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Domain adaptation aims at reducing the domain shift between a labeled source domain

and an unlabeled target domain, so that the source model can be generalized to target

domains without fine tuning. In this paper, we propose to evaluate the cross-domain

transferability between source and target samples by domain prediction uncertainty,

which is quantified viaWasserstein gradient flows. Further, we exploit it for reweighting the

training samples to alleviate the issue of domain shift. The proposedmechanism provides

a meaningful curriculum for cross-domain transfer and adaptively rules out samples that

contain toomuch domain specific information during domain adaptation. Experiments on

several benchmark datasets demonstrate that our reweighting mechanism can achieve

improved results in both balanced and partial domain adaptation.
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1. INTRODUCTION

Unsupervised domain adaptation transfers knowledge from a labeled source domain to an
unlabeled target domain. The goal is to learn a shared latent representation of source and target
samples, complemented with a classifier for accurate classification using the latent representation
as input. During learning, the differences between source and target representations are minimized
at a population (distribution) level, while the discriminative ability of the classifier is maximized
using only the labeled source data. Subsequently, the learned classifier and representation can be
used to predict on target samples without the need of manual labeling effort. With the popularity of
Generative Adversarial Nets (GANs) (Goodfellow et al., 2014), recent approaches generally match
the source and target latent representations (features) via adversarial training, where a domain
discriminator is used to classify the source and target features while the feature encoders are trained
adversarially so the the discriminator cannot tell the differences between the two domains.

However, there are several problems with the current adversarial domain matching approaches:
(i) The datasets may include samples that contain toomuch domain specific information. Matching
with such samples may cause unreliable gradient and deterioration during training (Wen et al.,
2019). (ii) Most of these approaches assume that the source and target are generated from the same
set of classes, i.e., the balanced domain adaptation. In many real applications, however, in order
to for the source knowledge to cover the target but with no information on target labels, we may
have to collected a much larger source dataset with classes that do not present in the target domain.
Such problem is described as the partial domain adaptation (Cao et al., 2017, 2018). As illustrated
in Figure 1, these scenarios are challenging because simply matching the source and target feature
distributions is likely to result in negative transfer. This happens because distribution matching
may force observations from the target to be placed nearby source observations whose label is not
present in the target, thus negatively impacting the quality of the learnt target representation. As
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FIGURE 1 | Negative transfer in partial domain adaptation. Source and target features are colored red and blue, respectively. Target instances will be negatively

transferred to source classes that are absent in the target domain (e.g., “bike” to “mug”), resulting in poorly discriminative target features.

a result, the adapted model may be sometimes worse than that
trained on the source, as the target representation is poorly
discriminative after adaptation.

In this paper, we propose to alleviate these issues via
reweighting the source and target samples by their domain
prediction uncertainty, where the uncertainty is estimated by
employing a probabilistic domain discriminator. The weights
based on uncertainty estimation is a measure of transferability
of the source and target instances. It provides an adaptive
curriculum that enables domain adaptation to initially focuses
on domain uncertain samples that are close to the domain
classification boundary (easy to transfer), then move to domain
specific samples (difficult to transfer). Such a strategy can
improve the stability of the adversarial learning process (Wen
et al., 2019). Furthermore, source classes that are not presented
in target can be easily identified with low domain uncertainty
in partial domain adaptation. These classes will be down
weighted, allowing the domain matching to focus on more
target-related and informative source samples. In order to
accurately estimate the domain prediction uncertainty, we
account for the uncertainty in model parameters, i.e., by
leveraging a Bayesian neural network (BNN) as the domain
discriminator. In such case, the exact posterior is intractable,
therefore, we approximate the posterior following Wasserstein
gradient flows (WGFs) and a numerical solution of WGFs
is proposed. We further define our Wasserstein uncertainty
estimation via the mean entropy and the variance of the
posterior predictions. Wasserstein uncertainty estimation can
be easily integrated into current methods with adversarial
domain matching, enabling appropriate uncertaint reweighting.
Experimental results show significant improvement, obtaining
improved results on both balanced and partial domain
adaptation benchmarks.

2. BACKGROUND

2.1. Adversarial Domain Matching
Assume we have a labeled source dataset, Ds , (Xs,Ys), where
Xs and Ys represent source inputs and labels, respectively. The
source label, Ys ∈ Ys, can take one of Ks distinct labels
with probability P(Ys). We seek to leverage information in the
source and a set of (unlabeled) target inputs, Xt , to develop
a target label classification model without knowing the target
label Yt . Similarly, Yt ∈ Yt can take one of Kt distinct labels
with probability P(Yt). Here we not only consider the standard
scenario, denoted as balanced domain adaptation, where Ys = Yt

and P(Ys) = P(Yt), but also the partial domain adaptation, where
Yt ⊂ Ys, i.e., the target labels are a true subset of the source labels,
so Kt < Ks. This is a common scenario in practice, where we
need to transfer from a large source dataset to a smaller target
with fewer number of classes.

Previous methods, such as Tzeng et al. (2017), perform latent
representation distribution matching in an adversarial manner.
The intuition is to learn a domain invariant representation
that only contains the label information. As in the concrete
part of Figure 2, adversarial domain matching consists of three
components: a source and target encoder Enc(·), a label predictor
C(·), and a domain discriminator D(·).

The source encoder Enc(xs;ψs) and label predictor Cφ(·) are
trained in a supervised-learningmanner onDs byminimizing the
cross-entropy loss as:

Lc = −E(xs,ys)∼Ds
[y⊤s log{Cφ(Enc(xs;ψs);φc)}] , (1)

whereCφ(·) is assumed to perform a softmax activation operation
and Ds is the joint distribution of the source. Once trained
on the source dataset, both Enc(· ;ψs) and Cφ(·) will be fixed
during adaptation.
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FIGURE 2 | Framework for adversarial domain matching with uncertainty reweighting. Ys and Yd are the source and domain labels, respectively. Model blocks are

represented as rectangles and losses as ellipses. The concrete part is a general framework of of adversarial domain matching. The dash lines represents the process

of our uncertainty reweighting.

Tominimize the impact of the discrepancy of features between
source and target domains, the discriminator is learnt to classify
the source and target feature domains, while the target encoder is
trained to fool D, until D can no longer set an effective boundary
between the source and target. During training, the discriminator
is trained by minimizing the adversarial objective, Ladv,

Ladv =− Exs∼Xs logDθ (Enc(xs,ψs))

− Ext∼Xt log
(

1− Dθ (Enc(xt;ψt))
) (2)

And the target encoder is separately minimized by,

Lenc = −Ext∼Xt log(Dθ (Enc(xt;ψt))) , (3)

where we have inverted the labels relative to Equation (2) as
in Goodfellow et al. (2014), which has the same properties of
the original min-max loss used in GAN but results in stronger
gradients for the target encoder.

2.2. Wasserstein Gradient Flows
Wasserstein uncertainty estimation is achieved via Wasserstein
gradient flows (WGFs) (Villani, 2008). It is a generalization of
gradient flows on Euclidean space. Formally, we first endow a
Riemannian geometry (Carmo, 1992) on P(�). The geometry
is characterized by the length between two elements (two
distributions), defined by the second-order Wasserstein distance:

W2
2 (µ, ν) , inf

γ

{∫

�×�

‖θ − θ
′‖22dγ (θ , θ

′) : γ ∈ Ŵ(µ, ν)

}

,

whereŴ(µ, ν) is the set of joint distributions over (θ , θ ′) such that
the two marginals equal µ and ν, respectively. The Wasserstein
distance defines an optimal-transport problem, where one wants
to transform µ to ν with minimum cost (Villani, 2008). Thus,
the term ‖θ − θ

′‖22 represents the cost to transport θ in µ to

θ
′ in ν, and can be replaced by a general metric c(θ , θ ′) in a

metric space. If µ is absolutely continuous w.r.t. the Lebesgue

measure, there is a unique optimal transport plan fromµ to ν, i.e.,

a mapping T :R
d → R

d pushing µ onto ν satisfying T#µ = ν.
Here T#µ denotes the pushforward measure (Villani, 2008) of µ.
The Wasserstein distance thus can be equivalently reformulated
as

W2
2 (µ, ν) , inf

T

{∫

�
‖θ − T(θ)‖22dµ(θ)

}

, (4)

Consider P(�) with a Riemannian geometry endowed by the
second-orderWasserstein metric. Let {µτ }τ∈[0,1] be an absolutely
continuous curve in P(�) with distance between µτ and µτ+h

measured by W2
2 (µτ ,µτ+h). We overload the definition of T

to denote the underlying transformation from µτ to µτ+h as
θ τ+h = Th(θ τ ). Motivated by the Euclidean-space case, if we

define vτ (θ) , limh→0
Th(θτ )−θτ

h
as the velocity of the particle, a

gradient flow can be defined onP(�) correspondingly in Lemma
1 (Ambrosio et al., 2005).

Lemma 1. Let {µτ }τ∈[0,1] be an absolutely-continuous curve in
P(�) with finite second-order moments. Then for a.e.τ ∈ [0, 1],
the above vector field vτ defines a gradient flow on P(�) as
∂τµτ + ∇θ · (vτ µτ ) = 0, where ∇θ · a , ∇⊤

θ
a for a vector a.

Function F above is lifted to be a functional in the space of
probability measures, mapping a probability measure µ to a real
value, i.e., F :P(�) → R. F is the energy functional of a gradient
flow on P(�). Consequently, it can be shown that vτ in Lemma 1

has the form vτ = −∇x
δF
δµτ

(µτ ) (Ambrosio et al., 2005), where
δF
δµτ

is called the first variation of F at µτ (Dougan and Nochetto,

2022). Based on this, gradient flows on P(�) can be written in a
form of partial differential equation (PDE) as

∂τµτ = −∇θ · (vτ µτ ) = ∇θ ·

(

µτ∇θ (
δF

δµτ
(µτ ))

)

. (5)

Intuitively, an energy functional F characterizes the landscape
structure of the corresponding manifold, and the gradient flow
(Equation 5) defines a solution path on this manifold. Usually,
by choosing appropriate F, the landscape is convex, e.g., the Itó-
diffusion case (Chen C. et al., 2018). This provides a theoretical
guarantee of optimal convergence of a gradient flow.
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3. PROPOSED METHOD

In domain matching, instances with high prediction uncertainty
from the discriminator are usually less domain specific,
thus can be easily transferred. Besides, samples with low
domain uncertainty might contain too much domain specific
information. Such samples may cause unreliable gradient and
result in instability during adversarial training. Therefore,
the discriminator prediction uncertainty can serve as a
measure of cross-domain transferability between the source
and target samples, enabling adaptive learning from easy to
difficult instances.

3.1. Wasserstein Uncertainty Estimation for
Probabilistic Discriminator
We consider learning posterior distributions for the parameters
of the discriminator for the uncertainty estimation, instead
of a point estimation. We further leverage the uncertainty of
domain predictions to reweight source and target instances.
The posterior distribution of complex models, e.g., the neural
networks, is usually intractable. For computational convenience,
traditional BNN learning typically assumes fully factorized
Gaussian proposals as posterior approximation when adopting
variational inference (Blundell et al., 2015; Hernández-Lobato
and Adams, 2015). It is obvious that the factorized Gaussian
posteriors usually lead to unreasonable approximation errors and
underestimate model uncertainty (underestimate variances) (Liu
and Wang, 2016). Further, particle-based variational inference
methods (Chen C. et al., 2018), e.g., Wasserstein gradient flows,
iteratively transports a set of particles to approximate the target
posterior distribution, without making explicit assumptions
about the form of the posterior and avoiding the aforementioned
factorization assumption.

We consider a posterior distribution pθ , p(θ |D) ∝

p(D|θ)p(θ), where θ ∈ R
r represents the parameter of domain

discriminator. The canonical form is p(θ |D) = (1/Z) exp(Q(θ)).

Q(θ) , log p(D|θ)+ log p(θ)

=

N
∑

i=1

log p(xi |θ)+ log p(θ) ,
(6)

where potential energy is based on an i.i.d. assumption of the
model, and Z is the normalizing constant, which is intractable
if the discriminator model is a neural network. To apply
WGFs for posterior approximation in domain discriminator, a
variational (posterior) distribution for θ , denoted as µ(θ), is
learned by solving an appropriate gradient-flow problem. To
make the stationary distribution of the WGF consistent with
the target posterior distribution, we define an energy functional
characterizing the similarity between the current variational
distribution and the true distribution pθ as:

F(µ) , −

∫

Q(θ)µ(θ)dθ

︸ ︷︷ ︸

E1

+

∫

µ(θ) logµ(θ)dθ

︸ ︷︷ ︸

E2

= KL
(

µ‖pθ

)

.

(7)

Note E2 is the energy functional of a pure Brownian motion (e.g.,
U(θ) = 0 in Equation 7). According to Equation (5), the first
variation of functional E1 and E2 can be calculated as:

δE1

δµ
= −Q,

δE2

δµ
= logµ+ 1 . (8)

Substituting Equations (8) into (5) yields the specific PDE form
of the WGF. The energy functional F(µ) defines a landscape
determined by Ds, whose minimum is obtained at µ = pθ .

3.2. A Numerical Solution of WGFs
To solve the above WGF problem (Equation 5) we proposed to
use particles, approximating µ withM particles {θ i}Mi=1 as

µ(h) ≈
1

M

M
∑

i=1

δ
θ
i , (9)

where δθk is a delta function with a spike at θk. Consequently,
solving for the optimal µ is equivalent to updating the particles.
We investigate the numerical solution to solve (Equation 5) via
the discrete-gradient-flow method.

Discrete gradient flows (DGFs) approximate (Equation 5) by
discretizing the continuous curve µt into a piece-wise linear
curve, leading to an iterative optimization problem to solve
the intermediate points denoted as {µh

k
}k, where k denotes the

discrete points, and h is referred to as the stepsize parameter.
The iterative optimization problem is also known as the
minimizing movement scheme (MMS) (Jordan et al., 1998),

where for iteration k, µ
(h)
k+1

is obtained by solving the following
optimization problem:

µ
(h)
k+1

= argmin
µ

KL
(

µ‖pθ

)

+
W2

2 (µ,µ
(h)
k
)

2h
. (10)

With particles approximating theµ in Equation (9), the evolution
of distributions described by Equation (5) can be approximated
with gradient descent on particles. According to Liu and Wang
(2016), the gradient of the first term F1 , KL

(

µ‖pθ

)

can be easily
approximated as:

∂F1

∂θ ik

=

M
∑

j=1

[

−κ(θ
j

k
, θ ik)∇θ

i
k
Q(θ ik)+ ∇

θ
j

k

κ(θ
j

k
, θ ik)

]

, (11)

where κ is the kernel function, which typically is the radial basis
function (RBF) kernel defined as κ(θ , θ ′) = exp(−‖θ − θ

′‖22/h).

3.2.1. Particle-Based Estimation of Wasserstein

Distance
Unfortunately, the exact minimization of the Wasserstein
distance W2

2 (·, ·) over γ is in general computational
intractable (Genevay et al., 2018; Salimans et al., 2018).
Chen C. et al. (2018) uses a Sinkhorn-style algorithm to compute
the Wasserstein distance but without iterative process assuming
the parallel transport (Liu et al., 2019). It renders an inexact
estimation with almost equal weights in γ . To overcome this
issue, we consider an efficient iterative approach to approximate
the Wasserstein distance based on the particle approximation.
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We propose to use the recently introduced Inexact Proximal
point method for Optimal Transport (IPOT) (Xie et al.,
2018) algorithm to compute the matrix T∗. IPOT provides
a solution to the original Wasserstein distance specified in
Equation (4). Specifically, IPOT iteratively solves the following
optimization problem using the proximal point method (Boyd
and Vandenberghe, 2004):

T(t+1) = argminT∈5(x,y)

{

〈T,C〉 + β · B(T,T(t))
}

,

where the proximity metric term B(T,T(t)) penalizes solutions

that are too distant from the latest approximation, and 1
β

is

understood as the generalized stepsize. This renders a tractable
iterative scheme toward the exact Wasserstein distance. In
this work, we employ the generalized KL Bregman divergence

B(T,T(t)) =
∑

i,j Tij log
Tij

T
(t)
ij

−
∑

i,j Tij+
∑

i,j T
(t)
ij as the proximity

metric. Finally, we can update the particles in the k-th iteration
with T computed based on IPOT and fixed when updating the
particles:

θ
i
k+1 = θ

i
k+

h

M

M
∑

j=1

[

−κ(θ
j
k
, θ ik)∇θ

i
k
U(θ ik)+∇

θ
j
k

κ(θ
j
k
, θ ik)

]

+h

M
∑

j=1

Tij(θ
i
k − θ

j
k−1

). (12)

3.3. Adversarial Domain Matching via
Wasserstein Uncertainty Estimation
Given particles {θk}

M
k=1

, the prediction uncertainty of the domain
discriminator can be estimated with different metrics. In our
approach, we consider two uncertainty measures: entropy and
variance uncertainty. Let x be a training sample, its domain
prediction uncertainty can be estimated as,

Uent(x) = H

(

1

M

M
∑

k=1

Dθk
(Enc(x;ψ))

)

(13)

Uvar(x) =
∥
∥cov({Dθk

(Enc(x;ψ))}Mk=1)
∥
∥
2

(14)

where H(·) is the entropy function and cov(·) is the covariance
operator. The norm of the covariance matrix corresponds
to its largest eigenvalue, which is identical to the largest
variance among all 1D projections of the particle outputs
{Dθk

(Enc(x;ψ))}M
k=1

. Since (Equations 13, 14) are based in the
particles solve from WGF, as in Section 3.2, Uent(x) and Uvar(x)
are called Wasserstein uncertainty estimation. They describes
the domain prediction uncertainty of the input samples with a
domain discriminator.

For adversarial domain matching, we propose to reweight the
source and target samples according to our domain prediction
uncertainty. Given a training sample, its uncertainty weight can
be evaluated as,

w(x) = λ
Uent(x)

log 2
+ (1− λ)

Uvar(x)

Umax
var

(15)

where Umax
var is the maximum variance uncertain in the current

minibatch, and λ ∈ [0, 1] is a weighting parameter. Since the

discriminator is a binary classifier, the largest entropy is bounded
by log 2. Hence we normalize the entropy-based uncertainty into
[0, 1] by scaling it with log 2.

We integrate our uncertainty weights into the adversarial
domain matching in Section 2.1. For each particle k for the
discriminator, k = 1, . . . ,M, the adversarial objective can be
modified as,

Lwadvk
=− Ex∼p(Xs) w(x) logDθk (Enc(x;ψs))

− Ex∼p(Xt) w(x) log(1− Dθk (Enc(x;ψt))).
(16)

The loss for the target encoder is modified as,

Lwenc = −Ex∼p(Xt) w(x) log(

M
∑

k=0

Dθk (Enc(x;ψt))) (17)

The complete procedure for the proposed adversarial
domain matching is illustrated in Algorithm 1. Such a
matching mechanism can be implemented in virtually any
domain adaptation algorithm based on adversarial domain
matching. Specifically, in our experiments, we modify the
adversarial training process of Wang et al. (2019) with
our uncertainty reweighting. The results show that our
method can yield remarkable improvements and effectively
alleviate negative transfer in case of partial domain adaptation.

Remark 1. The proposed method can be regarded as a scheme
of adaptive importance sampling, which excludes the difficult
instances at the earlier stage of adaptation and stabilize the
adversarial training. Further, in partial domain adaptation, source
classes not included in target will be predicted with very low
domain uncertainty throughout training. These classes will be
down weighted and ruled out during domain matching.

4. RELATED WORK

Unsupervised domain adaptation is based on the appropriate
matching between the source and target distributions (Tzeng
et al., 2014; Long et al., 2015, 2016; Sun and Saenko, 2016; Sun
et al., 2016). Driven by the increasing popularity of the Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014), recent
adaptation methods resort to matching the distributions in an
adversarial manner. Long et al. (2015) and Tzeng et al. (2017)
added a discriminator on the output of bottleneck layer in the
model to distinguish features from different domains, while
the feature encoders are trained to fool the discriminator so
it cannot find an effective boundary that distinguishes between
source and target instances. Zhang et al. (2018b) also add domain
discriminators on the lower layers, which encourage domain
specific information in shallower representations.

Cao et al. (2017) and Cao et al. (2018) introduced the
concept of partial domain adaptation, in which target classes are
assumed to be a subset of the source. They reduce the effect of
negative transfer by selecting out classes not present in the target
according to the prediction frequency, however, their approaches
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Algorithm 1 Adversarial domain matching with Wasserstein
uncertainty reweighting.

Let ψs, ψt , be the parameters for source and target encoders.
{θk}

M
k=1

be the parameters for the samples discriminator
particles.
Input:

Source and target data: {Xs, Ys}, Xt

Learning rates {γadv, γenc}
Batch size B
Number of particlesM

Training source model, Enc(·;ψs) and C(·), with Lc
Fix Enc(·;ψs) and C(·).
Initialize {θk}

M
k=1

while not converge do
Draw random minibatch {xis}

B
i=1, {x

i
t}
B
i=1

ψt = ψt − γenc∇ψtL
w
enc

Calculate {∇θkL
w
advk

}M
k=1

Update {θk}
M
k=1

according to Equation (12)
end while

are only moderate when the source and target label domains
are the same. Cao et al. (2019) propose to identify samples
from the redundant source classes through class-aware domain
discrimination, however, they did not take into account the
probabilistic domain uncertainty. In our approach, we propose
to employ a probabilistic domain discriminator and reweight
the source the target samples with the domain prediction
uncertainty. Our uncertainty weights impose a meaningful
curriculum for adversarial domain matching and can also
select out samples from redundant source classes during partial
domain adaptation.

5. EXPERIMENTAL RESULTS

We denote our method as Wasserstein Uncertainty Domain
Matching (WUDM). We evaluate WUDM on three domain
adaptation benchmark datasets: the digits datasets, Office31 and
Visda2017. In order to evaluate the effectiveness of our proposed
Wasserstein uncertain estimation, we conduct an ablation test
by using a domain discriminator with point estimation, denoted
as UDM, where the uncertainty is estimated only with its
prediction entropy as in Equation (13). UDM is an ablation study
of our proposed Wasserstein Uncertainty Estimation, which
is equivalent to estimating the domain uncertaintyăusing the
entropy uncertainty (Namdari and Li, 2019) with deterministic
models. Source code will be released at https://github.com/
RayWangWR?.

5.1. Datasets
5.1.1. The Digits Datasets
We consider three digits datasets with varying difficulties:
MNIST, SVHN and USPS, each containing 10 classes for digits 0-
9. The encoder architecture for the digits images is the modified
LeNet from Tzeng et al. (2017). For the domain classification,
each sampled particle of the adversarial discriminator consists of

3 fully connected layers with 500 hidden units for the first two
layers and 2 for the output. All images are converted to grayscale
and rescaled to 28 × 28 pixels. Following the experiments of
Tzeng et al. (2017), we consider three directions of transfer:
SVHN→MNIST, USPS→MNIST and MNIST→USPS.

5.1.2. VisDA2017
This is a dataset for the Visual Domain Adaptation Challenge
from synthetic 2D renderings of 3D models to real images. It
consists of 12 classes of objects shared by both domains, each with
a very large number of instances. The architecture of the encoder
for images in Visda2017 is a Resnet-50 (He et al., 2016) pre-
trained on ImageNet. All the images are first resized to 256× 256
pixels RGB images, then random cropped during training and
central cropped during testing into 224 × 224 RGB images for
the model input.

5.1.3. Office31
This is a standard benchmark for domain adaptation widely used
in computer vision, it consists of 4,652 images from 31 classes.
These images are collected from three distinct domains: Amazon

TABLE 1 | Balanced domain adaptation on the digits datasets.

Method SVHN→MNIST USPS→MNIST MNIST→USPS

LeNet LeCun et al., 1998 0.598 0.634 0.771

ADDA Tzeng et al., 2017 0.760 0.901 0.894

MCD Saito et al., 2018b 0.962 0.941 0.942

AdDropout Saito et al., 2018a 0.950 0.931 0.932

RAAN Chen Q. et al., 2018 0.892 0.921 0.890

JDDA-I Chen et al., 2019 0.931 0.970 -

EntroDA Wen et al., 2019 0.915 0.981 0.957

RUDA Wang et al., 2019 0.965 0.979 0.952

UDM 0.969 0.953 0.945

WUDM 0.971 0.985 0.961

The values in bold means it is the highest in each column.

TABLE 2 | Partial domain adaptation on VisDA2017.

Method Syn-12→Real-6 Real-12→Syn6 Average

ResNet He et al., 2016 0.421 0.568 0.494

DANN Ganin et al., 2016 0.327 0.605 0.466

RTN Long et al., 2016 0.279 0.500 0.390

ADDA Tzeng et al., 2017 0.545 0.562 0.554

ADDA-mix Tzeng et al., 2017 0.543 0.605 0.574

PADA Cao et al., 2018 0.535 0.765 0.650

ENT Cao et al., 2019 0.706 0.708 0.707

RUDA Wang et al., 2019 0.700 0.846 0.773

UDM 0.754 0.711 0.733

WUDM 0.750 0.864 0.807

The values in bold means it is the highest in each column.
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FIGURE 3 | t-SNE embeddings of the representations for Syn12→Real6. The features are embedded into the same subspace and visualized within the same scope.

(A) is the source representation with 12 classes. (B–D) are the adapted target representation with 6 classes. The embedding from WUDM consists of 6 disentangled

clusters, while others tend to be more entangled or contains excessive number of clusters.

TABLE 3 | Partial domain adaptation on Office31.

Method A31→D10 D31→ W10 D31→ A10 Average

ResNet50 He et al., 2016 0.701 0.980 0.690 0.793

DANN Ganin et al., 2016 0.529 0.314 0.468 0.437

ADDA Tzeng et al., 2017 0.675 0.705 0.686 0.689

SAN Cao et al., 2017 0.813 0.986 0.806 0.868

IWAN Zhang et al., 2018a 0.790 0.990 0.895 0.892

PADA Cao et al., 2018 0.865 0.993 0.927 0.928

RUDA Wang et al., 2019 0.847 0.997 0.919 0.921

UDM 0.815 0.990 0.877 0.894

WUDM 0.860 1.000 0.930 0.930

The values in bold means it is the highest in each column.

(A), Webcam (W) and DSLR (D). This is a relatively difficult
dataset since the Webcam and DSLR contains very small amount
of images, i.e., less than 10 for some classes, which may easily lead
to overfitting during the adaptation process. In order to explore
different combinations of large and small datasets for the source
and target, we consider three transfer directions: A→D (large to
small), W→A (small to large) and W→D (small to small).

The data pre-processing and experiment setting are the same
as above for Visda2017 except that we use ResNet-50 with 31-
dimensional output instead of 12. Due to the small size of
Office31, we approach the task as fully transductive, where all
labeled instances from the source and all unlabeled instances
from the target are used during training and adaptation. This is
the same for the experiments in Long et al. (2015), Ganin et al.
(2016), and Tzeng et al. (2017). Complementary to Visda2017,
Office31 will validate the performance of our method on small-
scale datasets.

5.2. Balanced Domain Adaptation
5.2.1. The Digit Datasets
We conduct experiments with all the 10 digits in the balanced
setting. The results are shown in Table 1. Our method
outperforms all the other baselines in all three directions, which
demonstrates the effectiveness of our method in the standard
balanced domain adaptation.

Note that the proposed method outperforms simple model
(point estimation) with a large margin. This indicated that our
uncertainty weights with Equation (15) is more accurate in
representing sample uncertainty, demonstrating the effectiveness
of our Wasserstein uncertainty estimation.

5.3. Partial Domain Adaptation
5.3.1. VisDA2017
Following Cao et al. (2018), we only reserve images of the
first 6 classes of VisDA2017 in alphabetic order in the target
domain (REAL-6, SYN-6), and all the images of the 12 classes
are kept in the source domain (REAL-12, SYN-12). The results
for SYN12→REAL6 and REAL12→SYN6 are shown in Table 2.
Our method outperforms RUDA and the other baselines by a
large margin. This validates the usefulness of our uncertainty
reweighting for partial domain adaptation.

In Figure 3, we visualize the source and target features of
SYN12→REAL6 in the same subspace with t-SNE. It can be
shown that other methods tend to negatively transfer the target
samples toward the redundant source classes. These samples will
be misclassified by the source classifier and caused degraded
performance for the adaptation. Our method promotes transfer
within the same class, which preserves intra-class structure of
target representation during domain adaptation. The resulting
target representation is more discriminative and less entangled.

5.3.2. Office31
We select the 10 classes shared by Office31 and Caltech-256 as
our target labels. For each direction of adaptation, we use all
the images of these 10 classes in the target split as the target
domain (denoted as A10, W10, D10), and images from all the
31 classes in the source split as the source domain (denoted as
A31, W31, D31). In Table 3, our method is better than RUDA
and UDM in all three directions. These experiments validate the
effectiveness of our uncertainty weighting in alleviating negative
target transfer on small datasets as Office31.

Combined with the experiments of Visda2017, our method
tend to produce larger performance improvement compared
with the results from balanced domain adaptation. This is
because partial domain adaptation suffers from larger degree
of negative transfer, and our method can alleviate such effect
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by ruling out the irrelevant source classes and focusing on
source samples that are more informative for target classification.
The average accuracies of WUDM are higher then UDM in
both Visda2017 and Office31. This validates the usefulness of
our Wasserstein uncertainty estimation in the case of partial
domain adaptation.

6. CONCLUSIONS

In this paper, we propose to reweight the source and target
samples in domain adaptation with domain prediction
uncertainty. For estimation of domain uncertainty, we
employ a probabilistic domain discriminator and develop
the Wasserstein uncertainty estimation, which can be easily
integrated into concurrent adversarial domain matching. The
resulting uncertainty weights impose an adaptive curriculum
on domain adaptation that stabilize adversarial training and
alleviate the effect of negative transfer in the case of partial
domain adaptation. Experiments on several benchmarks show
that our method achieves improved results on both balanced and
partial domain adaptation.
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