of the Neyman-
Pearson lemma (Neyman and Pearson, 1933).

While we have no knowledge of other uses of generative
models for event reconstruction tasks, similar models have
been developed as a computationally efficient substitute for
event simulation in collider experiments (Paganini et al., 2018;
Vallecorsa et al., 2019; Butter and Plehn, 2020; Alanazi et al.,
2021).

2. WATER CHERENKOV EVENT
RECONSTRUCTION

An event in a water Cherenkov detector consists of a set of
charges and times recorded by each PMT. PMTs for which
the amount of charge collected exceeds a given threshold will

1http://www-sk.icrr.u-tokyo.ac.jp/sk/detector/cherenkov-e.html

produce a hit, with a respective charge and time. An event
is often broken into different hit clusters in time (subevents)
and most read-out electronics systems effectively limit each
PMT to measure a single charge (integrated over a period of
time) and time (usually the time at which the electronic signal
crosses the hit threshold) per subevent. While these detectors
can in principle have arbitrary shapes, most currently running
and proposed experiments are cylindrical, with an instrumented
barrel, top and bottom end-caps. Our work so far focuses on such
cylindrical geometries, though it can in principle be adapted to
other detector shapes.

The state-of-the-art in water Cherenkov event reconstruction
is the FiTQun maximum likelihood estimation algorithm, whose
adoption has led to improved neutrino oscillation measurements
by long-running experiments (Jiang et al., 2019; Abe et al., 2020).
At the core of FiTQun is a likelihood function which is evaluated
over every PMT in the detector, regardless of whether or not it
registers a hit in the event:

L(x) =
unhit
∏

j

Pj(unhit|x)
hit
∏

i

{

1− Pi(unhit|x)
}

fq(qi|x)ft(ti|x) ,

(1)
where x denotes a set of parameters describing one or more
particles in the detector, namely their type, starting positions,
directions and momenta. The index j runs over all the PMTs
that did not register a hit and the index i runs over all the hit
PMTs, with Pj(unhit|x) being the probability of a certain PMTnot
registering a hit under the x hypothesis. The probability density
function (hereafter PDF) for the observed charge qi in the ith hit
PMT is fq(qi|x), while the PDF for the observed time ti for the
same PMT is ft(ti|x).

Event reconstruction proceeds by minimizing the negative
log-likelihood − ln L(x) by using the MINUIT gradient-descent
package (James, 1994), with the hypothesis x which minimizes
− ln L(x) taken as the best-fit hypothesis for the event. This
process is repeated for elements of x which are categorical in
nature, such as the particle type, or the number of particles
(and their types) in the event. Likelihood ratio tests are used
to discriminate between competing categorical hypotheses. In
order to make this likelihood function tractable, it is factorized
into several low-dimension components. In particular, the PDFs
associated to Cherenkov photons that produce a hit without
having scattered in the water or reflected in the detector surfaces
are factorized from the PDFs that describe so-called indirect
photons that scatter or reflect before producing a PMT hit. The
level of detail of the indirect photon PDF is limited by the high
number of dimensions required for it to be fully specified. In
particular, this limitation makes it difficult to reconstruct heavier,
typically slower, particles such as protons, since it is challenging
to accommodate the effect of the decreasing Cherenkov photon
emission angle. Finally, each component of the factorized
likelihood needs to be tuned separately to the detector geometry
of interest, requiring a large amount of bespoke simulated data
with different components of the simulation disabled in turn.
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FIGURE 1 | Generative neural network architecture diagram. The input describes a single-particle state and consists of a one-hot vector encoding the particle type,

two three-dimensional vectors corresponding to the particle starting position and direction cosines, and the particle energy. The section of the network enclosed in a

dashed line is repeated three times, one for each region of the detector: two end-caps and one cylindrical barrel. The dimensions in brackets correspond to the

end-caps. The number of output channels, Npars, depends on the parameterization of the loss function.

3. GENERATIVE NEURAL NETWORKS FOR
MAXIMUM LIKELIHOOD
RECONSTRUCTION

In order to overcome the challenges in water Cherenkov event
reconstruction associated to the curse of dimensionality, we have
designed a convolutional generative neural network to replace
the factorized likelihood function in FiTQun. The outputs of this
network are PDFs for the hit charges and times at each PMT in
the detector. Given the success of MLmethods in processing high
dimensional data, we do not factorize the likelihood function in
our approach, nor do we require bespoke sets of simulated data
for training. Rather, the neural network can be trained using a
regular, fully detailed, simulated data set.

Like in the existing FiTQun algorithm, the likelihood function
for multiple particles in an event can in principle be combined to
form complex event hypotheses. While this capability is a future
goal of our project, in the present work we have focused on
demonstrating the method using single-particle events consisting
of either a showering electron, or a track-like muon.

3.1. Network Architectures
We have implemented our model using the PyTorch (Paszke
et al., 2019) framework, and we used the network architecture
in Dosovitskiy et al. (2014) as a starting point. As depicted
in Figure 1, our network is composed of two parts: five fully
connected (FC) layers are followed by three pairs of transposed
convolution (UPCONV) and convolution (CONV) layers. We
have found that pairing the two types of convolutional layers as
done in Dosovitskiy et al. (2014) results in smoother outputs.

However, as discussed below this approach may also limit the
network’s ability to reproduce sharp features in our data. Rectified
linear unit (ReLU) activation, defined as f (x) = 0 for x < 0 and
f (x) = x elsewhere, is used after each layer.

The neural network input is a vector describing a single-
particle state, consisting of a three-dimensional one-hot encoding
of the particle type (electron, muon, or gamma2), a three-
dimensional vector with the particle starting position, a three-
dimensional vector of the particle direction cosines and finally
a scalar corresponding to the particle energy. Following the
architecture in Dosovitskiy et al. (2014), each input type is
processed through two fully connected layers of 512 nodes each
on its own (FC1 and FC2). The output is concatenated into a
feature vector of length 2,048 which passes through two fully
connected layers of 1024 nodes (FC3 and FC4) followed by a final
fully connected layer (FC5) which results in the starting point for
the convolutional part of the network. The three convolutional
layers result in images where each pixel represents a PMT in the
detector and the pixel values encode parameters which are used
to build the likelihood function.

The portion of the network starting with FC3 is repeated
three times, one for each section of the cylindrical detector: the
top and bottom end-caps, and the cylindrical barrel. Each of
these detector regions is represented as two-dimensional images
with 48 × 48 pixels for the end-caps and 150 × 51 pixels
for the barrel. Only the FC1 and FC2 layers are common to
all neural network segments, with the weights of FC3, FC4,

2We do not train with gammas in this iteration, but instead include a place holder

for it.
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FC5 and the convolutional layers being independent for each
section of the detector. The depth of the output depends on the
parameterization of the likelihood function and ranges from four
in the simplest case to 61 in the most complex case.

A kernel size of 4 × 4 and a stride of 2 × 2 is used for all
UPCONV layers and the CONV layers use a 3 × 3 kernel and
1 × 1 stride. The first UPCONV + CONV pair layer takes a
tensor of depth 64 and produces an output of depth of 64, and
the second layer reduces the depth to either 32 or the number of
output channels, whichever is largest. The final layer produces the
desired number of output channels, which depends on the choice
of loss function. Padding is used on the output to match the odd
dimension of the detector barrel.

To match the square images produced by the neural network
to the circular end-caps of the detector, the pixels close to the
corners, which do not correspond to physical PMTs, are masked
when evaluating the loss function.

3.2. Loss Functions
We have designed the loss function in a similar fashion
to Equation (1), with two components: one describing the
probability of the PMT being hit and the other describing the
probability density function for a hit charge and time:

Loss = − log L =
∑

i

− log Punhit(yi)+
∑

ihit

− log pqt(qihit , tihit ) ,

(2)
where the index i runs over all the PMTs in the detector, yi is a
label set to 1 if the PMT is not hit or 0 if the PMT is hit, ihit runs
only over the PMTs which are hit in the event, and pqt(qihit , tihit ) is
the PDF for observing charge qihit and time tihit . The loss function
is the sum of the negative log-likelihood over all PMTs in the
three regions of the detector.

For the PMT hit probability, we use the PyTorch built-in
function BCEWithLogitsLoss which implements the binary
cross-entropy loss (Cover and Thomas, 1991) (equivalent to the
negative log-likelihood) using a Sigmoid function to regularize
predictions of hit probability. A single channel of the neural
network output represents the logit of the hit probability.

It was observed in Xia et al. (2019) and this work that
both the charge and timing of a PMT’s responses can be
very non-Gaussian, despite the stochastic process of photo-
electron multiplication, due to a list of reasons ranging from the
kinematics of event to the reflection of light from the ambient
environment. In order to accommodate the a priori unknown
functional form of the hit charge and time PDF, we approximate
this function with a weighted mixture of Gaussian PDFs in one
dimension (taking into account only the hit charge) or two
dimensions (hit charge and time). Figure 2 shows an example of
the charge PDF predicted by networks with different numbers of
Gaussian components for an arbitrarily chosen PMT.

We have explored several combinations of the number
of components in the Gaussian mixture in one and two
dimensions, and different parameterizations for the two-
dimensional Gaussian function, either keeping the charge and
time uncorrelated, or including a correlation factor. Each
component in the Gaussian mixture is weighted by a coefficient

which corresponds to one of the neural network output channels.
To preserve the normalization of the PDFs, a Softmax function is
applied to the coefficients.

In the case where the hit charge and time are treated as
uncorrelated in each of the Gaussian components, the mixture
of Gaussians PDF is given by:

− log pqt(qihit , tihit ) = −
∑

ihit

[

N
∑

j

(

log(nj)

− log(
√
2πσqj )−

(qihit − µqj )
2

2σ 2
qj

− log(
√
2πσtj )−

(tihit − µtj )
2

2σ 2
tj

)]

ihit

, (3)

where ihit runs over the hit PMTs, as in Equation (2), j runs
over the N Gaussian components, nj is the normalization factor
for the j-th component, µqj and µtj are the charge and time
means for the j-th component, respectively, and σqj and σtj are
the corresponding standard deviations. For the one-dimensional
case, where only the hit charges are considered but not the
times, the third line of the equation is omitted. In order to
improve numerical stability, PyTorch’s implementation of the
log-sum-exp function is used to evaluate the loss function.

For each component in the Gaussian mixture, a set of network
output channels correspond to logµqj , log σqj , µtj , and log σtj ,
with the logarithms being used to ensure non-negative values
of the hit charge and standard deviations. Together with the hit
probability and the Gaussian component coefficients, the total
number of channels is 1 + N × 3 for the one-dimensional case
and 1+ N × 5 for the two-dimensional case.

In the bivariate case, correlations between the charge and
time dimensions of the loss function above can arise from the
independent sets of µqj and µtj . However, the most general
form of the two-dimensional mixture of Gaussians includes a
covariance term describing the correlation between charge and
time within each of the mixture’s components. To realize this
goal we formulate two-dimensional PDF of correlated charge and
time responses in the way introduced by Williams (1996):

f ( η| θ) =
N
∑

j

nj

(2π)|6j|1/2
exp(−

1

2
(η − θj)

T6−1
j (η − θj)) , (4)

where η and θ include both the charge and time as a two-
dimensional vector:

η = (t, q) (5)

θj = (µt ,µq)j (6)

where 6i is a two-dimensional covariance matrix.
To improve numerical stability we use triangular

matrix instead of the full covariance matrix 6 by
Cholesky decomposition:

6−1 =
(

α11 0
α12 α22

)(

α11 α12

0 α22

)

(7)
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FIGURE 2 | Charge response PDF of a randomly chosen PMT in a 1 GeV muon event originating from the detector center and propagating in +x direction. From the

top left to bottom right panel are the reconstructions of 1-Gaussian, 3-Gaussian, 5-Gaussian, and 10-Gaussian charge-only network, respectively. With the increasing

number of sub-components, we first observe the separation of the narrow peak from the prompt hits and the broad tail possibly associated to the delayed ones. Then

a sharp peak at small charge is added. With even more sub-components both peaks will start broadening.

with positive-only diagonal terms and

|6|−1/2 = α11α22 (8)

The α’s are also predicted by the neural network, requiring a total
of 1+ 6× N output channels. To ensure positive definite matrix
6, we keep the absolute value of α12 while forcing its sign so that
(η − θi)

T6−1
i (η − θi) > 0 for ∀η, θ .

α12

{

< 0, if (t − µt)(q− µq) < 0
> 0, if (t − µt)(q− µq) > 0

4. DATA SETS

The data set used in this work consists of single-electron and
single-muon events generated with random kinematics and
positions in a model of the SK detector—a cylindrical volume
with 36 meters in height and 34 meters in diameter. The
coordinate system used to describe the detector has z pointing
along the cylinder axis. The data are simulated with the water

Cherenkov detector simulation package WCSim3, an open-
source program based on Geant4 (Agostinelli et al., 2003) and
ROOT (Brun and Rademakers, 1997), which models the particle
propagation in the detector and the electronic response of the
PMTs. For each simulated event, its Monte Carlo truth, including
particle type, position, direction cosines and energy, is saved in
order to be used during neural network training. The hit charges
and times at every PMT in each event are stored in three two-
dimensional arrays representing the unrolled cylindrical barrel of
the detector (151× 50) and the two circular end-caps (48 × 48).
The data set consists of 1,003,200 electron events and 1,049,415
muon events. The kinetic energy of the electrons is uniformly
distributed between 1 and 6,500 MeV and muons between 150
and 6,500 MeV. Spontaneous discharges in the PMTs, a source
of uncorrelated noise commonly referred to as the dark rate, are
not simulated, for simplicity. Taking into account the PMTs’ dark
rate is a future goal of this project. In order to produce pure
single-particle data sets, delayed electrons originating frommuon
decays are not simulated.

In addition to the training data set, we have also produced
another set of muon and electron events with fixed position,

3https://github.com/WCSim/WCSim

Frontiers in Big Data | www.frontiersin.org 5 June 2022 | Volume 5 | Article 868333

https://github.com/WCSim/WCSim
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Jia et al. Water Cherenkov Generative Neural Networks

FIGURE 3 | Neural network training curves. The loss is shown as a function of training epoch for 1, 3, 5 and 10 component charge-only (left), uncorrelated charge

and time (middle), and correlated charge and time likelihoods (right). The solid lines correspond to the loss evaluated on a validation sample, and the dotted lines

correspond to the loss evaluated using the training sample.

FIGURE 4 | Comparison of the hit probability for simulated (top) electron (left) and muon (right) events generated with fixed kinematics, and the neural network

prediction (middle). The difference between the neural network prediction and the simulation is shown in the bottom. These results were produced with the

single-component charge-only loss function. The red marks on the top panel figure indicate the location of the three reference PMTs chosen to examine the hit charge

and time PDFs.

direction, and energy. These events originate in the center of the
detector and the particles propagate along the x direction (onto
the cylinder barrel) with a kinetic energy of 500 MeV. These
events are used to evaluate the quality of the likelihood functions
generated by the neural networks by comparing them to the hit
probability extracted directly from the simulation as well as the
distributions of simulated hit charges and times.

5. TRAINING

We use 75% of the randomized electron and muon events for
training, with the remaining 25% used for in-situ validation

every 100 iterations. The network is trained using minibatches
of 200 shuffled events. The results presented in this work were
obtained by training the neural networks for 50 epochs, using
the Adam (Kingma and Ba, 2017) optimizer with the initial
learning rate set to 0.0002, and all other parameters left at
the PyTorch default values. To improve numerical stability we
normalize the particle position by the detector dimensions, the
energy by 5,000 MeV, PMT hit charges by 2,500 p.e., and convert
PMT hit times to µs with an offset of −1 µs so that the values
are of O(10−3 ∼ 1). We found that this pre-normalization
gave the training more stability compared to using BatchNorm
layers on the inputs, and using both BatchNorm layers and
input pre-normalization resulted in slower training. Figure 3
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FIGURE 5 | Distributions of hit charges for electrons (left) and muons (right) events in the three reference PMTs: in the center (top), edge (middle) and, outside

(bottom) of the Cherenkov ring pattern produced by events generated with fixed kinematics. Predictions of the neural network trained with 1, 3, 5, and 10 Gaussian

components are superimposed on the simulation.

shows examples of training curves for different configurations of
the neural network. The configurations with a single Gaussian
component or one-dimensional loss function generally converge
within 50 epochs, while networks with multiple components and
two-dimensional loss functions still show downward trends at the
end of 50 epochs of training. Therefore, the results presented in
this publication can likely be improved with extended training of
the networks. We have saved both the trained network weights
and optimizer states at 50 epochs, which can be used for further
training beyond this point.

6. RESULTS

For the neural networks described in this work to be effective in
maximum likelihood reconstruction, they need to describe the
data as closely as possible, to avoid bias, and they should be
smooth to avoid local minima in the likelihood surface which
would make event reconstruction challenging. In this section
we examine the output of the neural network in two ways: first
we compare the neural network prediction to the distributions
obtained directly from the simulated data set produced with fixed

particle kinematics; we then use the randomized validation data
set to scan the likelihood function as a function of the particle
energy to evaluate the smoothness, bias, and the accuracy of the
neural network in identifying the true particle type in the events.

6.1. Comparison of Neural Network Output
to Events Simulated With Fixed Kinematics
To evaluate the accuracy of the neural network at predicting
the probability of PMTs in the detector being hit, we measure
the hit probability in the simulation by counting the number of
times each PMT is hit in the set of events with fixed kinematics
and dividing each PMT’s hit count by the total number of
events in the set. The resulting hit probabilities are shown in
Figure 4, where the Cherenkov ring pattern is clearly seen and
the difference between the fuzzy rings produced by showering
electrons and sharp rings produced by track-like muons is
evident. For the electron events, the agreement between the
neural network prediction (middle panel of the same figure)
and the simulation is excellent. On the other hand, for muon
events there is some level of residual difference (bottom panel)
that might indicate the neural network might have limited ability
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FIGURE 6 | Distributions of hit charges and times for electrons (left) and muons (right) events in the three reference PMTs: in the center (top), edge (middle), and

outside (bottom) of the Cherenkov ring. The two-dimensional distributions are shown with time on the abscissa and charge on the ordinate together with their

one-dimensional projections and the neural network prediction.

to reproduce sharp features in the data, a shortcoming that is
common in generative convolutional neural networks (Durall
et al., 2020). In both cases it is clear the neural network
reproduces the general features of the events, including a clear
difference between the fuzzy rings predicted for electrons and
sharp rings for muons.

To inspect the PDFs for the hit charges and times we
have chosen three reference PMTs in the detector, marked in
red in Figure 4, which are located in the center, edge, and
outside of the Cherenkov rings produced by the events generated
with fixed kinematics. The PDFs resulting from training the
neural network with the charge-only, one-dimensional, loss
function using one, three, five and ten components is shown in

Figure 5. It is clearly seen that the distributions of simulated
hit charges are not Gaussian and therefore the single-Gaussian
PDF describes the data very poorly. With three components,
the neural network is able to reproduce general features in the
data, such as the high-charge tail present in all distributions.
With five and particularly with ten components the PDFs
describe the distributions in detail, including a slight bi-
modality seen at low charge. We have observed that the
neural network struggles to reproduce the charge distribution
for PMTs on the sharp edge of the muon ring. Given the
shape of this distribution is unremarkable compared to all
others, we believe this artifact might be due to the known
shortcomings of convolutional generative networks to reproduce
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FIGURE 7 | Energy scans of a muon (electron) event are shown in the top (bottom) row. The left column shows the simulated hit charges in each event in logarithmic

scale, with the cylindrical detector’s surface unrolled in two dimensions. In the right column the y-axis shows δLoss(q) with the minimum in each curve subtracted. The

energies that minimize the likelihood functions, Erec, of charge-only networks with 1∼10 Gaussian components are marked with triangles. The event’s true energy is

shown as a solid vertical line.

FIGURE 8 | Energy reconstruction performance for muons (left) and electrons (right) using the charge-only loss functions with 1, 3, 4, and 10 Gaussian components.

sharp features in the data, as identified in the hit probability
prediction above.

The two-dimensional loss function using correlated Gaussian
components is inspected similarly for the three chosen PMTs in

Figure 6. The inadequacy of a single two-dimensional Gaussian
to describe the data is more evident than in the one-dimensional
case. This is expected, given the time distribution is multi-
modal, with a sharp peak associated to Cherenkov photons

Frontiers in Big Data | www.frontiersin.org 9 June 2022 | Volume 5 | Article 868333

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Jia et al. Water Cherenkov Generative Neural Networks

FIGURE 9 | The statistical mean 1E of charge-only networks with 1∼10 Gaussian from muon and electron events, respectively. The three regions are 0∼200,

200∼500, and ≥500 cm from the detector walls. The left column shows dependence of “dwall” and the right “towall”. Error bars represent the standard deviation of

1E in each event set, which can be viewed as the energy resolution.

that produce hits without scattering in the water or reflecting
off the detector surfaces, and a long tail of scattered and
reflected photons, including hints of reflection peaks. The
width of the sharp peak is mostly determined by the PMT
response, while the distribution of late hits depends strongly
on the detector geometry and water properties. A three-
component model shows a much better fit, with the network
reproducing the multi-modality in the time distribution. The
five and ten component models produce increasingly complex
shapes with correlations clearly seen in the time and charge
dimensions. As in the previous two examples, the neural
network’s worst performance is for the PMT on the edge of
the muon Cherenkov ring, with a bias in the time prediction
observed in addition to the relatively poor agreement in the
charge prediction.

6.2. Likelihood Scans as a Function of
Particle Energy
For the method proposed in this work to be viable as an event
reconstruction technique, it is important that the likelihood
function encoded in the neural network is smooth, so that it can
be used in gradient-descent algorithms, and that the minimum of
the likelihood surface lies close to the true parameters describing
the event. To examine these characteristics of the neural network,
we scan the likelihood surface of the randomized data set used
for the in-situ validation of the neural network, with 100 uniform
steps in energy ranging −80 to +80% of the event’s true energy.
The other neural network input parameters remain fixed to
their true values. At each scan point, we replace the event’s true
energy with the shifted one and evaluate the neural network
using this hypothesis as the input to calculate the corresponding
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FIGURE 10 | The statistical mean 1E of charge-time correlated networks with 1∼10 Gaussian from muon and electron events, respectively. The three regions are

0∼200, 200∼500, and ≥500 cm from the detector walls. The left column shows dependence of “dwall” and the right “towall”. Error bars represent the standard

deviation of 1E in each event set, which can be viewed as the energy resolution.

loss. A quadruple spline interpolation is applied to the 100
scanned points to find the energy that minimizes the loss, or
in other words maximizes the likelihood function. Figure 7

presents an example of the interpolated energy scan from multi-
Gaussian charge-only networks of intermediate energymuon and
electron events.

We take the energy which minimizes the loss function to be
the estimator for the true particle energy, or the reconstructed
energy – Erec, and the fractional energy residual 1E defined in
Equation (9) is used to measure the neural network’s energy
reconstruction performance.

1E =
Erec − Etrue

Etrue
(9)

Figure 8 shows the distribution of 1E for sets of 12,000 muon
and electron events, using various multi-Gaussian charge-only
networks. By the inclusion of the charge-time correlation in
each PMT, the small energy biases that exist in the charge-only
network reconstruction are significantly improved.

We have applied the likelihood scan to all the three loss
functional forms described in Section 3.2 but we show results for
the charge-only and charge-time including correlations in this
section, because the two networks using PMT time responses
have similar reconstruction performance and the correlated
version is slightly better.

Under certain circumstances the network will face trouble
reconstructing events, especially when not all of the particle
energy is deposited inside the detector. These events are more
likely to cause reconstruction failure as no valid minimum is
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FIGURE 11 | PID performance of the 1-Gaussian (left) and 10-Gaussian (right) charge-only networks. The true electron and muon events locate in the negative and

positive region, respectively, and the 10-Gaussian network shows better concentrated peaks for both particle types.

found in the loss function scan. In general the reconstruction
failure rate is ≤4% for electron and ≤10% for muon events.
Both charge-only and charge-time correlated loss functions
have better reconstruction performance for electron events,
whereas in the charge-time correlated networks the fraction
of unsuccessful scans increases with the number of loss
function components.

To further investigate the neural network reconstruction
performance, we introduce two parameters: “dwall” is the
distance between the particle’s starting position and the nearest
detector wall, and “towall” is the distance to the nearest detector
wall along the particle’s moving direction. For a particle with
small “dwall” and “towall”, it has higher probability to escape the
detector and thus not all of the particle energy will be detected.
Figures 9, 10 present the energy reconstruction performance of
multi-Gaussian networks in the detector regions defined by the
“dwall” and “towall” parameters. Events for which no minimum
is found in the loss function scan are excluded. As expected
the performance is worse for events with smaller “towall”, with
the particle energy being systematically underestimated. The
dependence of performance on “towall” is more significant for
muons, which tend to travel much longer distances before they
drop below the Cherenkov threshold. Due to the longer tails
in their 1E distributions, the muon energy resolution is worse
across the three detector regions whereas the electron energy
resolution is superior in the central region. For events sufficiently
far from the walls, the mean Erec predicted by any of the 1∼10-
Gaussian networks is unbiased, with fluctuations smaller than the
standard deviation.

6.2.1. Particle Identification

The trained neural networks are able to separate electron
and muon events by comparing the loss values of the
competing hypotheses. To study the particle identification (PID)
performance of the neural network, we use the loss function
scans described in Section 6.2 above. For each event, we take the

difference in the loss value at the energy that minimizes the loss,
Erec, while keeping all other input parameters fixed. The resulting
variable takes negative values for electron-like events and positive
values for muon-like events:

e/µ PID = Loss(q, t,Erec)|e− − Loss(q, t,Erec)|µ− (10)

Figure 11 shows the distribution of the e/µ PID parameter
variable for 12,000 electrons and muons, excluding those events
missing a local minimum in the likelihood scan. While the full
distribution extends well beyond the plotted range, we focus on
the most interesting region, where the two populations cross
over, to show the PID performance of our networks. The two
particles types are well-separated, with only a small fraction of
events crossing the classification boundary at zero. A cluster of
events around zero is due to events near the detector walls, which
are more difficult to reconstruct as they tend to produce hits in
a smaller number of PMTs. We note here that since this PID
study is done with all likelihood parameters except energy kept
at their true values, the performance shown in this section should
be taken as an indicative result. In a realistic event reconstruction
setting, all the neural network input parameters will need to be
estimated simultaneously by finding the global minimum in the
negative log-likelihood surface.

In Figures 12, 13, we present the particle mis-identification
rate, defined as the wrong-sign e/µ PID fraction of each true
particle type, with the events broken down in different detector
regions. The same conditions as in Figures 9, 10 are applied.
Both the “dwall” and “towall” parameters have strong impact
to PID accuracy. In the charge-only networks, muon events
sufficiently far from the walls show a noticeable fluctuation of
PID accuracy, which is improved by the charge-time correlated
networks. Overall both networks exhibit a dependence of particle
location for the PID performance. In the same region defined
by “dwall” and “towall”, the PID performance of charge-
time correlated networks can be improved by including more
Gaussian components in the loss function.
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FIGURE 12 | The particle mis-identification rate of charge-only networks with 1∼10 Gaussian from muon and electron events, respectively. The three regions are

0∼200, 200∼500, and ≥500 cm from the detector walls. The left column shows dependence of “dwall” and the right “towall”. Statistical errors are also shown.

7. DISCUSSION

In this section, we discuss the results described above, as well
as observations made during the development of the neural
networks presented in this work.

7.1. Neural Network Training
While developing the neural network we faced training
instability, with the loss function occasionally becoming not-a-
number, particularly for more complex functional forms with
several components in the Gaussian mixture. We achieved
stability by carefully parameterizing the loss functions, as
described above, and by pre-scaling our inputs such that they
do not significantly exceed unity. Other attempts to stabilize the
network training, such as the introduction of batch normalization
layers were not as successful.

Especially for simpler versions of the neural networks, we
observed that after a rapid decrease of the loss at the start of
the training, it would stabilize at an intermediate value for a

few hundred iterations before decreasing again in a short step
to the stable minimum. Inspection of the network output during
this period of metastability revealed a clear difference in the
generated images before and after the short step, with localized
features appearing suddenly after the step, while before the
step the network produces a relatively uniform output for the
entire image. After the network learns to localize the events,
the quality of the generated rings gradually improves with
training. This behavior of the loss during training is significantly
washed out when using more complex loss functions with
several components.

7.2. Network Architecture Studies
We tested several modifications to the neural network
architecture shown in Figure 1, while assessing the performance
of the alternative architectures mostly by inspecting the behavior
of the loss function during training.

We studied the effects on the network performance of
changing the number of fully connected layers and the number
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FIGURE 13 | The particle mis-identification rate of charge-time correlated networks with 1∼10 Gaussian from muon and electron events, respectively. The three

regions are 0∼200, 200∼500, and ≥500 cm from the detector walls. The left column shows dependence of “dwall” and the right “towall”. Statistical errors are also

shown.

of nodes in each layer. These studies were done in a version
of the network that generated data only for the barrel section
of the detector. We changed the number of nodes in each fully
connected layer from three to 1,000 and found that 30 nodes were
sufficient, and adding more nodes did not improve the results.
We found that at least two fully connected layers (excluding the
input layer) were necessary to generate events on the barrel.

In addition, we studied the effect of the changing the depth
of the network’s convolutional layers using the single-Gaussian
charge-only loss function. Depths of 32, 64, 128, and 256 were
tested, where 64 is the default number. We found that increasing
the depth makes the network settle faster, while achieving a more
or less similar loss value after training. An example of such a study
is shown in Figure 14.

We also tested using three different activation functions
throughout the network: ReLU, tanh, and LeakyReLU where the
f (x) = 0 portion of ReLU is replaced by f (x) = mx. The
LeakyReLU activation function was examined with two different
negative x slopes,m = 0.1 andm = 0.5. The tanh and LeakyReLU
performed equally well or worse compared to ReLU.

7.3. Network Reconstruction Performance
With the results shown in Sections 6.1 and 6.2, we notice that
the multi-Gaussian PDF can improve the reconstruction of
individual PMT responses, but has limited impact to the particle
event reconstruction, possibly due to insufficient training. With
the inclusion of PMT time responses, the charge-time correlated
networks show larger uncertainty than the charge-only ones,
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especially for electrons. We have not determined what causes this
and we will investigate this effect further.

Moreover, event reconstruction performance strongly
depends on the event’s location, as a near-wall one is less likely
to deposit all of its energy in the detector, especially in the
case of muons. In addition, the Cherenkov ring is sampled by
fewer PMTs for events with small “towall”. Figure 15 shows
the distribution of 1E in the plane of Erec and “towall” for
muon and electron respectively. In the region where a particle’s
energy is fully captured by the detector, e.g., low Erec and high
“towall”, the network shows excellent energy reconstruction
accuracy. A linear relation is noticeable between muon’s Erec

FIGURE 14 | Loss as a function of training epoch for varying depths of the

neural network’s convolutional layers. The depth of the convolutional layers

used for each training is indicated at the start of the respective line.

and “towall”, which is consistent with the expectation: muon
track lengths are approximately proportional to their energy
and once a muon track escapes the detector it is no longer
possible to accurately measure its energy. Water Cherenkov
experiments typically include external detector elements to
identify escaping events that cannot be reliably reconstructed.
Electron showers, on the other hand, have a much more limited
extent, and therefore their energy is accurately reconstructed
even at high energies and relatively small values of “towall”.
Another interesting observation in these results is the smooth
appearance of well-reconstructed muon events at 100∼200 MeV
as shown in Figure 15. These energies correspond roughly to
the Cherenkov threshold and the smooth transition indicates
the neural network is capable of identifying muon rings close
to the threshold, albeit with a limited efficiency. Detecting
particles close to their threshold is important particularly when
considering events with multiple particle topologies, where very
faint rings can coexist with much brighter rings, making their
identification challenging.

While we observe some dependence of the neural network
performance on the number of Gaussian components used
for the reconstruction, identifying the optimal number of
components will require further study. In particular, it will be
important to measure the neural network performance in a
more realistic event reconstruction scenario, such as finding the
likelihood maxima using gradient descent, and considering also
the event reconstruction runtime.

8. CONCLUSION

We have developed a deep convolutional neural network that
generates the likelihood function for the complete set of
observables in a cylindrical water Cherenkov detector. We

FIGURE 15 | The energy reconstruction performance of 12,000 muon (left) and electron (right) events plotted against the Erec and towall for charge-only network

with 5 Gaussian. The saturation level at 0.8 is from the energy range for likelihood scans.
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presented results using three likelihood function approximations
using mixtures of Gaussian functions in one-dimension, taking
into account only the hit charges, and in two-dimensions, taking
into account both the hit charges and times. For the bivariate
mixture model we explored two parameterizations of the
Gaussian distributions: one which does not allow for correlations
between charge and time in the individual components of
the mixture, and one which includes this additional degree
of freedom.

We have demonstrated that our neural networks are capable
of accurately reproducing the features observed in the data and
we found our results to be robust with respect to changes in
the network architecture and loss function parameterizations,
though longer training of our neural network will be necessary
to confirm some of our conclusions.

We have studied the potential of these neural networks to
be used in maximum likelihood reconstruction by scanning the
loss as a function of the particle energy for a set of muon and
electron events, and we demonstrated the loss is minimized close
to the true particle energy. Taking the difference of between the
minimum loss under the electron hypothesis and the minimum
loss under the muon hypothesis to form a likelihood ratio
test, the neural network has shown very promising particle
identification performance.

The work presented here is an initial milestone in the path
to achieve precise water Cherenkov event reconstruction using
ML-based maximum likelihood estimation. Our future work
will focus on the application of gradient descent algorithms
to the neural networks presented here, and further improving
their performance based on event reconstruction metrics.
We also plan to continue exploring alternative loss function
parameterizations, such as mixtures of log-normal and other
simple functions. We foresee the next major milestone in
the project to be the extension of the neural network to
multiple-particle topologies, which we expect to achieve by
combining several single-particle likelihoods, possibly using
ML techniques.

The approach presented here is not only promising in terms
of potential improvements in reconstruction performance, but
it is also easily applicable to any cylindrical water Cherenkov
experiment, with extension to other geometries possible as
long as they can be reasonably projected onto a set of
two-dimensional images.
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