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Local studies and modeling experiments suggest that shallow groundwater

and lateral redistribution of soil moisture, together with soil properties,

can be highly important secondary water sources for vegetation in water-

limited ecosystems. However, there is a lack of observation-based studies

of these terrain-associated secondary water e�ects on vegetation over large

spatial domains. Here, we quantify the role of terrain properties on the

spatial variations of dry season vegetation decay rate across Africa obtained

from geostationary satellite acquisitions to assess the large-scale relevance

of secondary water e�ects. We use machine learning based attribution to

identify where and under which conditions terrain properties related to

topography, water table depth, and soil hydraulic properties influence the rate

of vegetation decay. Over the study domain, the machine learning model

attributes about one-third of the spatial variations of vegetation decay rates to

terrain properties, which is roughly equally split between direct terrain e�ects

and interaction e�ects with climate and vegetation variables. The importance

of secondary water e�ects increases with increasing topographic variability,

shallower groundwater levels, and the propensity to capillary rise given by soil

properties. In regions with favorable terrain properties, more than 60% of the

variations in the decay rate of vegetation are attributed to terrain properties,

highlighting the importance of secondary water e�ects on vegetation in Africa.

Our findings provide an empirical assessment of the importance of local-

scale secondary water e�ects on vegetation over Africa and help to improve

hydrological and vegetation models for the challenge of bridging processes

across spatial scales.
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1. Introduction

Drylands cover more than 40% of the land surface globally

(D’Odorico et al., 2019). They have a strong impact on the global

carbon cycle (Lal, 2019) and are sensitive to large interannual

climatic variations (Brandt et al., 2018). Furthermore, more

than one-third of the World’s population is settled on drylands

(Reynolds et al., 2007), 90% of which are in developing countries

that are highly dependent on ecosystem services (Maestre

et al., 2012). Despite their importance, the ecohydrology of the

drylands is still not well understood (Maestre et al., 2021). This

is particularly the case in Africa, where drylands cover 75% of

the surface, yet, they remain largely understudied (Maestre et al.,

2012; Adole et al., 2016; Prăvălie, 2016).

Apart from precipitation as the primary supply of water

on the land, secondary water effects such as groundwater (Fan,

2015; Maxwell and Condon, 2016), capillary rise (Koirala et al.,

2019), and lateral flows at hillslope scales (Fan et al., 2019),

could be essential for vegetation in drylands (Miguez-Macho

and Fan, 2021). Despite calls to better incorporate such complex

interactions (Fan et al., 2007; Kollet and Maxwell, 2008), land

surface models still lack representations that can capture these

secondary but non-trivial effects of the water cycle on vegetation

(VanDijk et al., 2018;Mu et al., 2021). The challenge ismainly on

the representation of local-scale land surface heterogeneity and

associated hydrological processes at a relatively coarser spatial

resolution of the Earth System Models (Clark et al., 2015; Fisher

and Koven, 2020; Bly et al., 2021). Unfortunately, to the best

of our knowledge, there are also no observation-based studies

on the relevance of such secondary water effects on vegetation

over large spatial domains that would aid the formulation and

development of model processes.

While it is not feasible to observe the relevant water fluxes

and storages at a fine spatiotemporal resolution over large

areas directly, remote sensing facilitates detailed monitoring of

vegetation dynamics, which would be modulated by, among

other factors, secondary water, providing imprints of the

importance of secondary moisture for vegetation dynamics.

For instance, the impact of secondary water on vegetation can

be expected to be the largest in periods of progressive water

limitation. Küçük et al. (2022) showed that vegetation cover

decay is controlled by water availability to the first order over

most of Africa, consistent with previous literature, and with

theoretical expectations of dryland ecohydrology (Rodriguez-

Iturbe and Porporato, 2005). The secondary moisture effects

essentially act to keep water longer in the system and fuel

plant accessible soil moisture for a prolonged period, which

results in a delayed and buffered decay of the vegetation cover.

It should, though, be noted that secondary water inputs are

unlikely to be the dominant control of dry season vegetation

cover decays across the continent, where the large scale patterns

should be primarily related to climate regimes and vegetation

characteristics. Thus, the main objective of this study is to

isolate and attribute the effects of secondary water on vegetation

cover decay that are not explained by the main climate

gradients.

In recent years, Machine Learning (ML) has provided great

opportunities for data-driven modeling of complex patterns

and interactions in large Earth observation datasets despite

the challenges with interpretability of these models (Rudin

et al., 2022). Developments in interpretable ML are now

shedding light on the “black box” models that characterize

artificial intelligence algorithms (Molnar, 2019). This allows for

attributing the contributions of input variables to target variables

of an ML model and provides unprecedented opportunities

in understanding land surface processes using state-of-the-art

Earth Observation datasets.

In this study, we quantify the effect of terrain properties—as

variables associated with local-scale moisture convergence and

secondary water—in the seasonal decay rate of vegetation cover

(λ) from remote-sensing observations over African drylands.

Given the association of λ with a wide range of vegetation

and climatic characteristics, the role of local-scale availability of

secondary water on producing the spatial patterns of vegetation

decay rate is yet to be demonstrated. Therefore, in order to

quantify the effects of non-climatic water inputs on water-

limitation induced ecosystem decay rate, we model λ using

climate, vegetation, and terrain properties from an array of data

products using interpretable ML. We first present a quantitative

map of the importance of terrain properties, associated with the

effects of secondary water, across Africa. We further investigate

the conditions which enhance the relevance of secondary water

on vegetation cover dynamics over Africa.

2. Data and methods

2.1. Seasonal decay rate of vegetation
cover

In this study, we investigate the drivers of the spatial

variations of the seasonal decay rate of vegetation cover, λ, which

is estimated using an asymptotic exponential decay function

across Africa using daily geostationary satellite retrievals of 16-

year long Fractional Vegetation Cover data at ca. Five kilometer

spatial resolution (Küçük et al., 2022). The asymptotic decay

function quantifying the decay rate, independent of amplitude

and timing of the event, allows comparing the rate of decay of

vegetation across different climate zones, thus understanding the

driving factors behind the spatial variation of λ. Initial analysis

of λ showed that λ corroborates the rate of decrease in plant

available water use under water limited conditions (Küçük et al.,

2022). For a given level of aridity, a taller canopy decays more

slowly, thus larger λ values, than a shorter one, which agrees

with the previous field-based studies (Teuling et al., 2006; Boese

et al., 2019). Moreover, variation of λ in relation to tree cover

and aridity reflects plant adaptation strategies against water

limitation, i.e., strong ecosystem-scale drought coping strategies

in drought-stressed forests and savannahs (Singh et al., 2020).
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TABLE 1 Summary of the datasets used in the study.

Variable Data source Spat. Res.

Seasonal decay rate of vegetation cover (λ) Küçük et al., 2022 5 km

Water Table Depth (WTD) Fan et al., 2013 1 km

Height Above Nearest Drainage (HAND) Yamazaki et al., 2019 90 m

Wetlands Tootchi et al., 2019 500 m

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Topographic Wetness Index (TWI)

Vectoral Ruggedness Measure (VRM)

Magnitude and scale of 3D roughness

Amatulli et al., 2020 250 m

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Plant Available Watera (PAW)

Soil hydraulic conductivity at Field

Capacitya (kFC) Estimated

Max potential upwards capillary fluxa,b (Icap)

250 m

Precipitationc

Temperaturec
Fick and Hijmans, 2017

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – -

Shortwave Radiationc Abatzoglou et al.,

2018

5 km

Canopy height Simard et al., 2011 1 km

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Tree and non-tree vegetation cover Dimiceli et al., 2015

Burned area Giglio et al., 2015

Plant Functional Type Friedl and

Sulla-Menashe, 2019

250 m

aEstimated using Hengl et al. (2017), based on Saxton and Rawls (2006).
bBased on Richards (1931).
cAnnual and seasonal scales.

Solid lines are used to separate the variables as the target to model as well as the predictor

groups of terrain, climate, and vegetation.

Therefore, apart from the first order climate-driven gradients

at continental scales, λ contains information on secondary

processes that affect vegetation decay in local-scales and presents

opportunities to understand local-scale processes across Africa.

2.2. Data and preprocessing

We used terrain, climate, and vegetation properties over the

study domain to model spatial variations of λ. An overview

of the dataset used is presented in Table 1. For the terrain

properties, we used predictors covering (i) groundwater as

a secondary water resource, (ii) topographic complexity as a

terrain property that modulates the amount of plant available

water by lateral redistribution and convergence of soil moisture,

and (iii) soil hydraulic properties as the fundamental modulator

of available water and its accessibility by plants.

We defined the first set of terrain predictors considering

Water Table Depth (WTD). In addition to the WTD data from

Fan et al. (2013), we used Height Above Nearest Drainage

(HAND) data from Yamazaki et al. (2019) that was generated

using the MERIT digital elevation model at a spatial resolution

of 90 m. HAND is useful to diagnose WTD variations as it

is a good proxy to show the drainage positions (Fan et al.,

2019), which strongly affect the groundwater table depth. We

aggregated WTD and HAND by taking the arithmetic mean to

have these data products at the same spatial resolution as λ.

Even though seasonal variations of WTD may be significant,

time series of high spatial resolution WTD is not available

over large domains owing to the scarcity of observations and

difficulties of modeling. Therefore, the WTD data used in this

study is static and represents a climatological mean. As a proxy

for regions with seasonally shallow groundwater, e.g., due to

seasonal flooding, we used the wetlands data from Tootchi

et al. (2019). The wetlands data was aggregated to target spatial

resolution by computing the percentage of wetland area over

target grid cells.

The second set of terrain predictors is related to topographic

complexity. We used Topographic Wetness Index (TWI)

as a proxy for the likelihood of lateral convergence of

soil moisture. In order to account for slope and aspect

at hillslope scales, we used Vectoral Ruggedness Measure

(VRM) which is a compound metric quantifying slope

and aspect together. The VRM values range from 0 to

1 and increase with topographic ruggedness. Finally, we

used the magnitude and scale of terrain roughness, which

is derived using VRM. The magnitude of roughness is

an important parameter to represent the variation in

topography even after spatial aggregation. All data of

topographic complexity were derived by Amatulli et al.

(2020) using the MERIT digital elevation model at 90 and

250 m resolutions. We used the data with 250 m resolution

after aggregating to the target resolution (5 km) using the

arithmetic mean.

In order to prepare the last set of terrain predictors, we used

sand, clay, and organic matter contents of soil, and volumetric

coarse fragments data from the SoilGrids dataset (Hengl et al.,

2017) for top and deep soil. First, the SoilGrids dataset was

aggregated (averaged) to the target resolution, which is the

native resolution of λ (5 km). After grouping the layers up to 1m

as top soil and the rest as deep soil, we used the mean over layers

as representative for top and deep soil. We then calculated soil

hydraulic properties using the pedo-transfer functions provided

in Saxton and Rawls (2006). Additionally, we estimated the

maximum potential upward capillary flux (Icap) in millimeters

per day (mm/day) assuming a fixed distance of 1 meter above

the groundwater table using Richards’ equation (Richards, 1931)

for a 1-dimensional vertical soil column. Finally, we used

Plant Available Water (PAW) as the difference between soil

water content at field capacity and wilting point, soil hydraulic

conductivity at field capacity (kFC), and Icap for the top and deep

soil layers as predictors to model λ.
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In order to include climate characteristics as the predictors

of the model, we used precipitation, temperature, and shortwave

radiation data across annual and seasonal time scales. First, for

all of the climate variables, we used a multi-annual mean as

the predictor. In addition, several variables related to seasonal

variation of precipitation and temperature were obtained from

the WorldClim dataset (Fick and Hijmans, 2017). Finally, the

seasonality of shortwave radiation was derived from themonthly

TerraClimate dataset (Abatzoglou et al., 2018) by following

the same approach used in Fick and Hijmans (2017). Spatial

aggregation was not necessary for climatological predictors as

the climate variables are at the same resolution as the target

variable, λ, i.e., 5 km.

The last set of predictors covers vegetation characteristics.

First, we used canopy height from Simard et al. (2011) after

aggregating the data to 5 km resolution. Additionally, we used

four MODIS based products related to vegetation: vegetation

cover for tree and non-tree fractions (Dimiceli et al., 2015),

burned area (Giglio et al., 2015), and Plant Functional Type

(PFT) (Friedl and Sulla-Menashe, 2019). While the first three

variables are aggregated by doing arithmetic mean over the

target grid cell, the PFT, which is a categorical variable of types,

is aggregated by using mode (most common type) over the

target grid cell. In addition, we computed Shannon’s diversity

index (Shannon, 1948) of the PFTs within the target grid cells to

represent the local scale variability of PFTs.

After preparing the data for use in modeling, we filtered

out all the regions with annual precipitation larger than 1,500

mm/year. This filtering is necessary to only consider the

drylands, as the spatiotemporal variations of λ in humid regions

are associated with other confounding factors in addition

to water limitation. To further reduce the uncertainties, we

excluded regions with low confidence in λ values by filtering out

regions with a relative standard error greater than 1, and with

less than 3 successful convergences out of 16 estimations per

grid cell (refer to Küçük et al., 2022 for details). Overall, around

7,30,000 grid cells with ca. Five kilometer spatial resolution were

selected for the analysis presented in this study.

2.3. Methods

We used XGBoost (Chen and Guestrin, 2016), recent

implementation of gradient boosted regression trees, to model

spatial variations of λ using terrain, climate, and vegetation

properties as predictors. Gradient boosting is an ML method

that uses an ensemble of tree-based models generated by

subsets of the training data. Tree based regression is a powerful
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method with high flexibility, designed to minimize output

error with a strong gradient search without considering the

underlying processes between predictors and target. In order

to avoid unlikely attributions to predictors about the variation

of λ, and ensure that the model consistently reflects the

central assumption that secondary water buffers water-limited

vegetation decay, we constrained the model to have a monotonic

relationship between λ and terrain parameters. We essentially

assume that any terrain property that promotes secondary water

via additional moisture inputs should correlate positively with λ.

Except withWTD andHAND, we constrained themodel to have

positive monotonicity between λ and terrain parameters, i.e., the

larger the plant available water, the slower the vegetation decay.

With WTD and HAND, negative constraints were set, i.e., the

deeper the groundwater, the weaker its support to surface soil

moisture. After setting the constraints, we used 10% of the grid

cells, which are randomly selected, to build the model, and used

the rest of the grid cells for validation.

Although tree based models are relatively easy to interpret,

it is not trivial to estimate the importance of predictors of a

multi-dimensional and nonlinear ML model in an unbiased

way. Lundberg and Lee (2017) suggested using SHapley Additive

exPlanation (SHAP) values to address the problem, which

is rooted in cooperative game theory (Shapley, 1953) and

treats each predictor as a player of a game. Being an additive

explanation method, the summation of SHAP values of all

predictors, e.g., for a grid cell, is equal to the deviation of

the predicted value of that instance from the mean value of

the predictions. Moreover, it is possible to partition the SHAP

values for direct and interaction effects. In other words, for a

simple modeling scenario of yobs ≈ ym = f (x1, x2) where yobs
and ym are the observed and modeled target variable, and x1

and x2 are the predictors, ym = ym + φx1−x1 + φx2−x2 +

φx1−x2 where ym is mean of ym, φx1−x1 and φx1−x2 are the

SHAP values attributed to predictor x1 alone and the interaction

effects between the two predictors, respectively. Lundberg et al.

(2020) suggested exploiting the model structures of tree based

models to approximate SHAP values to avoid computational

complexity on large datasets. In order to limit methodological

problems related to feature interdependence (refer to Section

3.4) and improve interpretability, we grouped SHAP values of

the predictors as terrain, climate, and vegetation properties, to

explain the model output as:

λ ≈ λm = λm + φterrain−direct + φterrain−clim

+φterrain−veg + φclim−direct + φclim−veg + φveg−direct (1)

In order to quantify the importance of land parameters,

we normalized the φ values of different sets of predictors after

taking absolute values as:
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Finally, we analyzed the variations of 8terrain−total with

changingWTD, VRM, and Icap values and the sensitivity of these

covariations against annual precipitation.

3. Results

3.1. Model output for seasonal decay rate
of vegetation cover

The ML model captured the continental gradient as well as

local variations of λ (λm, shown in Figure 1A) with 55% Nash–

Sutcliffe modeling efficiency (Nash and Sutcliffe, 1970). We

consider this a satisfactory achievement given the complexity of

processes shaping vegetation decay patterns and the monotonic

constraints in terrain predictors to reflect the central assumption

of the model. The residuals of the model show anisotropic

structures at local scales (Figure 1B), suggesting that the model

did not capture all the local-scale variations, presumably due

to incomplete and imperfect predictors (refer to Section 3.4 for

further discussion).

In the following, we use the trained model to attribute and

analyze the contribution of predictors associated with secondary

water effects on λm based on SHAP values. By nature, this

analysis exploits the patterns of λm variations that are explained

by the ML model.

3.2. Importance of terrain properties on
seasonal decay rate of vegetation cover

Based on SHAP values, the spatial variation of the

normalized importance of terrain λ (8terrain−total, refer to

Equation 2) is shown in Figure 2 together with six zoomed insets

and a histogram of the values, in which the mean value over the

domain is shown with a dashed line. Over the study domain,

33% of the variation in λ is attributed to terrain effects on

average, 17% of which are direct effects, and 16% are from the

interactions with climate and vegetation properties.

Moreover, we find hotspots where the importance of terrain

properties λ is larger than 60% (Figure 2) with complex and

structured spatial patterns. These patterns agree well with

estimates of the importance of evaporation from secondary

water sources using a hydrological model that assimilates

different remote sensing data (Van Dijk et al., 2018).

Some regions with shallow groundwater are within these

hotspots, such as Box-B showing the South of Lake Chad,

between the Logone and Chari Rivers and the Sudd Swamp—

Figure 2 (refer to Fan et al., 2013 for water table depth

estimates), consistent with previous studies on the relevance

of shallow water tables for vegetation activity in water-limited

environments (Koirala et al., 2017; Roebroek et al., 2020).

Furthermore, we found strong terrain effects over

mountainous regions such as the Ethiopian Highlands (Box-E)

and, to a lesser extent, the Manica Highlands (Box-F) (refer

to Clark et al., 2017 for further information about the Manica

Highlands). This likely reflects the effects of topographical

complexity on lateral water flows and moisture convergence in

valleys and riparian zones (Fan et al., 2019).

Now, we inspect how the importance of terrain properties

varies with individual terrain variables related to topographic

complexity, groundwater, and capillary rise, respectively. Pooled

over the entire study domain, we found that the importance of

terrain properties increases systematically with VRM, a metric

summarizing topographic complexity (Figure 3A). About half

of the importance of terrain properties is associated with VRM

values above 0.85. Lateral water flows and moisture convergence

in complex terrain enhance the relevance of secondary water

effects on vegetation as previously reported at the watershed

scale (Hoylman et al., 2018; Tai et al., 2020).

The effect of terrain properties on λ increases systematically

with shallower water table depth (Figure 3B). Regions with

water table depths <1 m are associated with almost half of

the importance of terrain properties. This effect is gradually

reduced with deeper groundwater levels up to 16 m. This

relation, however, does not hold at WTD levels deeper than

16 m, presumably due to the disconnection between surface

and groundwater, where other factors become more prominent.

The local increase of importance at water tables deeper than 16

m is due to covariation with high topographic complexity in

mountainous regions (refer above). Our findings suggest that

shallow water tables are an important secondary water source

for vegetation across Africa, consistent again with the previous

findings (Madani et al., 2020).

We also observed a systematic increase in the importance

of terrain properties with increasing propensity for capillary rise

Icap associated with soil texture properties (Figure 3C). Overall,

more than half of the importance of terrain for λ is attributed

when Icap > 1 mm/day. This suggests that enhancement of

soil moisture due to the presence of vertically upward capillary

flux plays an important role in providing secondary water for

vegetation activities across most parts of Africa. This is generally

consistent with previous studies identifying soil texture as a key

variable mediating the interactions between climate, soil, and

vegetation (Fernandez-Illescas et al., 2001).

3.3. E�ects of aridity on the importance
of terrain parameters

Since secondary water effects are contingent on the

supply of rainfall, we analyze how the importance of terrain

variables on λ covaries with VRM, WTD, and Icap over a

precipitation gradient of 0–1,500 mm/year (Figure 4A). The
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FIGURE 1

Maps of (A) model output (λm), in days, where larger values of λ (blue) indicate slower decay (B) residual of the model (λ − λm), in days, where
positive values (red) indicate underestimation. Histograms of the mapped values for the entire domain are given in the main panels of all the
maps with a dashed line indicating the mean values of the domain, as well as six insets to show local variability.

FIGURE 2

Spatial variations of the normalized importance of terrain on λ (8terrain−total) as the output of Equation 2 where larger (blue to red) values indicate
higher importance of terrain parameters. Refer to Figure 1 for plotting details.

positive relationship between 8land−total and VRM is generally

consistent across different precipitation regimes. The gradient

between low and high topographic complexity, though, is more

pronounced in wet and dry regimes compared to the gradient at

intermediate precipitation. The larger sensitivity of 8land−total

to topographic complexity under wetter conditions likely reflects

more secondary water effects due to lateral flows of excess

rainfall. Under very dry conditions, topographic complexity

needs to be relatively large to have a sizable effect on secondary

water, primarily because most of the rainfall would be lost
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FIGURE 3

Normalized importance of terrain (same as Figure 2) with change in Vector Ruggedness Measure (VRM) (A), Water Table Depth (WTD) (B), and
maximum potential upwards capillary flux 1 m above water table depth (Icap) (C). Y-axis shows the total terrain e�ects (8terrain−total) even though
bars are colored and annotated to show its components as direct e�ects (8terrain−direct) and interaction e�ects with climate (8terrain−clim) and
vegetation (8terrain−veg), using Equation 2.

through evaporation (Newman et al., 2006), therefore, not

producing a significant excess percolation needed for lateral sub-

surface flows. Thus, at intermediate topographic complexity, the

degree of secondary water effects peaks at intermediate aridity.

The optimality of intermediate conditions in enhancing the

role of groundwater moisture sources has also been reported

previously (Koirala et al., 2014).

Shallow water tables (<1 m) are associated with high

importance of 8land−total across all precipitation regimes

suggesting strong secondary water effects by groundwater when

easily accessible (Figure 4B). As water tables get a bit deeper

with depths of a few meters, there is a tendency of increasing

8land−total with increasing aridity suggesting that secondary

water supply by groundwater gains relevance as the primary

water supply by rainfall decreases (Brooks et al., 2015).

The positive relationship between Icap and the importance of

terrain variables on λ is consistent across precipitation regimes,

while the effects get stronger with increasing aridity (Figure 4C)

except for the most dry, hyper-arid conditions. These patterns

suggest an important role of soil mediated capillary rise as a

secondary water effect for vegetation, in particular in regions of

intermediate aridity.

3.4. Robustness and limitations

The machine learning based quantification and analysis of

the effects of secondary water on the seasonal vegetation decay

over Africa have uncertainties associated with the underlying

assumptions and methods. The assumption that vegetation

decay is primarily due to moisture limitation in most African

ecosystems is supported by previous studies (refer to Küçük

et al., 2022 and references therein). In order to limit the

uncertainty, we confined the study domain to retain primarily

water-limited systems by excluding the humid tropical regions

(refer to Section 2.2). The key findings of our study on the

importance and patterns of land characteristics associated with

secondary water for vegetation decay are consistent with the

assumption that African drylands are primarily water-limited.

The main methodological uncertainties are related to i) the

quality and performance of the underlying trained machine

learning model and ii) the correct attribution of modeled

λ variations to terrain properties. Regarding the quality and

performance of the model, we acknowledge that the XGBoost

model explained only 55% of λ variations based on training

on only 10% of randomly selected pixels to avoid overfitting

due to spatial auto-correlation (Roberts et al., 2017). While

this performance seems relatively low at the first glance,

explaining the majority of the variance can be considered

an important achievement given the complexity of processes

shaping vegetation decay patterns, accompanied by very

little knowledge about underlying mechanisms and processes.

However, it also suggests that we are lacking predictors and/or

that there are inherent issues in the quality of data products

used as predictors. The imperfect representation of terrain

factors governing secondary water in the predictor set is likely

constrained further by the spatial resolution of 3–5 km where
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FIGURE 4

E�ects of aridity on the importance of terrain parameters (refer to Equation 2) with change in Vector Ruggedness Measure (VRM) (A), Water
Table Depth (WTD) (B), and maximum potential upward capillary flux 1 meter above water table depth (Icap) (C).

important sub-grid variations of factors and responses in λ may

not be resolved adequately. The model residuals (Figure 1B)

show clear spatial structures at meso-scales but not at large

scales. Thus, we likely underestimate λ variations due to

landscape-scale factors which suggest that the spatial patterns

and attribution of the importance of terrain properties are

probably conservative and that these may be even stronger at

higher spatial resolution.

The machine learning based attribution of vegetation decay

patterns to terrain variables is based on the interpretation of

the trained model and, therefore, on those patterns that are

captured and explained by the model. We acknowledge that ML

methods exploit statistical associations without any guarantee of

unraveling causal relationships. In our experimental design, we

aimed at enhanced interpretability of the results by constraining

the predictor set to interpretable factors related to our objectives,

and by constraining the monotonicity of terrain predictors

to λ according to prior knowledge. Note that the monotonic

constraints prescribe only the sign of the response which acts as a

causal regularization in themodel training process, but the shape

remains flexible. Some confidence in the qualitative findings of

the study originates from the fact that the revealed importance

of terrain properties varies systematically with topographic

complexity, water table depth, and maximum capillary rise, and

these are largely consistent with understandings from theory

and previous studies (Figure 3). We would like to note that

the result and findings presented here are not trivial and are

not enforced by the monotonic predictor constraints since the

terrain importance was estimated as mean absolute deviations

(Equation 2).

We used SHAP values as the state-of-the-art technique

for machine learning based attribution to predictors, while

attribution in the presence of large covariations among

predictors remains a challenge Kumar et al. (2020). We aimed at

minimizing this issue by analyzing the importance of predictor

groups, rather than individual predictors based on the consistent

aggregation of SHAP values (refer to Equations 1 and 2). This

makes our attribution robust against covariation of predictors

within a group, e.g., within the terrain group of predictors. We

assume that most of the covariation among predictors is within

the group, but there remains covariation across groups that can

potentially lead to some confounding effects.

Finally, the main challenge of our study design is that

it is nearly impossible to validate the findings quantitatively

using independent observations. On a qualitative comparison,

we find patterns that are consistent with understandings from

theory and previous studies. Nevertheless, we encourage future

studies to consider the patterns of secondary moisture effects

on vegetation revealed here as a new hypothesis inferred from

machine learning, that should be scrutinized and tested by

complementary tools and methods.

4. Discussion

In this study, we explored the effects of local scale

secondary water associated with climate, terrain, and vegetation

characteristics on seasonal vegetation decay rate (λ) of fractional

vegetation cover over African drylands at 5 km spatial

resolution based on machine learning methods. We find that

the importance of terrain properties for λ can be larger than

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2022.967477
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Küçük et al. 10.3389/fdata.2022.967477

60% in certain hotspot regions. Over the full study domain

of Africa, the importance of terrain properties is on average

33%, which is about equally split among direct effects of terrain

properties and interaction effects of terrain properties with

climate and vegetation properties. The importance of terrain

effects on λ increases with aridity, suggesting an increasing

role of secondary water effects on vegetation. We further find

that the importance of terrain properties on vegetation decay

increases with increasing maximum potential capillary rise

determined by soil texture properties (Icap), as the ground

water tables become shallow. The patterns become stronger

with increasing aridity, presumably highlighting a large role

of secondary water under such conditions. The importance

of terrain properties on vegetation decay also increases with

topographic complexity, with the strongest patterns in regions of

intermediate aridity where the complex topographic condition

with optimal precipitation input leads to regions with water

table depth that can still be accessed by vegetation. Our

observation-based study suggests that local scale processes

affecting water availability in drylands have widespread and

significant relevance over the continental domain in Africa, and

these processes cannot be neglected. The presented patterns of

topographic variability, water table depth, and soil propensity

to capillary rise on dry season vegetation decay can help guide

the development of global land models to account for the

effects of secondary water. Incorporating thesemediating terrain

effects on drought responses in Earth System models may have

large implications for simulated ecosystem processes such as

the carbon cycle, water turnover timescales, and, consequently,

land-atmosphere feedbacks.
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