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1. Introduction

Supervised machine learning has become pervasive in the biomedical sciences

nowadays (Larrañaga et al., 2006; Tarca et al., 2007), and its validation has obtained a key

role in all these scientific fields. We therefore read with great interest the article byWalsh

et al. (2021), which reported a list of DOME recommendations to properly validate

results achieved with supervised machine learning, according to the authors. In the past,

several studies already listed common best practices and recommendations for the proper

usage of machine learning (Bhaskar et al., 2006; Domingos, 2012; Chicco, 2017; Cearns

et al., 2019; Stevens et al., 2020; Artrith et al., 2021; Cabitza and Campagner, 2021; Larson

et al., 2021; Whalen et al., 2021; Lee et al., 2022) and computational statistics (Benjamin

et al., 2018; Makin and de Xivry, 2019), but the comment by Walsh et al. (2021) has

the merit to highlight the importance of computational validation, which is a key step

perhaps even more important than the machine learning algorithm design itself.

Although interesting and complete, that article describes numerous of steps and

aspects in a way that we find complicated, especially for beginners. We believe that the

21 questions of the Box 1 of the DOME article (Walsh et al., 2021) can be adequate for a

data mining expert, but they might scare and discourage an inexperienced practitioner.

For example, the recommendations about the meta-predictions and about the hyper-

parameters’ optimization might not be understandable by a machine learning beginner

or by a wet lab biologist. And it should not be a problem: a robust machine learning

analysis can be performed, in fact, without using meta-predictions or hyper-parameters,

too. A beginner, in front of so many guidelines of that article, some of which being so

complex, might even decide to abandon the computational intelligence analysis, to avoid

making any mistake in their scientific project. Moreover, the DOME (Walsh et al., 2021)

authors present the 21 questions of the article Box 1 with the same level of importance.

In contrast, we think that three key aspects to keep in mind for computational validation

are pivotal and can be sufficient, if verified correctly. So we believe that a practitioner

would better focus all their attention and energy on accurately respecting these three

recommendations.
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FIGURE 1

ABC recommendations checklist. An overview of our ABC

recommendations, to keep in mind for any machine learning

study.

We therefore wrote this note to propose our own

recommendations for the computational validation of

supervised machine learning results in the biomedical sciences:

just three, explained easily and clearly, that alone can pave the

way for a successful machine learning validation phase. We

designed these simple quick tips from our experience gained on

tens of biomedical projects involving machine learning phases.

We call these recommendations ABC to highlight their essential

role in any computational validation (Figure 1).

2. The ABC recommendations

(A) Always divide the dataset carefully
into separate training set and test set

This rule must become your obsession: verify and double-

check that no data element is shared by both the training set and

the test set. They must be completely independent.

You then can do anything you want on the training set,

including the hyper-parameter optimization, but make sure you

do not touch the test set. Leave the test set alone until your

supervised machine learning model training has finished (and

its hyper-parameters are optimized, if any). If you have enough

data, consider also allocating a subset of it (such as 10% of data

elements, randomly selected) as a holdout set (Skocik et al.,

2016), to use as an alternative test set to confirm your findings

and to avoid over-validation (Wainberg et al., 2016).

This important separation will allow you to avoid data

snooping (White, 2000; Smith, 2021), that is a common mistake

inmultiple studies involving computational intelligence (Jensen,

2000; Sewell, 2021). Data snooping, also known as data dredging

and called “the dark side of data mining” (Jensen, 2000),

happens in fact when some data elements of the training set

are present in the test set, too, and therefore over-optimistically

improve the results obtained by the trained machine learning

model on the test set. Sometimes, this problem can happen

even when different data elements of the same patients (for

example, radiography images in digital pathology) are shared

between training set and test set, and is usually called data

leakage (Bussola et al., 2021). This mistake is dangerous for

every machine learning study, because it can give the illusion

of success to an unaware researcher. In this situation, you need

to keep in mind the famous quote by Richard Feynman: “The

first principle is that you must not fool yourself, and you are the

easiest person to fool” (Chicco, 2017).

Data snooping does exactly that: it makes you fool

yourself and makes you believe you obtained excellent results,

while actually machine learning performance was flawed.

Once you make sure the training set and the test set are

independent from each other, you can use traditional cross-

validation methods such as k-fold cross-validation, leave-one-

out cross-validation, and nested cross-validation (Yadav and

Shukla, 2016), or bootstrap validation (Efron, 1992; Efron and

Tibshirani, 1994), to mitigate over-fitting (Dietterich, 1995;

Chicco, 2017). Moreover, over-fitting can be tackled through

calibration methods such as calibration curves (Austin et al.,

2022) or calibration-in-the-large (Crowson et al., 2016), which

can also help measuring the robustness of model performance.

Moreover, it is important to notice that sometimes splitting

the dataset into two subsets (training set and test set) might not

be enough (Picard and Berk, 1990). Even for shallow machine

learning models, a correct splitting methodology should be

enforced: for instance, see the Data Analysis Protocol strategy

introduced by the MAQC/SEQC initiatives led by the US Food

and Drug Administration (FDA) (MAQC Consortium, 2010;

Zhang et al., 2015). And when there are hyper-parameters to

optimize (Feurer and Hutter, 2019), such as the number of

hidden layers and the number of hidden units in artificial neural

networks, it is advisable to split the dataset into three subsets:

training set, validation set, and test set (Chicco, 2017). In these

cases, sometimes in scientific literature the names validation

set and test set are used interchangeably; in this report, we

call validation set the part of the dataset employed to evaluate

the algorithm configuration with a particular hyper-parameter

value, and we call test set the portion of the dataset to keep

untouched and eventually use to verify the algorithm with the

optimal hyper-parameters’ configuration.

(B) Broadly use multiple rates to evaluate
your results

Evaluate your results with various rates, and definitely

include the Matthew’s correlation coefficient (MCC) (Matthews,

1975) for binary classifications (Chicco and Jurman,

2020; Chicco et al., 2021a) and the coefficient of
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TABLE 1 Recap of the suggested metrics for evaluating results of

binary classifications and regression analyses.

Analysis type Always include We suggest to include

TPR, TNR, PPV, NPV, accuracy,

Binary classification MCC F1 score, Cohen’s Kappa,

ROC AUC, and PR AUC

Regression analysis R2 SMAPE, MAPE, MAE, MSE, and RMSE

The formulas of the binary classification rates can be found in Chicco and Jurman (2020)

and Chicco et al. (2021a,c) and the formulas of the regression analysis rates can be found

in Chicco et al. (2021b).

determination (R2) (Wright, 1921) for regression

analyses (Chicco et al., 2021b). Moreover, make sure you include

at least accuracy, F1 score, sensitivity, specificity, precision,

negative predictive value, Cohen’s Kappa, and the area under

the curve (AUC) of the receiving operating characteristic

curve (ROC) and of the prediction-recall curve (PR) for

binary classifications. For regression analyses, make sure you

incorporate at least mean absolute error (MAE), mean absolute

percentage error (MAPE), mean square error (MSE), root mean

square error (RMSE), and symmetric mean absolute percentage

error (SMAPE), in addition to the already-mentioned R2. We

recap our suggestions in Table 1.

It is necessary to include all these scores because each of

them provides a singular, useful piece of information about

your supervised machine learning results. The more statistics

you include, the more chances you have to spot any possible

flaw in your predictions. All these rates work like dashboard

indicator lamps in a car: if something somewhere in your

machine (learning) did not work out the way it was supposed

to, a lamp (rate) will inform you about it.

The Matthew’s correlation coefficient, in particular, has

a fundamental role in binary classification evaluation: it has

a high score only if the classifier correctly predicted most

of the positive elements and of the negative elements, and

only if the classifier made mostly correct positive predictions

and mostly correct negative predictions (Chicco and Jurman,

2020, 2022; Chicco et al., 2021; Chicco et al., 2021a). That

means, a high MCC corresponds to a high score for all the

four basic rates of a 2 × 2 confusion matrix: sensitivity,

specificity, precision, and negative predictive value (Chicco

et al., 2021a). Because of its efficacy, the MCC has been

employed as the standard metric in several scientific projects.

For example, the USFDA agency used the MCC as the

main evaluation rate in the MicroArray II/Sequencing Quality

Control (MAQC/SEQC) projects (MAQC Consortium, 2010;

SEQC/MAQC-III Consortium, 2014).

Regarding regression analysis assessment, the coefficient of

determination R-squared (R2) is the only rate that generates

a high score only if the predictive algorithm was able

to correctly predict most of the elements of each data

class, considering their distribution (Chicco et al., 2021b).

Additionally, R2 allows the comparison of models applied

to datasets having different scales (Chicco et al., 2021b).

Because of its effectiveness, the coefficient of determination has

been employed as the standard evaluation metric for several

international scientific projects, such as the Overhead Geopose

DrivenData Challenge (DrivenData.org, 2022) and the Breast

Cancer Prognosis DREAM Education Challenge (Bionetworks,

2021).

(C) Confirm your findings with external
data, if possible

If you can, use data coming from a different data source

and made of a different data type from the main dataset

to verify your discoveries. Obtaining the same results you

achieved on the main original dataset on an external dataset

coming from another scientific research centre would be a

strong confirmation of your scientific findings. Moreover, if this

external data were in a data type different from the original data,

it would even increase the level of independence between the

two datasets, and even more strongly confirm your scientific

outcomes.

In a bioinformatics study, for example, Kustra and

Zagdanski (2008) employed a data fusion approach to cluster

microarray gene expression data and associate the derived

clusters to Gene Ontology annotations (Gene Ontology

Consortium, 2019). For validating their results, instead of using

a different microarray dataset, the authors decided to take

advantage of an external database made of a different data

type: a protein–protein database called General Repository for

Interaction Data Sets (GRID) (Breitkreutz et al., 2003). This

way, the authors were able to find in external data a strong

confirmation of the results they obtained on the original data,

and therefore were able to claim their study outcomes as robust

and reliable in their manuscript’s conclusions.

Moving from bioinformatics to health informatics, a call for

external data validation has recently been raised in machine

learning and computational statistics applied to heart failure

prediction as well (Shin et al., 2021).

That being said, we are aware that obtaining compatible

additional data and integrating them might be difficult for

some biomedical studies, but we still invite all the machine

learning practitioners to make an attempt and to try to collect

confirmatory data for their analyses anyway. In some cases, there

are plenty of public datasets available for free use that can be

downloaded and integrated easily.

Bioinformaticians working on gene expression analysis,

for example, can take advantage of the thousands of

different datasets available on the Gene Expression

Omnibus (GEO) (Edgar et al., 2002). Tens of compatible datasets
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of a particular cancer type can be found by specifying the

microarray platform, for example, through the recently released

geoCancerPrognosticDatasetsRetriever (Alameer

and Chicco, 2022) bioinformatics tool. Researchers can take

advantage of these compatible datasets (for example, built on

the GPL570 Affymetrix platform) to verify their findings, after

applying some quality-control and preprocessing steps such as

batch correction (Chen et al., 2011) and data normalization, if

needed.

Moreover, public data repositories for biomedical domains,

such as ophthalmology images (Khan et al., 2021), cancer

images (Clark et al., 2013), or neuroblastoma electronic health

records (Chicco et al., in press), can provide additional datasets

that can be used as validation cohorts. Additional public datasets

can be found on the University of California Irvine Machine

Learning Repository (University of California Irvine, 1987), on

the DREAM Challenges platform (Kueffner et al., 2019; Sage

Bionetworks, 2022), or on Kaggle (Kaggle, 2022), for example.

When using external data, an aspect to keep in mind is

checking and correcting issues like dataset shift (Finlayson et al.,

2021) and model underspecification (D’Amour et al., 2020),

which might jeopardize the coherence of the learning pipeline

when moving from training and testing and validation.

3. Discussion

Computational intelligence makes computers able to

identify trends in data that otherwise would be difficult or

impossible to notice by humans. With the spread of new

technologies and electronic devices able to save and store

large amounts of data, data mining has become a ubiquitous

tool in numerous scientific studies, especially in biomedical

informatics. In these studies, the validation of the results

obtained through supervised machine learning has become a

crucial phase, especially because of the high risk of achieving

over-optimistic, inflated results, that can even lead to false

discoveries (Ioannidis, 2005).

In the past, several studies proposed rules and

guidelines to develop more effective and efficient predictive

models in medical informatics and computational

epidemiology (Steyerberg and Vergouwe, 2014, Riley et al.,

2016, 2021; Bonnett et al., 2019; Wolff et al., 2019; Navarro et al.,

2021; Van Calster et al., 2021). Most of them however, provided

complicated lists of steps and tips which might be hard to follow

by machine learning practitioners, especially by beginners.

In this context, the article of Walsh et al. (2021) plays its

part by describing thoroughly several DOME recommendations

and steps for validating supervised machine learning results,

but in our opinion it suffers from excessive complexity and

might be difficult to follow by beginners. In this note, we

propose our own simple, easy, essential ABC tips to keep

in mind when validating results obtained with data mining

methods.

We believe our ABC recommendations can be an effective

tool to follow for all the machine learning practitioners, both

by beginners and experienced ones, and can pave the way to

stronger, more robust, more reliable scientific results in all the

biomedical sciences.

Author contributions

DC conceived the study and wrote most of the article. GJ

reviewed and contributed to the article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Alameer, A., and Chicco, D. (2022). geoCancerPrognosticDatasetsRetriever,
a bioinformatics tool to easily identify cancer prognostic datasets
on Gene Expression Omnibus (GEO). Bioinformatics 2021:btab852.
doi: 10.1093/bioinformatics/btab852

Artrith, N., Butler, K. T., Coudert, F. -X., Han, S., Isayev, O., Jain, A., et al.
(2021). Best practices in machine learning for chemistry. Nat. Chem. 13, 505–508.
doi: 10.1038/s41557-021-00716-z

Austin, P. C., Putter, H., Giardiello, D., and van Klaveren, D. (2022).
Graphical calibration curves and the integrated calibration index (ICI) for

competing risk models. Diagn. Progn. Res. 6, 1–22. doi: 10.1186/s41512-021-0
0114-6

Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A.,
Wagenmakers, E. -J., Berk, R., et al. (2018). Redefine statistical
significance. Nat. Hum. Behav. 2, 6–10. doi: 10.1038/s41562-017-0
189-z

Bhaskar, H., Hoyle, D. C., and Singh, S. (2006). Machine learning in
bioinformatics: a brief survey and recommendations for practitioners. Comput.
Biol. Med. 36, 1104–1125. doi: 10.1016/j.compbiomed.2005.09.002

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2022.979465
https://doi.org/10.1093/bioinformatics/btab852
https://doi.org/10.1038/s41557-021-00716-z
https://doi.org/10.1186/s41512-021-00114-6
https://doi.org/10.1038/s41562-017-0189-z
https://doi.org/10.1016/j.compbiomed.2005.09.002
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chicco and Jurman 10.3389/fdata.2022.979465

Bionetworks, S. (2021). Breast Cancer Prognosis DREAM Education Challenge.
Available online at: https://www.synapse.org/#!Synapse:syn8650663/wiki/436447
(accessed August 12, 2021).

Bonnett, L. J., Snell, K. I. E., Collins, G. S., and Riley, R. D. (2019). Guide to
presenting clinical prediction models for use in clinical settings. BMJ 365:l737.
doi: 10.1136/bmj.l737

Breitkreutz, B. -J., Stark, C., and Tyers, M. (2003). The GRID:
the general repository for interaction datasets. Genome Biol. 4:R23.
doi: 10.1186/gb-2003-4-2-p1

Bussola, N., Marcolini, A., Maggio, V., Jurman, G., and Furlanello, C. (2021).
“AI slipping on tiles: data leakage in digital pathology,” in Proceedings of ICPR 2021
– The 25th International Conference on Pattern Recognition. ICPR International
Workshops and Challenges (Berlin: Springer International Publishing), 167–182.

Cabitza, F., and Campagner, A. (2021). The need to separate the wheat
from the chaff in medical informatics: introducing a comprehensive checklist
for the (self)-assessment of medical AI studies. Int. J. Med. Inform. 153:104510.
doi: 10.1016/j.ijmedinf.2021.104510

Cearns, M., Hahn, T., and Baune, B. T. (2019). Recommendations and future
directions for supervised machine learning in psychiatry. Transl. Psychiatry 9:271.
doi: 10.1038/s41398-019-0607-2

Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L.,
et al. (2011). Removing batch effects in analysis of expression microarray
data: an evaluation of six batch adjustment methods. PLoS ONE 6:e17238.
doi: 10.1371/journal.pone.0017238

Chicco, D. (2017). Ten quick tips formachine learning in computational biology.
BioData Min. 10:35. doi: 10.1186/s13040-017-0155-3

Chicco, D., Cerono, G., Cangelosi, D. (in press). A survey on publicly available
open datasets of electronic health records (EHRs) of patients with neuroblastoma.
Data Sci. J. 1–15.

Chicco, D., and Jurman, G. (2020). The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification evaluation.
BMC Genomics 21:6. doi: 10.1186/s12864-019-6413-7

Chicco, D., and Jurman, G. (2022). An invitation to greater use of Matthews
correlation coefficient in robotics and artificial intelligence. Front. Robot. AI
9:876814. doi: 10.3389/frobt.2022.876814

Chicco, D., Starovoitov, V., and Jurman, G. (2021). The benefits of
the Matthews correlation coefficient (MCC) over the diagnostic odds ratio
(DOR) in binary classification assessment. IEEE Access. 9, 47112–47124.
doi: 10.1109/ACCESS.2021.3068614

Chicco, D., Tötsch, N., and Jurman, G. (2021a). The Matthews correlation
coefficient (MCC) is more reliable than balanced accuracy, bookmaker
informedness, and markedness in two-class confusion matrix evaluation. BioData
Min. 14:13. doi: 10.1186/s13040-021-00244-z

Chicco, D., Warrens, M. J., and Jurman, G. (2021b). The coefficient of
determination R-squared is more informative than SMAPE, MAE, MAPE,
MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 7:e623.
doi: 10.7717/peerj-cs.623

Chicco, D., Warrens, M. J., and Jurman, G. (2021c). The Matthews
correlation coefficient (MCC) is more informative than Cohens Kappa and
Brier score in binary classification assessment. IEEE Access. 9, 78368–78381.
doi: 10.1109/ACCESS.2021.3084050

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P.,
et al. (2013). The Cancer Imaging Archive (TCIA): maintaining and
operating a public information repository. J. Digit. Imaging 26, 1045–1057.
doi: 10.1007/s10278-013-9622-7

Crowson, C. S., Atkinson, E. J., and Therneau, T. M. (2016). Assessing
calibration of prognostic risk scores. Stat. Methods Med. Res. 25, 1692–1706.
doi: 10.1177/0962280213497434

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., et al.
(2020). Underspecification presents challenges for credibility in modern machine
learning. arXiv Preprint arXiv:2011.03395. doi: 10.48550/arXiv.2011.03395

Dietterich, T. (1995). Overfitting and undercomputing in machine learning.
ACM Comput. Surveys 27, 326–327. doi: 10.1145/212094.212114

Domingos, P. (2012). A few useful things to know about machine learning.
Commun. ACM 55, 78–87. doi: 10.1145/2347736.2347755

DrivenData.org (2022). Overhead Geopose Challenge. Available online
at: https://www.drivendata.org/competitions/78/competition-overhead-geopose/
page/372/ (accessed August 12, 2021).

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository. Nucl. Acids Res. 30,
207–210. doi: 10.1093/nar/30.1.207

Efron, B. (1992). “Bootstrap methods: another look at the jackknife,” in
Breakthroughs in Statistics, eds S. Kotz and N. L. Johnson (New York, NY:
Springer), 569–593. doi: 10.1007/978-1-4612-4380-9_41

Efron, B., and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. New
York, NY: CRC Press. doi: 10.1201/9780429246593

Feurer, M., and Hutter, F. (2019). “Hyperparameter optimization,” inAutomated
Machine Learning, eds F. Hutter, L. Kotthoff, and J. Vanschoren (Berlin: Springer),
3–33. doi: 10.1007/978-3-030-05318-5_1

Finlayson, S. G., Subbaswamy, A., Singh, K., Bowers, J., Kupke, A., Zittrain, J., et
al. (2021). The clinician and dataset shift in artificial intelligence. N. Engl. J. Med.
385, 283–286. doi: 10.1056/NEJMc2104626

Gene Ontology Consortium (2019). The Gene Ontology resource: 20 years and
still GOing strong. Nucl. Acids Res. 47, D330–D338. doi: 10.1093/nar/gky1055

Ioannidis, J. P. (2005). Why most published research findings are false. PLOS
Med. 2:e124. doi: 10.1371/journal.pmed.0020124

Jensen, D. (2000). Data snooping, dredging and fishing: the dark side of
data mining a SIGKDD99 panel report. ACM SIGKDD Explor. Newsl. 1, 52–54.
doi: 10.1145/846183.846195

Kaggle (2022). Kaggle.com – Find Open Datasets. Available online at: https://
www.kaggle.com/datasets (accessed March 27, 2022).

Khan, S. M., Liu, X., Nath, S., Korot, E., Faes, L., Wagner, S. K., et al.
(2021). A global review of publicly available datasets for ophthalmological imaging:
barriers to access, usability, and generalisability. Lancet Digit. Health 3, e51–e66.
doi: 10.1016/S2589-7500(20)30240-5

Kueffner, R., Zach, N., Bronfeld, M., Norel, R., Atassi, N., Balagurusamy, V., et
al. (2019). Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing
approach. Sci. Reports 9:690. doi: 10.1038/s41598-018-36873-4

Kustra, R., and Zagdanski, A. (2008). Data-fusion in clustering microarray
data: balancing discovery and interpretability. IEEE/ACM Trans. Comput. Biol.
Bioinform. 7, 50–63. doi: 10.1109/TCBB.2007.70267

Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., et
al. (2006). Machine learning in bioinformatics. Brief. Bioinform. 7, 86–112.
doi: 10.1093/bib/bbk007

Larson, D. B., Harvey, H., Rubin, D. L., Irani, N., Justin, R. T., and
Langlotz, C. P. (2021). Regulatory frameworks for development and
evaluation of artificial intelligence–based diagnostic imaging algorithms:
summary and recommendations. J. Amer. Coll. Radiol. 18, 413–424.
doi: 10.1016/j.jacr.2020.09.060

Lee, B. D., Gitter, A., Greene, C. S., Raschka, S., Maguire, F., Titus, A. J.,
et al. (2022). Ten quick tips for deep learning in biology. PLoS Comput. Biol.
18:e1009803. doi: 10.1371/journal.pcbi.1009803

Makin, T. R., and de Xivry, J.-J. O. (2019). Science forum: ten common statistical
mistakes to watch out for when writing or reviewing a manuscript. eLife 8:e48175.
doi: 10.7554/eLife,.48175.005

MAQC Consortium (2010). The MicroArray quality control (MAQC)-II study
of common practices for the development and validation of microarray-based
predictive models. Nat. Biotechnol. 28, 827–838. doi: 10.1038/nbt.1665

Matthews, B. W. (1975). Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochim. Biophys. Acta Prot. Struct. 405, 442–451.
doi: 10.1016/0005-2795(75)90109-9

Navarro, C. L. A., Damen, J. A., Takada, T., Nijman, S. W., Dhiman, P.,
Ma, J., et al. (2021). Risk of bias in studies on prediction models developed
using supervised machine learning techniques: systematic review. BMJ 375:n2281.
doi: 10.1136/bmj.n2281

Picard, R. R., and Berk, K. N. (1990). Data splitting. Amer. Stat. 44, 140–147.
doi: 10.1080/00031305.1990.10475704

Riley, R. D., Debray, T. P. A., Collins, G. S., Archer, L., Ensor, J., Smeden, M.,
et al. (2021). Minimum sample size for external validation of a clinical prediction
model with a binary outcome. Stat. Med. 40, 4230–4251. doi: 10.1002/sim.9025

Riley, R. D., Ensor, J., Snell, K. I. E., Debray, T. P. A., Altman, D. G., Moons,
K. G. M., et al. (2016). External validation of clinical prediction models using big
datasets from e-health records or IPD meta-analysis: opportunities and challenges.
BMJ 353:i3140. doi: 10.1136/bmj.i3140

Sage Bionetworks (2022). DREAM Challenges Publications. Available online at:
https://dreamchallenges.org/publications/ (accessed January 17, 2022).

SEQC/MAQC-III Consortium (2014). A comprehensive assessment of RNA-
seq accuracy, reproducibility and information content by the sequencing quality
control consortium. Nat. Biotechnol. 32, 903–914. doi: 10.1038/nbt.2957

Sewell, M. (2021). Data Snooping. Available online at: http://data-snooping.
martinsewell.com (accessed August 6, 2021).

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2022.979465
https://www.synapse.org/#!Synapse:syn8650663/wiki/436447
https://doi.org/10.1136/bmj.l737
https://doi.org/10.1186/gb-2003-4-2-p1
https://doi.org/10.1016/j.ijmedinf.2021.104510
https://doi.org/10.1038/s41398-019-0607-2
https://doi.org/10.1371/journal.pone.0017238
https://doi.org/10.1186/s13040-017-0155-3
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.3389/frobt.2022.876814
https://doi.org/10.1109/ACCESS.2021.3068614
https://doi.org/10.1186/s13040-021-00244-z
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.1109/ACCESS.2021.3084050
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.1177/0962280213497434
https://doi.org/10.48550/arXiv.2011.03395
https://doi.org/10.1145/212094.212114
https://doi.org/10.1145/2347736.2347755
https://www.drivendata.org/competitions/78/competition-overhead-geopose/page/372/
https://www.drivendata.org/competitions/78/competition-overhead-geopose/page/372/
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1201/9780429246593
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1056/NEJMc2104626
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1145/846183.846195
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://doi.org/10.1016/S2589-7500(20)30240-5
https://doi.org/10.1038/s41598-018-36873-4
https://doi.org/10.1109/TCBB.2007.70267
https://doi.org/10.1093/bib/bbk007
https://doi.org/10.1016/j.jacr.2020.09.060
https://doi.org/10.1371/journal.pcbi.1009803
https://doi.org/10.7554/eLife,.48175.005
https://doi.org/10.1038/nbt.1665
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1136/bmj.n2281
https://doi.org/10.1080/00031305.1990.10475704
https://doi.org/10.1002/sim.9025
https://doi.org/10.1136/bmj.i3140
https://dreamchallenges.org/publications/
https://doi.org/10.1038/nbt.2957
http://data-snooping.martinsewell.com
http://data-snooping.martinsewell.com
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chicco and Jurman 10.3389/fdata.2022.979465

Shin, S., Austin, P. C., Ross, H. J., Abdel-Qadir, H., Freitas, C., Tomlinson,
G., et al. (2021). Machine learning vs. conventional statistical models for
predicting heart failure readmission and mortality. ESC Heart Fail. 8, 106–115.
doi: 10.1002/ehf2.13073

Skocik, M., Collins, J., Callahan-Flintoft, C., Bowman, H., andWyble, B. (2016).
I tried a bunch of things: the dangers of unexpected overfitting in classification.
bioRxiv 2016:078816. doi: 10.1101/078816

Smith, M. K. (2021). Data snooping. Available online at: https://web.ma.utexas.
edu/users/mks/statmistakes/datasnooping.html (accessed August 5, 2021).

Stevens, L. M., Mortazavi, B. J., Deo, R. C., Curtis, L., and Kao,
D. P. (2020). Recommendations for reporting machine learning analyses
in clinical research. Circ. Cardiovasc. Qual. Outcomes 13:e006556.
doi: 10.1161/CIRCOUTCOMES.120.006556

Steyerberg, E. W., and Vergouwe, Y. (2014). Towards better clinical prediction
models: seven steps for development and an ABCD for validation. Eur. Heart J. 35,
1925–1931. doi: 10.1093/eurheartj/ehu207

Tarca, A. L., Carey, V. J., Chen, X.-W., Romero, R., and Drăghici, S. (2007).
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