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1Department of Mathematics, University College London, London, United Kingdom, 2Department of

Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom

Recent years have seen an increase in the application of machine learning to

the analysis of physical and biological systems, including cancer progression. A

fundamental downside to these tools is that their complexity and nonlinearity

makes it almost impossible to establish a deterministic, a priori relationship

between their input and output, and thus their predictions are not wholly

accountable. We begin with a series of proofs establishing that this holds

even for the simplest possible model of a neural network; the e�ects of

specific loss functions are explored more fully in Appendices. We return to

first principles and consider how to construct a physics-inspired model of

tumor growth without resorting to stochastic gradient descent or artificial

nonlinearities. We derive an algorithm which explores the space of possible

parameters in a model of tumor growth and identifies candidate equations

much faster than a simulated annealing approach. We test this algorithm on

synthetic tumor-growth trajectories and show that it can e�ciently and reliably

narrowdown the area of parameter spacewhere the correct values are located.

This approach has the potential to greatly improve the speed and reliability

with which patient-specific models of cancer growth can be identified in a

clinical setting.

KEYWORDS

cancer, neural networks, white-box machine learning, interpretability, parameter

optimization

1. Introduction

The application of neural networks to the modeling of cancer has seen a flood of

interest in recent years (Sanoob et al., 2016; Hsu et al., 2018; Ghazani et al., 2021; Kwak

et al., 2021; Kumar et al., 2022). The hope is to be able to use patient-specific data to

generate accurate predictions of tumor growth and treatment response, in order to guide

the clinician in their prognosis and choice of treatment regime (Rockne et al., 2019;

Kumar et al., 2022). From a modeling perspective, a tumor is a system of interacting

objects (tumor cells, fibroblasts, etc.) which influence each other’s behavior according
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to certain rules. It should therefore be possible to use tumor-

growth data to derive a system of equations to describe the

trajectory of cancer, which can then be extrapolated into the

future to predict the course of a particular disease. Over the

last few years, neural networks have become the natural first

choice of most scientists when tasked with extracting such

equations from large datasets (Benzekry, 2020; Kurz et al.,

2021). However, when we resort to machine learning to build

models and predict the behavior of any system, we sacrifice

a crucial attribute: explainability. The sheer vastness of a

neural network, which may contain many tens of thousands

of continually-adjusted interacting weights, makes the effort of

deducing the impact of any single component on a network’s

output almost impossible. In addition, we must consider the

neural network’s various nonlinearities, which interfere with

any attempt to construct an analytically solvable description

of its processes (and thus to account for its decision-making).

One example is the common Rectified Linear Unit (ReLU),

and its many cousins [the parameterized ReLU (Xu et al.,

2015), the “leaky” ReLU (Maas et al., 2013), etc.], which may

or may not act on an input as it makes its way through the

system. Any attempt to construct a gradient of the output

with respect to the input will have to contend with the

resulting discontinuities. Less analytically troublesome, but still

exhausting, are backpropagation algorithms: ADAM (Kingma

and Ba, 2014), for instance, adjusts each weight not simply in

response to its current effect on the output but to all of its past

effects, which will create a new set of complex nonlinearities in

any differential equation aimed at describing a the workings of

a network.

The best that can be hoped for, then, is to gain a

“general idea” of the effect of each network attribute, using

hyperparameter tuning (Yuan et al., 2021). This is an obviously

risky approach: sampling a few points in the hyperspace of all

possible hyperparameter values does not give us a complete

picture of the dependence of the output on our choice of values.

Without a complete picture of this dependence, we can never be

sure that the relationships predicted by a network reflect physical

reality or are simply a product of its own internal calibration.

This is the crucial issue, and why, as long as a neural network

remains a “black box,” its output can never be fully understood

or trusted, especially in a clinical setting where the results of a

model may guide cancer treatment and thus affect a patient’s

length and quality of life. A lack of explainability is a significant

impediment to the adoption of machine learning and other

computational approaches in a clinical setting. It also hinders

the clinician’s ability to fully interact with and analyse ML-

derived predictions: not knowing where they come from, it is

very difficult to rigorously deduce what any set of values assigned

to a tumor “mean,” or to “sanity-check” them against clinical

expertize. To reliably incorporate computational methods into

cancer treatment, we must either develop some picture of the

workings of a neural network, or move away from stochastic

gradient descent altogether, to an algorithmic approach whose

decision-making processes are transparent and accountable. A

great deal of interesting work has been done in recent years

to achieve this first goal, attempting to render explainable the

workings of black-box neural networks (Rudin, 2019; Kazhdan

et al., 2020; Dujon et al., 2021; Magister et al., 2021). The general

approach of such papers is either to deduce the emergent rules

of the neural network from its behavior, or to induce such strong

biases in its workings that it is naturally directs to the correct

area of parameter hyperspace (as with the physics-inspired

neural networks discussed in Karniadakis et al., 2021). Such a

posteriori attempts to harness or constrain the chaotic nonlinear

workings of a neural network, however, are no replacement

for an a priori understanding of its rules and aims. Without

this, no result derived from such a network can be considered

mathematically rigorous, which becomes an increasingly serious

problem as the area of application approaches the hard sciences.

The aim of this paper is to explore the difficulties inherent in this

promising research, and to place some mathematical limits on

the degree to which black-boxes can be truly, a priori explained.

We also develop a computational method of fitting a model to

cancer-growth data which is built around explainability first and

foremost, excising nonlinearity and stochasticity where possible,

and find that such a method can usefully direct and improve the

efficiency of standard machine-learning techniques.

This paper is laid out as follows. We demonstrate first that

it is impossible to truly account for the workings of even the

simplest imaginable neural network, and then introduce an

alternative “white-box” algorithm which can be used to quickly

and reliably identify candidate equations for tumor growth. By

using this algorithm, we can explainability identify the region

of “parameter space”—and thus, in a sense, the “type” of tumor

growth—appropriate to a particular disease. After this step has

been applied, we are no longer “fighting blind,” and may leave

more detailed fitting to neural networks. With this algorithm,

we can both significantly reduce the time taken to fit patient-

specific models of tumor growth and provide meaning to their

parameters. The goal of explainability, then, does not have to

slow down machine learning techniques, but can aid them in

their search for appropriate models.

2. Materials and methods

2.1. Theory: The barriers to an analytically
explainable neural network

In the following section we consider a idealized

mathematical model of the graph neural network during

its training process, without activation functions and with

inductive biases sufficient to describe a physical system of N

interacting objects. Each object within the system is represented

by a node with two properties: the input “representation” value
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xi (which may represent size, position, age, etc.), and the target

property, whose true value is y′i. By considering many values

of xi and y′i, we aim to learn the relationship yi(x1, x2, ...xN )

between them; the goal is to produce a value of yi as close as

possible to y′i on the training data. All properties in this model

are one-dimensional for simplicity, but the mathematics behind

it may easily be extended to multidimensional systems. Since we

are describing observable quantities, we assume all properties

are real.

A real graph neural network will use several layers of

interconnected weights and activation functions to represent the

relationship between any two objects; a separate computational

layer will then learn how each object aggregates the information

it receives from the rest of the system. In ourmodel, we condense

this operation into a single relationship, which we assume is of

the form

yi =
∑

jks

wijksx
k
i x

s
j (1)

where 1 ≤ j ≤ N and k, s in principle range over all

integers, so that we are considering the product of two Taylor

expansions. In practice, because we cannot store infinite sums,

we choose some combinations of j, k, s to describe our system.

wijks are coefficients which we will adjust according to a loss

function. This form encodes a number of physical assumptions:

firstly, that the relationship yi is continuous and differentiable;

secondly, that it consists of a number of sub-relationships yij,

which combine additively; and thirdly, that the relationship yij,

which describes the effect of object j on object i, is dependent

only on the properties of those nodes (i.e., on xi and xj) and

on no others, i.e., that each object interacts with every other

object independently. Less obvious is that we are assuming the

relationship is also local. Though we presumably have many

values of xi from different time-points, the relationship yi

depends on the value of the representations {xi} only at a single

time-point. The system does not know about its previous states,

and is assumed to have time-translational symmetry.

Having given the weights wijks some initial values, we now

adjust them continuously according to their contribution to our

loss function L, which describes the total “wrongness” of our

current guesses:

∂wijks

∂t
= −α

∂L

∂wijks
(2)

We say the system has converged when no further

adjustments remain to be made, i.e., when

∂wijks

∂t
=

∂L

∂wijks
= 0 (3)

for all weights.

What is the impact of our choice of loss function on the value

of the relationships
{

yi
}

at convergence? We will use a slightly

modified and generalized version of the loss function used by

Cranmer et al. (2020), and include one “error” term designed

to penalize divergence from target values, and another term,

commonly referred to as the “regularization” term (Xu et al.,

2015), designed to penalize the overall complexity of the system.

The general form of our loss function is

L =
∑

i

∣

∣yi − y′i
∣

∣

m
+ β

∑

ijks

∣

∣

∣
wijks

∣

∣

∣

n
(4)

Clearly, there are three adjustable hyperparameters here: the

positive integers m, n, and the real and positive β . For the loss

function closest to that used by Cranmer et al., m = 1 and

n = 2, it can be shown that there are two possible values for

convergence, depending on the value of the parameter β and

the target value y′i. The proof is as follows and is based on a

self-consistency argument.

We have at convergence

∂L

∂wijks
=

∂
∣

∣yi − y′i
∣

∣

∂yi

∂yi

∂wijks
+ 2βwijks = 0 (5)

and
∂
∣

∣yi−y′i
∣

∣

∂yi
= 1 if yi ≥ y′i and−1 otherwise, i.e.,

∂
∣

∣yi−y′i
∣

∣

∂yi
=

yi−y′i
∣

∣yi−y′i
∣

∣

, and
∂yi

∂wijks
= xki x

s
j , so we have convergence when

∂L

∂wijks
=

yi − y′i
∣

∣yi − y′i
∣

∣

xki x
s
j + 2βwijks = 0 (6)

i.e., if yi ≥ y′i we have (yi − y′i)(x
k
i x

s
j + 2βwijks) = 0, and if

yi < y′i we have (yi− y′i)(x
k
i x

s
j − 2βwijks) = 0. So convergence at

yi = y′i is possible for any value of wijks.

For yi ≥ y′i we also have a solution for convergence atwijks =

−
xki x

s
j

2β . Now we can use our self-consistency argument, because

yi is defined by its contributing weights: thus this solution is

possible if

yi =
∑

jks

wijksx
k
i x

s
j =

∑

jks

−
x2ki x2sj

2β
≥ y′i (7)

which is to say we can have a different kind of convergence—

what we will call “information-free” convergence—at yi =

∑

jks−
x2ki x2sj
2β provided that y′i ≤

∑

jks−
x2ki x2sj
2β ≤ 0 for all

j, k, s combinations used to describe our system. An identical

argument for the yi < y′i case allows such information-free

convergence at yi =
∑

jks

x2ki x2sj
2β if y′i >

∑

jks

x2ki x2sj
2β ≥ 0.

In summary, then, if
∣

∣y′i
∣

∣ ≤

∑

jks x
2k
i x2sj

2β , then convergence is

only reached at yi = y′i for all i, with no restriction placed upon

the weights wijks. We refer to this as “absolute convergence.”
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If any target value falls outside of those restrictions (i.e.,
∣

∣y′i
∣

∣ >

∑

jks x
2k
i x2sj

2β for any i), then in addition to absolute

convergence, we have a second possibility: that relationship

yi may converge at
∣

∣y′i
∣

∣ =

∑

jks x
2k
i x2sj

2β . This is, of course, a

completely meaningless value, independent of y′i and indeed of

any individual property of the node i. This is why we refer to

this possibility as “information-free” (I-F) convergence. It, too,

places no restriction on the value of the weights; the system is

not guaranteed to be made any simpler, which of course would

be little reassurance, given that the relationship it describes is

essentially “random.”

From this, we see that we can mitigate the possibility of I-F

convergence by setting

β ≪

∑

jks x
2k
i x2sj

2

thus widening the range of values of y′i within which only

absolute convergence is possible; and I-F convergence is avoided

entirely by setting β = 0. What, then, is the point of having

a regularization term in this model at all, if not for its original

intended purpose of making the result ‘simpler’? The answer is

that it makes convergence faster. The speed of convergence of

this loss function is determined by

∂L

∂t
=

∑

ijks

∂L

∂wijks

∂wijks

∂t
= −α

∑

ijks

(
∂L

∂wijks
)2 (8)

as the weights are adjusted according to
∂wijks

∂t =

−α ∂L
∂wijks

within our model. In the limit β → 0, ∂L
∂t →

−
∑

i α(
yi−y′i
∣

∣yi−y′i
∣

∣

)2 = −
∑

i α, i.e., decline is constant and at

a rate proportional to α and to the number of objects in the

system. Conversely, in the limit β → ∞, L → β
∑

ijks w
2
ijks

and ∂L
∂t → −α

∑

ijks 4β
2w2

ijks
= −4αβL, so L = L0e

−4αβt , and

convergence is exponential with time.

This example is simple but illustrative: even within this toy

model, the loss function does not have an intuitive effect on

convergence values. For the general even-power case m = n,

it can be shown similarly (proof in Appendix, Section 1) that

at convergence,

yi =
y′i

1+
β

1
n−1

∑

jks

(

xki x
s
j

)
n

n−1

(9)

with a corresponding equation for weights. We see now the

scale on which the value of β should be considered: what governs

the final output guess is the ratio
β

1
n−1

∑

jks

(

xki x
s
j

)
n

n−1
. In the limit of

large n, since n is even, the denominator tends to
∑

jks

∣

∣

∣
xki x

s
j

∣

∣

∣
,

which wemay think of as the “sum of the total information in the

subsystem i.” In that limit, the effect of increasing β is blunted

by the fact that the relevant quantity is its n − 1-th root. In the

limit β
1

n−1 ≪
∑

jks

(

xki x
s
j

)
n

n−1
, we recover absolute convergence,

yi → y′i; in the limit β
1

n−1 ≫
∑

jks

(

xki x
s
j

)
n

n−1
, all weights in the

subsystem i and the output guess yi tend to zero. There is no

possibility of information-free convergence to a non-zero value.

This would seem, then, to be a much more appropriate choice

of loss function. In Appendix (Section 1), we briefly discuss the

general even-power m, n case, the case m = n = 2, and in

Appendix (Section 3) we note the behavior of the more niche

subcase of elastic regularization (Li et al., 2020).

Until now, we have discussed the effect of loss function

hyperparameters on convergence values within an idealized

linear model of a neural network. We will now attempt

to incorporate the structure of a real neural network

into our model—i.e., that of layers of nodes mediated by

activation functions.

We model a simple two-layer network. We have two inputs,

xi and xj, which are fed into a hidden layer of nodes. The node

indexed by k within this layer has output

vk = akixi + akjxj + bk (10)

and our final guess y (we will drop the subscript i for the

moment) is made by combining the outputs of the hidden layer,

each fed through an activation function:

y =
∑

k

ckφ
(

vk
)

+ δ (11)

for the activation function used in the rectified linear unit,

φ (x) = max (x, 0). We will use the loss function (4) with

m = n = 2 which has bounded error, no information free-

convergence, and whose error decays exponentially with time

(proof in Appendix, Section 1). Here, it becomes:

L =
(

y− y′
)2

+ β
∑

k

a2ki + a2kj + b2k + c2k + δ2 (12)

At convergence we obtain a self-consistency equation for the

node outputs vk:

vk =

(

y− y
′
)2

β2

(

x2i + x2j + 1
)

φ
(

vk
)

(13)

This imposes either vk = 0 or, for vk > 0,
∣

∣y− y′
∣

∣ =
β

√

x2i +x2j +1
, i.e. a minimum error at convergence that tends to

infinity with β . Further, constructing the guess y directly from

our convergence equations for ck, we obtain the result (full proof

in Appendix, Section 2) that for target guesses within the range

∣

∣y′
∣

∣ <
β + 1

√

x2i + x2j + 1
(14)
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convergence is impossible. Even taking the limit β → 0

cannot eliminate this effect entirely, and the range to which

it applies widens without bound as β → ∞. This is worth

restating: in the simplest realistic model of a neural network

that incorporates activation functions, there are ranges of

representations and target values—unalterable input data—for

which convergence becomes mathematically impossible, and the

learning process will never terminate. In practice, of course,

real networks do not converge only when the gradient of the

loss function with respect for each weight is precisely zero: we

will consider the network converged when the magnitude of

the gradient of each weight has reached some small value ε.

From the standpoint of the white-box modeler, unfortunately,

this is hardly any better. If there is some large number Nw

of weights in the system, then all we can say with certainty is

that convergence occurs somewhere within a high-dimensional

hyperspace of volume (2ε)Nw , which leaves us with a very large

number of possible configurations of the system, of which the

“correct” one will be chosen stochastically. The system has

become unexplainable once again.

How do we build an algorithmwhich does not run into these

analytical difficulties, and has explainability as its central goal? If

our aim is to construct a procedure that can correctly analyze a

physical system, whose workings are completely mathematically

transparent, and which is guaranteed to converge, our analysis

above suggests we should move away from the realm of gradient

descent and nonlinear units entirely, and begin from first

principles. We follow this approach in the section below.

2.2. A white-box algorithm for
characterizing tumor growth

Suppose that we have chosen some i, j, k, s combinations

to describe our system, so that we assume relationships are of

the form

yi =
∑

jks

wijksx
k
i x

s
j =

∑

m

fimzim (15)

where we have condensed the weights wijks and terms xki x
s
j

corresponding to the combinations
{

(i, j, k, s)
}

into Mi weights

and terms fim, zim corresponding to the object i. We will assume

that we have samples of {xi} and
{

y′i
}

for all objects, and for

several configurations of the system. In all methods discussed

above, we considered each timepoint independently; here we

will combine them, and attempt to find the coefficients
{

fim
}

which produce the most accurate guesses across all timepoints

and objects.

This raises two immediate concerns. One is a degrees-of-

freedom issue: if we have Mi coefficients, then we can only

guarantee accuracy at Mi time-points. However, if we actually

have deduced the physical laws obeyed by our system, this

should not matter; the correct relationships will hold at all time-

points and not just the ones they were determined from. If we

have chosen the wrong terms zim, our guess yi(t) will diverge

from the target values y′i(t) at times far away from those used to

deduce the coefficients.

The second problem is one of “interpretability.” In theory, if

we haveMi time-points, we have as many equations as variables,

and we can determine our coefficients by simple linear algebra:

if we define a vector
−→
Y ′

i of target values such that (
−→
Y ′

i)j = y′i(tj)

and a matrix Zi given by (Zi)jk = zij(tk), such that each row

describes the value of a single term at each time-point, then our

coefficients are straightforwardly given by solving the equation

(Zi)
T ·

−→
F i =

−→
Y ′

i (16)

for a vector
−→
F i whose entries are the coefficients fim.

However, this would involve the calculation of thematrix inverse

of (Zi)
T , which is both computationally fraught and analytically

problematic. There is no easy general formula for the inverse of

an N-by-N matrix, and so it is all but impossible to discern how

the values of our chosen terms influence our final coefficients.

Once we introduce the matrix inverse into our algorithm, it

becomes a black box once again; it is impossible to construct,

say, a useful differential equation in a single datapoint zij(tk), if

that term is incorporated into a matrix which is then inverted.

Instead we use Cramer’s rule, first written down in 1,752 and

of which there are many proofs widely available (including that

in Brunetti, 2014). The coefficients are given by

fim =

∣

∣

∣
Sim

∣

∣

∣

∣

∣

∣
Zi

∣

∣

∣

where square brackets indicate determinants and the matrix Sim

is defined by

(Sim)jk =

{

zij
(

tk
)

, j 6= m;

y′i
(

tk
)

, j = m

}

(17)

This produces coefficients which exactly solve, for all chosen

timepoints tk (which we assume are randomly chosen from a

dataset of possible observations),

yi(tk) =
∑

m

fimzim(tk) = y′i(tk) (18)

The great benefit of this technique is that a determinant is linear

in all values it involves. By avoiding the matrix inverse, we have

ensured that the coefficient is differentiable in every element of

data that contributes to it, and thus the effect of each piece of

data on our conclusions is exactly quantifiable. This part of the

algorithm is a completely “white box.”

The above procedure predicts the coefficients
{

fim
}

that best

describe the system when presented with a set of terms {zim}; we

must still develop a process for choosing between sets of terms.
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The simplest and best procedure is simply to try each possible

set of terms sequentially and choose the set of terms {zim} which

has the lowest error according to the loss function

L =
∑

i,t

(

yi(t)− y′i(t)
)2

(19)

where the sum is over all timepoints in the dataset, not

simply the randomly-chosen timepoints used to deduce the

coefficients. This is a straightforward way of determining the

“goodness of fit” of our model, and has no hyperparameters,

because we have eliminated the regularization term. Here,

there is a much easier, more intuitive way of measuring

the complexity of our system: the number of terms in our

polynomial description,Mi, which we control directly.We could

make our loss function Ln instead of L2 for n ≥ 2 and

even; clearly, this would have the effect of valuing a polynomial

description with a large number of small errors over one with

a small number of large errors, which may be desirable or not

depending on the needs of the clinician.

We must, therefore, try each set of terms sequentially,

however naive an approach that may initially seem. Any attempt

to navigate the space of possible terms {zim} through stochastic

gradient descent using the loss function L is doomed to failure,

since we cannot move in infinitesimal increments through zim,

but must jump between discrete sets of input data combinations,

which may involve changes in value so large as to render

gradients useless. Further, in order to determine the gradient of

the loss function with respect to an input term zim, we must

also consider its effect on the entire set of deduced coefficients
{

fim
}

, which will require twomatrix determinant evaluations for

every coefficient. At this point, the calculation of the gradient

at each point becomes much more computationally expensive

than simply calculating the loss for each set of terms, which is

guaranteed to terminate, since the space it is exploring is finite.

A brief analysis of cost, and an additional generalizabilitymetric

assessing the suitability of a particular description-length Mi, is

included in Appendix (Section 4).

2.3. Experiment: Fitting models of tumor
growth

We now investigate the advantages of this algorithm when

applied to real-world cancer data. For the remainder of this

paper we will be following the work of Kühleitner et al. (2019).

In this paper, the authors considered longitudinal time-series

data of the growth of a tumor. Human breast cancer cells were

injected into nude mice, and the resulting tumor volume v(t)

was observed over 114 days, in a study by Worschech et al.

(2009) (shown in Figure 1). Kühleitner et al. (2019) aimed to find

the best parameter fit for a Bertalanffy-Pütter model from the

FIGURE 1

Experimental data showing the growth of tumor volume with

time, in a mouse model of human breast cancer, taken from

Kühleitner et al. (2019).

observed tumor data; that is to fit the non-negative parameters

p, q, a, b in the first-order differential equation

dv

dt
= pva − qvb (20)

The Bertalanffy-Pütter model (Ohnishi et al., 2014) is a

general class of tumor-growth model which encompasses other,

more specific tumor models, including the Verhulst model

(Verhulst, 1838) (a = 1.0, b = 2.0) and the Gompertz model

(a = 1.0, b > 1.0) (Gompertz, 1833). Per Kühleitner, it has been

experimentally observed that tumors tend to shrink when they

become very large; to ensure this behavior, only exponent-pairs

a < b are considered. They were examined at intervals of 0.01,

so that (a = 0.01n, b = a + 0.01m) for all valid non-negative

integers n,m that placed (a, b) within the highlighted range.

For every exponent-pair, the authors fitted the best coefficient-

pair (p, q) through a painstaking process of stochastic gradient

descent and simulation (simulated annealing), using the same

L2 loss function (2), otherwise known as the sum of squared

error (SSE), defined in our algorithm. Having chosen a trial pair

(p, q), they solve the equation numerically over 144 days, sum

the square of the errors, make a partially-stochastic adjustment

to (p, q), and simulate again. Their final best fit was (p =

5 · 10−4, q = 5.6 · 10−7, a = 1.62, b = 2.44), obtained

at a cost of roughly 1 week of CPU time. Our objective is to

repeat this study by applying our algorithm to fit coefficients

of the Bertalannfy-Pfutter model to this data using SSE as our

loss function. We make these choices for ease of comparison,

but the algorithm could in theory work with any differential-

equation model and any loss function. If we were to use a

stochastic differential equation (SDE), for example, we could

generate a maximum likelihood function for a model defined

by a given set of parameters, which would allow us to use
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likelihood-dependent loss functions, such as the Akaike and

Bayesian Information Criteria.

3. Results

3.1. Identifying regions of good fit with
real-world data

We have a single output guess, y′i(t) = y′(t) = dv
dt
,

obtained using numpy.gradient’s (Cranmer et al., 2020) first-

order approximations at each timepoint instead of by precise

and repeated simulation; we have a single input representation,

xi(t) = x(t) = v(t), the observed tumor volume. Because we

are fitting to a known model here instead of unknown dynamics,

we do not need to involve the generalizability metric or decide

between numbers of terms; instead we can simply try each (a, b)

pair sequentially, deduce our coefficients (p, q) using Cramer’s

rule, and output an error L using the sum of the squares of

the errors of the gradient at each timepoint according to that

prediction. As we are only deducing two coefficients, we choose

two timepoints at random; to make sure our predictions are an

accurate reflection of the entire dataset, we repeat the procedure

above 20 times for each (a, b) pair (to ensure that each datapoint

has a 95% chance of being selected at least once), and choose

the deduced coefficient pair (p, q) with the lowest error. We

consider all exponent-pairs at 0.01 intervals where a < b ≤ 3.0,

the highest value considered by Kühleitner et al. (2019). Our

algorithm runs very quickly on a standard laptop (requiring

just under seven minutes to terminate), and efficiently explores

the space of possible parameters for the roughly 45,000 possible

exponent pairs, returning the accuracy surface. Because we only

have two coefficients to fit per exponent pair, this surface can

be visualized in three dimensions (see Figure 2); this is an

advantage of the Bertalanffy-Pütter model.

Because our target values are imprecise approximations to

the true growth rate, the algorithm cannot perfectly identify

the actual accuracy minimum. However, this surface shows us

intuitively how the model behaves in various regions of the

(a, b) space. We can see, for example, that the model behaves

asymptotically badly as the exponents increase past 2.5, and that

no effort should be expended trying to identify (p, q) pairs there.

We can also see a “valley” of low error in the center, which

might be understood as a “region of good fit,” where exponent

pairs generally describe the system well. We can also use this

algorithm to identify regions of overfit, by plotting the best

values of p and q obtained at each point in (a, b) space (see

Figure 3).

We see that all regions where a, b < 1.0 should be ignored,

as the coefficients “hit a wall” as soon as that threshold is passed:

they become rapidly unstable (and, in the case of q, unphysically

negative) with respect to small changes in exponent pairs, which

suggests that region provides a poor model of the system, since

any good mathematical model of a biological system should

FIGURE 2

Sum of squared error from extrapolation from fitted (p, q) values

for each exponent-pair value; color simply corresponds to

height for highlighting purposes.

not be so acutely sensitive to small changes in its terms. This

allows us to narrow down the promising region of (a, b) in

space to the section of the valley where a, b > 1.0, and we can

explore that region further using precise simulation to identify

the best coefficient-pair (p, q). Further, we have a good idea

of where those coefficients should lie: for the authors’ final

best exponent pair (a = 1.62, b = 2.44) we obtain (p =

3 · 10−4, q = 3 · 10−7) to their (p = 5 · 10−4, q = 5.6 ·

10−7), which is remarkably close given that their gradients are

derived from careful simulation and ours from crude first-order

approximation. We have narrowed down the space of possible

hyperparameters by several orders of magnitude in a matter of

minutes; what remains can then be explored more precisely.

3.2. Recovering parameters from
synthetic data

We can test the algorithm’s accuracy further by using this

surface to identify trial parameters, generate synthetic data using
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FIGURE 3

Fitted p (above) and q (below) values for each exponent-pair

value. The colorbar corresponds to SSE—purple datapoints have

lower error, yellow ones higher. The varying limits come from

the fact that, to generate each plot, we randomly choose 2,500

points out of 45,000 to display.

those parameters, and using the algorithm to retrieve them. We

assume that every set of (a, b, p, q) parameters with SSE smaller

than that of the “official” Kühleitner solution is biologically

realistic, as it fits the tumor growth trajectory at least as closely.

We limit ourselves to the region a, b > 1.0 and obtain about

5,000 possible sets of parameters, from which we select 1,000 at

random. Using the initial tumor volume as our starting point,

for every chosen (a, b, p, q) we extrapolate forward according to

equation (20).

We then take the tumor volumes at the same timepoints as

the original data, to mimic its sparsity. We generate an accuracy

surface for each trajectory according to the procedure above

(This process took roughly 36 h using the University College

London DPS machines). For each “synthetic tumor,” we denote

the exponent-pair used to generate it as (a∗, b∗), and calculate

FIGURE 4

For 1,000 synthetically generated test cases, we calculate

whether the correct exponent-pair occurs within the

lowest-SSE “x” percent of the space. In most cases the algorithm

can isolate roughly two-fifths of the original space which may

then be explored in more detail for a closer-fitting solution.

the fraction of the parameter space 1.0 <= a, b =< 3.0 with an

assigned SSE lower than that calculated for (a∗, b∗). This gives

us a neat metric for the degree to which the algorithm “narrows

down” the parameter space, depending on how confident the

modeler wishes to be that the “correct” parameter values—

insofar as any biological system can be said to have a single

correct set of underlying parameters—lies within the identified

region. Our results are shown in Figure 4. For 999 out of

1,000 trajectories, (a∗, b∗) has an SSE higher than 57% of the

parameter space; for 990 trajectories, we can narrow down to

46% of the space, for 950, to 37%; for 900, to 32%; and for 800

to 27%. We see a “threshold effect,” demonstrated below: in the

vastmajority of cases the space can be narrowed down to roughly

two-fifths of its original area.

3.3. The e�ect of noise on algorithmic
e�cacy

We can also explore the effect of noise on this accuracy,

by separating our 1,000 trajectories into five groups of 200 and

injecting random noise at each timepoint. For a noise level of

0.01, for example, at each timepoint a random fraction of the

tumor volume between 1 and −1% is drawn from a normal

distribution and added to the tumor volume. Gradients are then

computed and the algorithm is run as previously; we again

calculate the proportion of the parameter space with an SSE

lower than that assigned to the correct exponents (a∗, b∗). Our

results are shown in Figure 5. We see that the “thresholding”

effect, by which the correct parameters can be narrowed down
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FIGURE 5

The e�ect of randomly-generated noise on algorithm accuracy.

to a certain proportion of the space with near-certainty, holds

up to a noise level of roughly 0.02.

4. Discussion

By attempting to build an algorithm that can interpretably

explain the unknown dynamics of an interacting system, we have

found an approach that can quickly and easily explore the space

of parameters of a differential equation which incorporates a

variety of models of tumor growth. On synthetic tumor-growth

data, the algorithm can reliably (with a probability of 95%) more

than halve the region of parameter space that requires finer

searching using less rigorous, more computationally expensive

machine learning methods. There is good reason to think the

algorithm can be usefully applied to more general models of

cancer growth, so long as there are enough datapoints that

the compromise of first-order gradient estimation can be safely

made. In fact, above approach does not require the underlying

equation to be first-order, or indeed to be a differential equation

at all; it works for any form, any number of terms, and any

number of objects. It provides a first-approximation to the

behavior of the system, without the expense of simulation, and

it does so without nonlinearity or the use of hyperparameters.

It can therefore be applied to a variety of contexts, medical

and otherwise.

An important aspect of the above procedure, at least

as it applies to cancer modeling, is that it identifies not

simply one good fit to the equation—as stochastic gradient

descent does—but instead identifies several thousand candidate

equations and ranks them by “goodness of fit.” This is

particularly useful to us because a tumor is not a purely

deterministic or mathematical object: it does not obey a single

equation for all time, and its behavior is likely best modeled

as a combination of, or a movement through, the candidate

equations suggested by the algorithm. The ability to narrow

down the space of model parameters to describe a particular

tumor—perhaps successively, through more and more granular

exploration—will be of use to clinicians trying to classify and

predict the behavior of cancers. Even leaving aside explainability

considerations, our algorithm can more than halve the space

which must be explored to fit parameters to the tumor using

stochastic gradient descent, which is a vital efficiency gain when

trying to provide personalized predictions at scale. There are a

wide range of complex interacting-differential-equation models

of cancer growth to which this algorithm might usefully be

applied (for instance, Nave, 2020; Hori et al., 2021; Mascheroni

et al., 2021; Nave and Elbaz, 2021), although the algorithm could,

again, in principle be used to describe any dynamical system.

In addition to this, across patients, the accuracy surface

may provide a useful tool for characterizing particular kinds

of cancer, or the effects of certain treatments. It may be that

further study reveals that there is a link between the best regions

of (a, b) space to describe a tumor and some aspect of its

growth or behavior. The ability to associate a set of best-fit

(p, q, a, b) parameters to a particular tumor also suggests the

possibility of new set of survival metrics, which may correlate

directly the prognosis of human patients. This merits further
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FIGURE 6

Diagram of the algorithmic procedure for the preliminary investigation of physical systems. In this example, we are using an N-term polynomial

with M trials each.

investigation. A full diagram of the procedure is included

in Figure 6.

A technical aspect of the algorithm worth drawing attention

to is its susceptibility to underflow errors, which arises from its

calculation of the ratio of two determinants. This is not an issue

in any of the cases discussed above, but rapidly compromises any

current attempt to apply the algorithm to large systems or to use

many terms. If we haveM terms in our description, for example,

each of the order 10−n, then the coefficients will be ratios

of two numbers of order 10−nM . Given that standard Python

floating-point precision cannot accurately represent numbers

smaller than about 10−39 (Rajaraman, 2016), neither n nor M

have to become very large before we run into accuracy issues.

Further work could implement the algorithm using an arbitrary-

precision arithmetic program designed specifically to compute

matrix determinants, such as Arb (Johansson, 2017). The

algorithm also requires its input data to be sufficiently detailed

that the compromise of first-order gradient approximation is

worth making. On datasets such as that attached to Laleh et al.

(2022), where most trajectories are composed of six or fewer

datapoints, attempts to fit exponents result in flat, highly noisy

surfaces with no significant curvature. Mouse or in vitromodels,

which can be monitored more or less continuously without

the need for painful and invasive scans on human subjects,

are our likeliest sources of useful data. However, as scanning

methods become more advanced over the next decade (Rockne

et al., 2019)—less invasive, less painful, and cheaper to perform

regularly on human patients—tumor-volume trajectories will

become denser and more amenable to mathematical analysis,

and the context in which this algorithm is useful will move from

the experimental to the clinical.

5. Conclusion

This paper describes an interpretable method for quickly

surveying the parameter space of various differential-equation

models. It is precisely the complexity and nonlinearity of
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neural networks which make them so useful in problems of

classification or recognition, but when human lives are at stake,

it is important to develop methods of generating predictions and

informing treatments that are built around explainability and

a priori justification. Clinicians and patients must understand

as much as possible where their information is coming from,

and mathematical models derived from computational methods

must be rigorous. Moreover, as our work on Kühleitner et al.

(2019) shows, it is not even clear that immediately resorting

to machine learning makes anything faster. Slow brute-force

adjustment is an inefficient approach when a straightforward

algorithm can narrow down the space of possible parameters,

and suggest thousands of candidate equations, in a matter of

minutes. In addition to the detailed machine learning work

currently being done in the field of mathematical oncology (see

for instance Bekisz and Geris, 2020), a different approach is

needed—the unification of mathematics and machine learning

to create a rigorous, explainable justification for the directions

in which neural networks should be sent. We suggest the use of

this first-order “exploration algorithm” as a first line of defense

when modeling the behavior of cancer, to provide an initial

understanding of the behavior of a model across its parameter

space and significantly reduce the time taken to fit predictive

equations. A return to first principles in cancer modeling may

yield significant optimization.
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