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Editorial on the Research Topic

Human-Interpretable Machine Learning

This Research Topic encouraged submissions that broadly address the challenge ofmakingmachine
learning (ML) models more transparent and intelligible to humans. Indeed, this follows the spirit
of the explainable AI (XAI) initiative (Samek et al., 2019), which promotes efforts to improve the
human-interpretability of ML systems, especially those supporting decisions in social domains like
finance (Bracke et al., 2019) and healthcare (Ahmad et al., 2018).

In this Research Topic, Guidotti and D’Onofrio propose MAPIC, a novel and efficient method
to train time-series classification models that are natively interpretable by design based on
matrix profiles (i.e., roughly, distances between all the time-series subsequences and their nearest
neighbors). Time-series classification is a pervasive and transversal problem in various domains,
ranging from disease diagnosis to anomaly detection in finance. Inspired by previous work on time-
series classifiers based on shapelets (Ye and Keogh, 2009; Trasarti et al., 2011), MAPIC operates as
follows. First, to find the best shapelets, MAPIC exploits the matrix profiles extracted from the
time-series of the training set instead of using a brute force approach (Ye and Keogh, 2009) or
an optimized search (Grabocka et al., 2014). Hence, MAPIC retrieves motifs and discords from the
matrix profiles of each time-series and adopts them as candidate shapelets. Second, differently from
traditional approaches that learn machine learning models for time-series classification directly on
all the shapelet transformations (Grabocka et al., 2014), MAPIC builds a decision tree by refining
at each splitting point the set of candidate shapelets that better represent the times-series in the
current split. Experimental results demonstrate that MAPIC outperforms existing approaches with
similar interpretability in accuracy and running time.

Abbasi-Asl and Yu, instead, focus their attention on computer vision and introduce a greedy
structural compression method to obtain smaller and more interpretable CNNs while achieving
close to original accuracy. The compression scheme proposed operates by pruning filters in
CNNs. Authors define a filter importance score to select candidate filters to be discarded, which
corresponds to the network’s classification accuracy reduction (CAR) after pruning that filter.
Furthermore, the authors show the ability of their proposed technique to remove functionally
redundant filters, such as color filters, making the compressed CNN’s more accessible to human
interpreters without much classification accuracy loss. Interestingly enough, the advantages of this
method go beyond explainability as the structural compression of the network architecture also
allows a space-efficient deployment of the model on resource-constrained devices.
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Tang et al. approach the explainability issue from a different
yet related perspective, namely adversarial learning. As shown
recently, explanation methods are vulnerable to adversarial
manipulation. Ghorbani et al. (2019) show that one can change
the model’s explanation while keeping its prediction fixed.
To tackle this problem, the authors propose a new training
methodology called Adversarial Training on EXplanations
(ATEX) to improve the internal explanation stability of a model
regardless of the specific explanation method used. Instead
of directly specifying explanation values over data instances,
ATEX only puts constraints on model predictions, avoiding
involving second-order derivatives in the optimization process.
Moreover, the authors find that explanation stability is closely
related to model robustness, i.e., resiliency to adversarial attacks.
Experiments demonstrate that ATEX improves model robustness
against the manipulation of explanations, and they also show that
ATEX increased the efficacy of adversarial training. Overall, this
study confirms the strong relationship between adversarial attack
robustness and interpretation, which is a promising line of future
research work.

Finally, Vilone and Longo propose a novel comparative
approach to evaluate the rule sets produced by five post-hoc
explanation methods, i.e., C45Rule-PANE (Zhou and Jiang,
2003), REFNE (Zhou et al., 2003), RxNCM (Biswas et al.,
2017), RxREN (Augasta and Kathirvalavakumar, 2012), and
TREPAN (Craven and Shavlik, 1994), which are all designed
to extract rules from black-box feed-forward neural networks.
Authors manually trained these models on 15 datasets with
handcrafted features engineered by humans. The authors use
eight validity metrics proposed in the literature to assess the
degree of explainability of the rule sets extracted by the five
explanation methods: the ruleset cardinality, the number of
antecedents, completeness, fidelity, correctness, and robustness,
and the fraction of classes and overlap. The authors run a
Friedman test (Friedman, 1937) to determine whether a method
consistently performs better than the others in terms of the
selectedmetrics and could be considered the best-performing one

overall. Findings demonstrate that there is no sufficient evidence
to identify one superior method over the others. These validity
metrics capture distinct aspects of explainability, providing vital
insights into what a model has learned during its training process
and how it makes its predictions.

As decisions taken by intelligent systems will increasingly
impact many aspects of our daily lives, the demand for
explainable AI/ML models will become even more prominent.
The large body of work on this subject in recent years,
e.g., Tolomei et al. (2017), Tolomei and Silvestri (2021), Lucic
et al. (2022), and Siciliano et al. (2022), testifies its importance.
Also. the effort that government organizations like the European
Union have put into this (see Article 22 of EU’s General Data
Protection Regulation EU, 2016) shows the importance of such
a topic.

On the one hand, we hope that this Research Topic
represents a valuable reference for those approaching the
subject of explainable AI/ML for the first time. In addition, we
wish to inspire readers who are already familiar with AI/ML
explainability with the contributions of this Research Topic to
propose new explanation methods and techniques, thus pushing
forward the state-of-the-art knowledge on Human-Interpretable
Machine Learning.
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