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Editorial on the Research Topic

User Modeling and Recommendations

1. INTRODUCTION

The behavior of users in the digital world (e.g., online shopping, social media activity, etc.) is
increasingly supported by recommender systems (Ricci et al., 2015). Recommender systems are
mainly data-driven, based on behavioral data, such as ratings, likes, purchases or general interaction
and consumption (Bell et al., 2007). Although these systems are useful for both users and service
providers, they have several drawbacks including the cold start problem (i.e., the data sparsity in
the initial stages of system deployment), various biases resulting from biases in the user-generated
data (Ntoutsi et al., 2020) (i.e., gender, popularity, or selection bias) or the limited explainability
of the data (i.e., using data without understanding the root cause of behaviors). Hence, recent
work has started to adopt approaches that include sophisticated user analysis and modeling
as well as algorithms that reduce biases (Elahi et al., 2021) and generate fair and explainable
recommendations (Zhang and Chen, 2020).

Frequently, these intelligent systems take advantage of psychological models to explain and
predict user interactions with the systems (Tkalcic and Chen, 2015), influence user interaction
through novel interfaces (Gupta et al., 2022), and allow for a deeper understanding of user behavior
(Wölbitsch et al., 2019), including user trust in the systems (Erlei et al., 2020), and their reliance on
such systems (Tolmeijer et al., 2021; Erlei et al., 2022), user preferences and needs (Wölbitsch et al.,
2020; Najafian et al., 2021), which in turn also allow for more generalizable results. In complement,
digital behavior in other systems has also been used to infer user characteristics. For example,
social media activities have been used to analyze, model, and predict user behavior in recommender
systems (Eberhard et al., 2019).

2. RESEARCH TOPIC CONTENT

Given the aforementioned context, this Research Topic encouraged submissions on the usage
of user behavior analysis and user models in the broad landscape of recommender systems. In
particular, we encouraged the authors to submit original research articles, case studies, reviews,
theoretical and critical perspectives, and viewpoint articles on the following topics:

• User analysis and models that explain online behavior
• Methods for Analyzing User Behavior
• Recommender Systems and Algorithms, and
• Algorithmic Fairness and Transparency.
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Within this collection we accepted eight original research articles.
The author’s affiliation countries were diverse, including Europe
(Italy, Norway, Germany, UK, the Netherlands, and Austria),
North America (USA and Canada), and Asia (Japan).

The topics cover (i) user behavior and models, (ii)
recommender systems and algorithms, (iii) user analysis and
observational studies, and (iv) adaptive systems.

In their work, Akhuseyinoglu and Brusilovsky explored
behavioral patterns for data-driven modeling of learners’
individual differences by using a large volume of learner
data collected in an online practice system. The authors
showed that their proposed data-driven model of individual
differences outperforms conventional models in predicting
learner performance and engagement. Prange and Sonntag
synthesized and implemented 170 digital pen features, and
evaluated this feature set in paper-pencil-based neurocognitive
assessments in the medical domain. The authors showed that the
proposed feature set outperforms three conventional approaches
for cognitive tests considered in a binary classification task.
In their work, Morita et al. developed a browser extension to
alleviate negative emotions during web use by leveraging the
cognitive architecture Adaptive Control of Thought-Rational
(ACT-R) as a model of human memory and emotion. The
authors empirically demonstrate that the counterbalanced model
suppresses negative ruminative web browsing.

Elahi et al. developed a university recommender system,
eliciting user preferences as ratings to build predictive models
and generate personalized university ranking lists. Through two
studies the authors evaluated which recommender approaches
demonstrated the highest predictive value and explored preferred
university features. In their work, Zarindast and Wood propose
an auto-routine and color scheme recommender system for

home-based smart lighting exploiting historical data from users.
The authors found that models based on similar users increases
the prediction accuracy, with and without prior knowledge
about user preferences. Alslaity and Tran presented a study that
explored how users with different characteristics get influenced
by the various persuasive principles that a recommender
system uses, revealing that persuasive principles can enhance
user experiences. The authors showed that, among the factors
considered in this study, culture, personality traits, and the
domain of recommendations have a relatively higher impact on
the influence of persuasive principles.

In their work, Sikdar et al. quantified the effects of signaling
gender through gender specific user names, on the success of
reviews written on the popular amazon.com shopping platform.
The authors contrasted the effects of gender signaling and
performance on the review helpfulness ratings using matching
experiments, and found no general trend that gendered signals or
performances influence overall review success, although strong
context-specific effects were observed.

Finally, Wilschut et al. present a framework for speech-
based word learning using an adaptive model that was
developed for and tested with typing-based word learning. The
authors demonstrate that typing- and speech-based learning
result in similar behavioral patterns that can be used to
reliably estimate individual memory processes, and that adaptive

learning benefits transfer from typing-based learning, to speech
based learning.
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