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A machine learning approach to
quantify gender bias in
collaboration practices of
mathematicians

Christian Steinfeldt† and Helena Mihaljević*†

Department 4 - Computer Science, Communication and Economics, Hochschule für Technik und
Wirtschaft Berlin, University of Applied Sciences, Berlin, Germany

Collaboration practices have been shown to be crucial determinants of

scientific careers. We examine the e�ect of gender on coauthorship-based

collaboration in mathematics, a discipline in which women continue to be

underrepresented, especially in higher academic positions. We focus on two

key aspects of scientific collaboration—the number of di�erent coauthors

and the number of single authorships. A higher number of coauthors has a

positive e�ect on, e.g., the number of citations and productivity, while single

authorships, for example, serve as evidence of scientific maturity and help to

send a clear signal of one’s proficiency to the community. Using machine

learning-based methods, we show that collaboration networks of female

mathematicians are slightly larger than those of their male colleagues when

potential confounders such as seniority or total number of publications are

controlled, while they author significantly fewer papers on their own. This

confirms previous descriptive explorations and provides more precise models

for the role of gender in collaboration in mathematics.
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1. Introduction

Nowadays, research is built as group effort, in which individuals collaborate

through joint discussions of ideas and methods, oral and written presentations, and the

integration of obtained feedback into further work (Ductor et al., 2018). It is thus not so

surprising that the notion of mathematics as a discipline pursued by individual geniuses

is considered outdated. But even historically, mathematics offers a range of examples

of fruitful collaborations. The presumably most prominent such example are Hardy and

Littlewood, who jointly wrote about 100 papers of great importance for puremathematics

in England in the first half of the twentieth century (Wilson, 2002). Paul Erdős, one of

the most prolific mathematicians in history, helped to transform the discipline into a

social activity by collaborating with more than 500 coauthors. The public forum-based

collaboration on the Hales-Jewett theorem, driven by Tim Gowers’ Polymath project, has

proven that even “massively collaborative mathematics” is possible (Gowers, 2009).

Data on coauthorship confirms the trend toward collaboration through joint

authorship of scientific publications. According toMathematical Reviews, the percentage
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of papers with multiple authors increased from 9% in the 1940s

to 46% in the 1990s (Grossman, 2002). These figures agree

well with those of zbMATH, suggesting that currently about

three quarters of all publications in mathematics are written

collaboratively (Mihaljević and Santamaría, 2020). Writing

papers with other scholars increases one’s visibility within the

research community and can thus advance the academic career.

For example, research has shown for various disciplines that

the network size, i.e., the number of one’s distinct coauthors, is

positively correlated with a larger number of citations (Wuchty

et al., 2007; Sarigöl et al., 2014; Servia-Rodríguez et al., 2015)

and higher productivity (Ductor, 2015; Servia-Rodríguez et al.,

2015). At the same time, publishing in groups reduces various

risks, such as openly hostile criticism or the responsibility for

errors (Kwiek and Roszka, 2022).

Nevertheless, a successful academic career, in mathematics

and other disciplines, is typically built on both collaborative

and individual work. In past forecasts, single authorships have

generally been seen by numerous researchers as somewhere

between decline and extinction (Price, 1963; Allen et al., 2014;

Barlow et al., 2018; Kuld andO’Hagan, 2018; Ryu, 2020). Despite

the increase in collaborations and the accompanying decrease

in single-authored papers, this prediction has not come true.

In some disciplines such as humanities and literature, but also

mathematics, papers written by one individual still account for a

significant share, if not the majority of all published research.

Single authorships fulfill a certain function that cannot be

replaced by collaboration. They serve as proof of one’s ability and

credibility as a scientist, showing that one is not “dependent on

senior people for ideas, guidance, techniques, [...] Hence, one is

ready for a faculty position” (McKenzie, 2012). This makes solo

publications especially valuable at an early career stage (Kuld

and O’Hagan, 2018), sending a clear signal to the academic job

market. Moreover, in contrast to collaboration, writing a paper

alone does not require making compromises, it comes without

unclear responsibilities and communication issues commonly

referred to as “coordination costs” (Olechnicka et al., 2020;

Kwiek and Roszka, 2022), and it is not affected by unclear

credit attribution. The latter has shown to be associated with

strong gender bias for research in economics, putting female

economists collaborating with men at a disadvantage (Sarsons

et al., 2021).

Given the importance of collaboration practices for the

pursuit of one’s research and ultimately the trajectory of

academic careers, the question of the role of gender in relation

to network parameters arises. Although the number of women

starting to publish in STEM fields is steadily growing, they tend

to have shorter careers (see, e.g., Boekhout et al., 2021), and their

proportion progressively decreases when it comes to high-level

academic positions, in particular tenured posts (cf. e.g., Golbeck

et al., 2018; European Commission, Directorate-General for

Research and Innovation, 2019). Thus, we ask whether there are

gender-based differences in the size of coauthor networks and

the proportion of single authorships. In previous research on

mathematics (Mihaljević-Brandt et al., 2016), we showed that

men write 38% of their scientific records as single authors, in

contrast to 29% for women. This trend remained stable even

after grouping authors into seven segments based on their total

number of publications. At the same time, the network sizes

of female and male mathematicians turned out to be similar.

However, the analyses were descriptive, the segments reflecting

the number of publications were relatively rough, and further

potential confounders such as seniority were not considered—

thus not allowing to conclude that there is something intrinsic

to men’s and women’s collaboration patterns in mathematics.

In this paper, we investigate the two target variables

network size and number of single authorships using appropriate

comparative models, which allow us to further isolate and

quantify the effect of gender. We follow two machine learning

based approaches to quantify model bias and compare their

results in order to obtain a robust assessment of the role

of the gender variable. The models are trained using data

from zbMATH Open, one of the most comprehensive indexing

and reviewing services for mathematics (FIZ Karlsruhe,

2022). We show that women in mathematics have similar,

even slightly higher, numbers of distinct coauthors as men

when we control for the number of publications, time-

based variables such as publication year and seniority,

the subfield, perceived journal quality and the continent of

the author’s affiliation. At the same time, we show that the

number of single authorships is lower, by around 4.5% with

respect to the overall number of publications, even after

controlling for the aforementioned potential confounders. This

difference, while notable, is still less than suspected based on

existing research.

2. Related work

A number of studies have examined network aspects

of coauthorship in relation to gender, with varying

results depending on the discipline studied and the

underlying dataset. In terms of the size of coauthor

networks, depending on the study and the modeling

approach, sometimes men and sometimes women are

seen in front, although usually the observed difference is

rather small.

Jadidi et al. (2018) deduce from DBLP data that women

and men computer scientists exhibit some structural differences

when building coauthorship networks. In particular, men

develop significantly larger networks, even when controlling

for time variables such as the year or seniority, though with

small effect size. In a recent descriptive analysis of major

conferences in computer systems in 2017 (Yamamoto and

Frachtenberg, 2022), men were shown to have more coauthors

per paper and overall than women, but the difference was
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rather small. An analysis of four Italian conferences in the

fields of information systems and computer science revealed

that “men are more key than women” in only one of the

four considered communities. Although men were shown to

have more connections than women in three communities in

terms of degree and degree centrality, women had “similar

values of betweenness, eigencentrality and closeness and, hence,

similar probability to diffuse topics. This means that women

tend to connect more with key members with respect to

what men do” (De Nicola and D’Agostino, 2021). A study

analyzing the complete publication records of almost 4,000

faculty members in six STEM disciplines at selected research

universities in the U.S. revealed that “female faculty have

significantly fewer distinct coauthors over their careers than

males, but that this difference can be fully accounted for by

females’ lower publication rate and shorter career lengths” (Zeng

et al., 2016). A slightly older survey-based study by Bozeman

and Gaughan (2011) analyzed responses from 1,714 tenured

and tenure track faculty members at Carnegie research extensive

universities, working in STEM disciplines. Their models, taking

into account factors such as tenure, discipline, family status, and

doctoral cohort, indicate that “women actually have somewhat

more collaborators on average than do men” (Bozeman and

Gaughan, 2011). The authors further show that interaction

with industrial partners and research centers is positively

correlated with the number of collaborators. Pina et al. (2019)

studied a sample of junior and senior life science grantees

from the European Research Council (ERC) from the years

2007 to 2009 regarding publication and citation outputs and

collaboration networks with respect to gender, seniority, and

country of work. The authors were “particularly interested in

the change of publication performance in relation to the grant

award” and thus studied the 5-year period before and after

the award was received. Almost no gender differences were

observed related to scientific networking, the only exception

being a greater network size after grant award for male

junior grantees.

While the cited studies discover rather minor differences

with respect to the number of distinct coauthors, Ductor et al.

draw a more contrasting picture for economy. Based on an

extensive analysis of 1,627 journals in economics between 1970

and 2011, they “identify large and persistent gender differences”

in coauthorship networks. Female economists have a lower

number of distinct coauthors, and the difference increased

over time. Moreover, they show that women “co-author more

with more experienced and senior economists” (Ductor et al.,

2018). The authors deduce from their overall results that

the differences in building networks through coauthorship

stem from differences in risk-taking that in turn could be

explained by disparities in preferences or the environment,

e.g., differences in rewards for the same type of action.

This fits well with the results by Sarsons et al. (2021), who

show for economists that “an additional coauthored paper

is correlated with an 7.4% increase in tenure probability for

men but only a 4.7% increase for women.” The latter gap

turns out to be less pronounced in collaborations among

women, indicating that attribution of credit for group work

is related to the gender of coauthors, so that in mixed-

gender collaborations, mainly men receive the credit for the

joint work.

Single authorships have unfortunately been less addressed

in previous research, despite being a relevant career factor

whose effect on career advancement might, in contrast to

coauthorship, be less dependent of authors’ gender. As shown

by Sarsons et al. (2021), female and male economists who

write most of their papers alone have similar tenure rates,

conditional on the quality of their contributions. Existing studies

on sole authorship seem to agree that women write a smaller

proportion of their publications alone (West et al., 2013; Ductor

et al., 2018; Sarsons et al., 2021; Yamamoto and Frachtenberg,

2022). In one of the few works addressing the question of

gender and solo research in more detail, however, Kwiek and

Roszka (2022) find only marginal gender differences among

researchers at Polish universities. They formally introduce the

gender solo research gap and extensively study its underlying

hypothesis that “female scientists are less involved in publishing

alone than male scientists.” They find statistically significant

gender differences only among young academics, and with

rather small effect. Overall, the strongest predictor of individual

solo publishing rate is the overarching scientific discipline

and their collaboration practices in terms of average team-

size (STEM fields and international cooperation negatively

affect the rate, while publishing in male-dominated disciplines

positively affects it). A similar discipline-specific difference is

also observed by Farber (2005) within Israeli universities,

where single authorships are more likely in theoretical research.

Based on publications in accounting and finance, Vafeas (2010)

shows that the likelihood of solo authorships is higher for

conceptual or analytical projects rather than empirical ones,

but also, e.g., “when the author is affiliated with a highly

ranked university.”

Specifically for mathematics, the questions of coauthorship

network sizes and the proportion of single authorships is

investigated in Mihaljević-Brandt et al. (2016). Based on

data from zbMATH covering a period of more than 40

years, differences were found in the proportion of single

authorships between men and women. Even after grouping

all authors into six segments based on the total number

of published works, a stable overall difference of almost

10% is observed. At the same time, there is almost no

difference in terms of network sizes, with slightly higher mean

and median values for women in some of the segments.

However, the work does not take into account further

variables such as seniority, publication year, or mathematical

subfield—all being potential confounders for the respective

target variables.
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3. Data and methods

3.1. Data source, variables, and format

Our analysis is based on data from the freely accessible

repository zbMATH Open (former Zentralblatt MATH), “the

world’s most comprehensive and longest-running abstracting

and reviewing service in pure and applied mathematics” (FIZ

Karlsruhe, 2022). As of April 2022, the service comprises

about 4.2 million entries written by more that 1.1 Million

different authors.

zbMATH Open indexes publications from all areas of

pure and applied mathematics, their applications, history,

and philosophy of mathematics and mathematics university

education. The broad coverage of zbMATH results in a partial

inclusion of scientists whose main expertise belongs to other

disciplines such as physics or computer science. We thus restrict

to publications by so-called core mathematicians, roughly

defined as individuals who have published at least one article

in a journal with clear mathematics focus; for a definition of

the respective heuristics (see Mihaljević and Santamaría, 2020).

From this data, we extract the following variables that we

consider relevant to the task at hand and build our final dataset.

We consider two authorship-related target variables—the

network size, where network refers to the ego-network of an

author within the coauthorship network in which edges are

drawn between two author nodes, if they coauthored a joint

publication (and thus equals the number of distinct coauthors

of a given mathematician), and the number of single authorships.

To measure the relevance of gender to the target variables, we

build predictive models for the annual cumulative achievements

of every author. More specifically, each record in our dataset

represents the network size as well as the number of solo

publications of an author at the end of a given year. Accordingly,

the author ID1 and the year provide a unique identifier.

We build the prediction models using multiple features

that we consider relevant for the task at hand. In addition to

the number of publications, we compute the seniority as the

number of years since the author’s first publication. Figure 1

shows that these two variables have the highest correlation

coefficient with both target variables (Since reprints, obituaries,

and similar publications appear after an author’s death but are

1 An authorship is assigned to an author ID via a combination

of algorithmic procedures and manual checking by zbMATH sta�.

Like any disambiguation procedure, it is not perfect and can both

split and incorrectly augment author profiles. However, due to the

enormous e�ort invested into the development of their author name

disambiguation procedures, and especially the involvement of the

mathematical community in the correction of author profiles via a

dedicated web interface, a solid state has been reached in the meantime.

For more details on zbMATH’s creation of author profiles, see Mihaljević-

Brandt et al. (2014) and Müller et al. (2017).

FIGURE 1

Pairwise Pearson correlation coe�cients between numerical
input variables and target variables. For better understanding, we
include the percentage of single authorships among all
authorships of an author. All relationships are statistically
significant with p-value 0.01.

also associated with the respective author profile in zbMATH,

we excluded all publications after a gap of 9 years. Tests on

sample data show that the procedure is robust and yields

plausible results).

To give an example, suppose an author A starts publishing

in 2015 by jointly writing two papers with the same coauthor

B. In the subsequent years 2016 and 2017, A has no further

publication activity. In 2018, A returns with a single-authored

paper, as well as a collaboration with a group of 4 new coauthors,

concluding this author’s publication career. In our dataset,

author A would be modeled with the records displayed in

Table 1.

Publication practices are subfield specific. zbMATHprovides

codes reflecting the topics of the publications based on

MSC2010, a hierarchical tree-based scheme with 63 codes on the

highest level2. To decrease the granularity, we previously built a

data-driven clustering of MSC codes, yielding 18 subfield clusters

altogether. To every record in our dataset we assign the most

frequent subfield cluster among the considered publications.

Figure 2 presents Box-Whisker plots of both target variables

across the subfield clusters, showing a significant variation

among the clusters in particular with respect to the proportion

of single-authored publications.

In addition, we make use of zbMATH’s scheme consisting

of five journal ranks to prioritize publication venues indexed

by the service. We resort to their internal scheme since it

is updated on a regular basis by zbMATH’s editorial staff

and a group of experts from various subfields, while there

2 https://www.msc2010.org/mediawiki/index.php?title=MSC2010
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Steinfeldt and Mihaljević 10.3389/fdata.2022.989469

TABLE 1 Representation of selected variables using all records of a fictitious author A as an example.

ID Year Number of publications Seniority Network size Number of single authorships

A 2015 2 0 1 0

A 2016 2 1 1 0

A 2017 2 2 1 0

A 2018 4 3 5 1

FIGURE 2

Di�erences in the value distributions of the target variables between subfield clusters. The target variables were normalized by dividing each by
the total number of publications, as the latter is strongly correlated with the target variables and at the same time subfield specific. The white
dashed line marks the normalized mean of the entire data. The overall di�erence is statistically significant with p-value 0.01, measured with
one-way ANOVA.

is no public categorization recognized by the mathematical

community (cf. Mihaljević and Santamaría, 2020). Note that

some older journals that are not published anymore do not have

a rank. As for subfield clusters, to every record we assign the

most frequent journal rank among the considered publications.

Figure 3 shows a clear correlation between journal ranks and

both target variables: authors publishing predominantly in

journals with higher rank have larger coauthorship networks,

while rank 1 and in particular the old journals without a rank

are rather associated with smaller network sizes. The tendency is

in the opposite direction for the second target variable.

Network building is further related to the country of work

(cf. e.g., Pina et al., 2019; Mihaljević and Santamaría, 2020,

p. 106). Affiliations containing geographic information are not

complete in zbMATH Open, with gaps being most pronounced

for older publications. To reduce the number of missing values

and to simplify the data model, we (1) reduce the granularity

from country to continent and (2) keep the first found continent

per author for all years, as rather little migration from one

continent to another can be observed in the data. In the final

dataset, a location is missing for∼25% of all records; almost 30%

are affiliated with an institution in Europe, ∼21% with one in

Asia,∼19 and∼2%withNorth and South America, respectively,

while Africa and Oceania account for around∼1% each.

Bibliographic data do not contain information on

authors’ gender, with authors’ names being the only piece

of information capable of providing a respective indication. We

combine responses from different gender assignment services,

maximizing the recall (i.e., the number of names that can be

assigned a gender), while keeping the error rate under a certain

threshold. Our heuristic which is described in Mihaljević and

Santamaría (2020) in more detail, is based on a comparison and

benchmark (Santamaría and Mihaljevi, 2018) of five dedicated

sources for name-based gender inference. In particular, our

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2022.989469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
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FIGURE 3

Di�erences in the value distributions of the target variables between journal ranks. The target variables were normalized as in Figure 2. The white
dashed line marks the normalized mean of the entire data. The overall di�erence is statistically significant with p-value 0.01, measured with
one-way ANOVA.

procedure makes sure that the bias in gender prediction

understood as the imbalance of females misclassified as males

compared to the error in the opposite direction is kept close

to zero. It should be noted that name-based gender inference

yields numerous challenges. In addition to accuracy-related

issues arising through abbreviations, transliteration etc., it faces,

as all approaches for automated gender inference, conceptual

and ethical problems such as the usage of a binary scheme

(cf. Mihaljević et al., 2019). We would thus like to emphasize

that we do not understand “women” and “men” as monolithic

categories; our classification is due to pragmatic reasons and, in

particular, the lack of data stemming from self-identification.

Finally, we include the year in which a manuscript was

published since it is an important predictor of the network size

and the overall number of publications, as shown in Figures 1, 5.

Table 2 summarizes all variables used in the resulting data

model.

3.2. Data overview

The final dataset comprises 2, 806, 493 records

corresponding to 260, 968 unique authors. Among those,

127, 983 are predicted to be male and 34, 793 female.

A naıve look at the target variables in relation to gender

reveals thatmen have on average∼6.9 different coauthors (std =

11.5), in contrast to ∼4.8 for women (std = 7.7). Similarly,

men write almost eight publications alone (std = 13.9), while

women have ∼3.4 solo-authored articles (std = 13.9). In

terms of percentages, this translates into an average of around

41% of publications written alone among men vs. 30% among

women. Figure 4 displays the empirical distributions of both

target variables.

However, these numbers alone are misleading because

the two groups differ significantly with respect to the most

important factors regarding the target variables, namely the

number of publications and seniority (cf. Figure 1). Male

mathematicians publish more, and the proportion of senior men

is significantly higher, as Figure 5 demonstrates.

3.3. Methods

To isolate and quantify the effect of gender on each of the

target variables, we adapt two known techniques and apply

them in different variations to ensure robustness. A schematic

illustration of both methods can be seen in Figure 6.

3.3.1. Stratified random sampling
Since the dataset contains a lot more records for men

than for women that show highly differing distributions w.r.t.

multiple features, we need a way to generate two comparable

datasets for women and men to produce meaningful results.We

generate two equally sized datasets using stratified sampling, so

that per stratum, the number of records from men and women

are equal.

In our case, it makes sense to choose either the number of

publications or the seniority as stratification variable, because

these two have the highest correlation with our target variables

(see Figure 1). However, since the number of publications

reveals a long tail distribution, we first group the values into

13 segments between 1 and >50, where in particular higher

numbers of publications are merged together (see, e.g., the x-

scale in Figure 7: Number of publications). Due to the size

imbalance we sample from the subset of records representing

men based on the number of records of women per stratum.
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TABLE 2 Description of all variables in the final dataset, with target variables highlighted in bold.

Variable Description Computation Example Missing values

Author ID Unique zbMATH author identifier bourbaki.nicolas No

Year Publication year 2013 No

Publications Number of publications, up to and including the

respective year

Sum 5 No

Single-authored publications Number of solely written publications, up to and

including the respective year

Sum 1 No

Seniority Number of years since the author’s first

publication, starting with 0

Count 2 No

Network size Number of distinct collaborators, up to and

including the respective year

Count 2 No

Gender Gender predicted based on name string; binary +

“unknown” (cf. Mihaljević and Santamaría, 2020)

Female ∼28%

Continent Continent extracted from the author’s earliest

available affiliation

First Asia ∼25%

Subfield cluster Clusters of level-1-codes of the MSC2010,

produced by ego-splitting with resolution 1

(cf. Epasto et al., 2017)

Most frequent Graphs/Linear Algebra No

Journal ranking zbMATH’s internal processing scheme, reflecting

their evaluation of journal’s relevance and quality

(cf. Mihaljević and Santamaría, 2020)

Most frequent 1 ∼5%

FIGURE 4

Empirical distributions of the target variables broken down by gender, showing that, without taking any other variables into account, the
proportion of women among authors with smaller networks and those writing less papers alone is higher compared to men.

3.3.2. Approach 1: Male baseline
We follow the approach of Caplar et al. (2017) who model

the effect of gender on the number of citations and authorships

in prestigious astronomy and astrophysics journals. For each

of the two target variables we train a prediction model that

does not take the gender variable as a feature, and is trained

using only records from male mathematicians. We then apply

the trained model to test data sets from both women and

men separately and evaluate the differences between true and

predicted values in each case. This lets us explore how women

would be seen by an oracle that only knows men, and compare

it to the real world. For this approach, the female test set

consist of all 301,199 female records. The equally sized male

test set is created using the stratified sampling method described

above. The remaining 1,427,908 male records comprise the

training set.

3.3.3. Approach 2: Gender swapping
Our second approach is inspired by the idea from the

experiment of Bertrand and Mullainathan (2004) who sent

resumes for job ads in order to measure the effect of attributes
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FIGURE 5

Average author seniority (top) and number of publications (bottom) accumulated until a given year, broken down by authors’ gender. Shaded
areas mark the [25, 75] confidence intervals; in the more saturated shaded area confidence intervals for women and men overlap.

FIGURE 6

Schematic illustration of the two approaches “male baseline” and “gender swapping” used to isolate and quantify the e�ect of gender.

such as gender and race on the likelihood to get invited for an

interview. For each target variable, we train a prediction model

using data from both women and men, including gender as

one of the features. We make sure that the two datasets are

balanced in terms of gender by using the stratification described

above to sample an equal amount of male records. This yields a

dataset of ∼600,000 records. Within a 10-fold cross-validation

we train models and compute scores on test sets. In each round,
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Steinfeldt and Mihaljević 10.3389/fdata.2022.989469

the training data comprises 90% (542,158 records) and the test

set 10% (60,240 records) of the dataset, both balanced in terms

of gender.

In addition, we swap the gender attribute in the test data

for their complement and recompute the scores. The swapping

helps to infer how the target variable would be predicted if only

the gender was different but everything else stayed the same.

3.3.4. Variations
We aim for tree-based prediction models since they are

well capable of capturing nonlinear relationships. The optimal

models are found using randomized hyperparameter search. To

make sure that the modeling and the resulting evaluation are as

robust as possible, we implement different variants of the two

approaches using combinations of the following parameters:

• Stratify by number of publications and seniority and run

each on multiple randomly chosen data samples.

• Use Gradient Boosting Regression (Friedman, 2001) and

Random Forest Regression (Breiman, 2001) as algorithms.

• Evaluate models with different hyperparameters: in

addition to the model with optimal hyperparameters,

evaluate another model that causes less overfitting but still

shows superior performance on the validation set.

• In the first approach, use the entire training data consisting

of 1,427,908 records, or apply the same stratification used

for creating the test set to sample 791,937 records with a

similar distribution.

4. Results

All evaluations are implemented in Python 3.6 using the

scikit-learn library (version 0.24.2; Pedregosa et al., 2011).

The different variants yield very similar results, showing that our

procedure is reliable and robust. Thus, here we only report the

results from training a GradientBoostingRegressor3

with optimal hyperparameters and the number of publications

as the stratification variable (For the first approach male training

data is not additionally sampled). Since the setting between

both approaches is very similar, we apply the hyperparameter

search only within the first approach and reuse the results for

the second. The hyperparameter search yields 140 estimators,

a minimum of 5 samples per leaf and a maximum depth of

15 as optimal parameters for both target variables. Code and

evaluations covering all implemented scenarios can be found in

a public repository (https://github.com/math-collab/gender).

3 https://scikit-learn.org/0.24/modules/generated/sklearn.ensemble.

GradientBoostingRegressor.html

4.1. Network size

For the first approach, our best performing regression

achieves a mean training score of 0.85 and a mean test score of

0.74. As expected from the explorations in Section 3.1, the most

important feature is the number of publications (relevance score:

0.75), followed by author seniority (0.07) and the publication

year (0.06). The model yields R2 scores for test data of 0.63

(female) and 0.68 (male).

As explained previously in Section 3.3, we evaluate the

model on two test sets for men and women, respectively, each

consisting of 301,199 records. The model underestimates the

number of coauthors for women: while the mean difference

between predictions ŷ and true values y for the male test set

is 0.001, it equals −0.227 on the female test set. The plots in

Figure 7 illustrate the deviation between the model’s prediction

and the ground truth for both test sets, dis-aggregated by the

number of publications, author seniority and the publication

year. The curve representing the real values overlaps almost

perfectly with the curve representing predicted values on the

male test set. A t-test for two related samples shows no

significance between real and predicted data for men in any of

the groups reflecting the number of publications. This confirms

the prediction quality of the model on the male test data. On the

female test set, the curve representing predicted values lies below

the one representing true values, and the differences between

real and predicted values per any of the groups are significant

(p-value 0.01). The divergence increases with growing number

of publications, higher seniority and latter publication years.

However, it should be noted that the number of records in the

respective segments is a lot smaller, as, e.g., there are rather few

women with a seniority of 50 years or above. Thus, the deviation

between real and predicted values for women can be seen as

rather low, meaning that women exhibit in fact slightly larger

coauthor networks if we control for variables such as the number

of publications, seniority, subfield cluster etc.

Our second approach, yielding comparable train and test

scores, confirms these observations. Figure 8 shows in the left

column the predictions for the female test set as a solid curve

and those for the same data but with swapped gender value from

female to male as a dotted curve. Similarly, the results for the

male test set are displayed in the right hand column. Again, the

visualizations reflect the decomposition of the predictions by the

number of publications, the author seniority and the publication

year. The plots show that the predicted number of coauthors

slightly decreases for female mathematicians when changing

their gender from female to male in the test set. This tendency is

exactly the opposite for male mathematicians in the test set who

show a slight increase when swapping their gender to female.

Again, the deviations between the real and the swapped data

increase with growing number of publications, seniority, and for

later publication years.
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FIGURE 7

Male baseline approach: mean di�erences between actual (solid curve) and predicted (dotted curves) values for the target variable network size.
Shaded areas mark the [25, 75] confidence interval of the ground truth data.

4.2. Number of single authorships

Using the first approach, we obtain very similar performance

results on training and test data (mean train score of 0.87 and

mean test score of 0.78) as for network size as target variable.

Again, the number of publications has the largest influence on

the model, but slightly less than before (relevance score: 0.66),

followed at a large distance by author seniority (0.08), and

publication year (0.07). The model, trained on data representing

men’s publications, is significantly less able to explain the

variance in the female than in the male test set, with R2 scores

of 0.53 and 0.79, respectively. This already indicates that there is

a significant difference between the statistical properties of the

two datasets.

The evaluation of the predictions reveals this difference

in more detail: The male-baseline model overestimates the

number of papers written alone by women, and this difference

is statistically significant for each of the groups (t-test for paired

samples with p-value 0.01). The model predicts women to have

around half a publication more written alone (mean difference

between ŷ and y for the female test set is 0.55), while being almost

zero (−0.004) for the male test set; the difference between real
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FIGURE 8

Gender swapping approach: deviations in the value distributions of predictions applied to real data (solid curves) and data with swapped gender
values (dotted curves) for the target variable network size. The curves show mean values, while shaded areas mark the [25, 75] confidence
interval of the predictions on real test data.

and predicted values is not statistically significant for any of the

groups of men’s publications.

As for the previous model, we visualize the difference

between predictions and the ground truth for both test sets

in Figure 9. In order to highlight the differences between the

distributions, the diagrams show the percentages of single

authorships among the total authorships instead of counts. As

before, the data is broken down by the number of publications,

seniority, and year, respectively. In contrast to the prediction of

network size, the difference between women andmen in terms of

the number of single authorships is not only significantly larger,

but also stable across the respective numbers of publications,

seniorities, and publication years. As Figure 9 shows, the mean

percentage of single authorships of women is around 4–5% (on

average 4.6%) less than predicted by the baseline male model,

which is significantly less than the difference of ∼11% observed

in the raw data without taking into account any other variables

(see Section 3.2).

Figure 10 displays the average predictions obtained from

models trained within a 10-fold cross-validation on data

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2022.989469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
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FIGURE 9

Male baseline approach: Mean di�erences between actual (solid curve) and predicted (dotted curves) values for the target variable number of

single authorships. Shaded areas mark the [25, 75] confidence interval of the ground truth data.

balanced in terms of gender and number of publications and

applied to test data with correct and swapped gender values. As

before, this approach yields results analogous to the previous

one, confirming the robustness of our overall approach. More

precisely, the upper row of Figure 10 illustrates well that the

model predicts women to have around 11% less authorships

written alone thanmen, and this difference remains stable across

all bins. However, for the most part, the difference is due to

other variables; as shown by a comparison between the solid and

dashed curves in the respective subplots, the prediction deviates

by around 4.5% upward (swapping from female to male) or

downward (swapping from male to female) when the value for

the gender variable in the respective test data set is swapped.

The first rows in both Figures 9, 10, respectively, additionally

show that the proportion (as opposed to the total number)

of single authorships depends little on the total number

of publications. The curves for both genders are relatively

horizontal across most segments, with a slight dip at the

beginning and end. At the same time, the bottom row of

both plots reveals the evolution of the discipline away from
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FIGURE 10

Gender swapping approach: deviations in the value distributions of predictions applied to real data (solid curves) and data with swapped gender
values (dotted curves) for the target variable number of single authorships. The curves show mean values, while shaded areas mark the [25, 75]
confidence interval of the predictions on real test data.

single authorships toward more collaboration. This trend is also

reflected in the middle row of the graphs, where the curves rise

slightly with increasing seniority of authors.

4.2.1. Local interpretations using SHAP values
To illustrate how a machine learning model utilizes the

main features, especially the author’s gender, to arrive at a

prediction of the number of single authorships, we train a

Gradient Boosting classifier and apply SHAP (Lundberg and Lee,

2017), a post-hoc explanation technique for machine learning

models. We train the model based on the 602, 398 records

as displayed in Figure 6 (the data is balanced in terms of

author’s gender) but this time including the gender variable. We

make use of the Python SHAP package4 that assigns to every

input feature a relevance score for each prediction. The scores,

which are computed using Shapley values from cooperative

game theory, can be used as local interpretations for individual

4 https://github.com/slundberg/shap
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FIGURE 11

SHAP decision plot of a Gradient Boosting classifier predicting the number of single authorships for twelve di�erent personas. We display the
local relevance of the four main features “year,” “seniority,” “number of publications,” and “gender.” The curves representing the SHAP values are
relative to the model’s expected value which is approximately four in this case. The SHAP values for each feature are successively added to the
expected value of the model (viewed from the bottom up), showing how each feature contributes to the overall prediction. The rows represent
di�erent seniority levels (5, 10, and 15), the columns correspond to the subfield clusters “PDE/Numerical/Physics” (left) and “Number
theory/Algebraic geometry” (right), while the line types di�erentiate between the persona’s gender. We assumed the continent to be North
America, the publication year to be 2010 and the dominating journal rank to be 1.

predictions, showcasing a model’s reasoning for a particular

data record.

For the local comparisons, we create personas with

seniority levels of 5, 10, and 15 years, respectively, that

represent different career stages: while a seniority of 15

years can be associated with a secure permanent academic

position, 5 years can rather be seen as a realistic proxy

for an early postdoctoral stage in mathematics. We also

fix the number of publications per seniority level as 3, 6,

and 10, respectively. To showcase the effect of different

mathematical subfields, we additionally differentiate between

the cluster “PDE/Numerical/Physics,” an interdisciplinary and

applied cluster, and “Number theory/Algebraic geometry,” a

combination of two rather traditional areas of puremathematics.

In addition, we create a female and male version of each

combination, yielding twelve personas altogether. We fix the

remaining features by setting 2010 as the publication year, North

America as the continent and journal rank to be 1.

Figure 11 displays the relevance scores of the main features

of the model for each of the twelve personas, with columns

representing the subfield clusters, rows the seniority levels and

line types the author’s gender. In all six plots it can be seen

that the gender variable causes the two curves to diverge,

with the dashed curve representing the female persona moving

further to the left. This shows that the model associates women

(for the personas shown here) with a lower number of single

authorships. This effect is partially mitigated by other variables:

especially for the personas with seniority 5 (first row), the

difference is nearly neutralized by the variable representing the

total number of publications. A likely reason for this is our
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assumption of the same number of publications for both genders

at the same seniority. Since male mathematicians tend to have a

larger output of publications (Mihaljević and Santamaría, 2020),

the parameters for the two genders are associated with different

frequencies, so the model assigns a stronger positive weight

to the total number of publications for the female persona.

Furthermore, the deviation between the two curves per plot

increases with seniority for both subfield clusters, though more

or less in proportion to the absolute number of publications,

confirming the overall tendency captured in Figure 10.

5. Summary and discussion

Successful research careers typically involve both individual

and collaborative efforts. The persistence of gender differences

in mathematics as a research discipline, not only at the

level of simple counts but in the successful shaping of

careers, necessitates an examination of corresponding

collaborative practices.

To assess the role of gender on the network size and the

amount of single authorships, we have applied two approaches

that allow to separate the effect of gender from that of other

gender-correlated variables. In the “male baseline” approach, a

predictive model is trained on male data and the evaluations

on female and male test data were compared. In the “gender

swapping” approach, we have trained predictive models on

data from men and women and applied them to test data

with real and swapped values for the gender variable. We

have shown that women have even slightly larger networks

when controlling for total number of publications, seniority,

publication year, subfield, continent of work, or perceived

journal quality. Under the same modeling conditions, women

have fewer single authorships, though the difference is smaller

than previous work has suggested, at 4.5% compared to

men. It follows that with respect to the two dimensions of

network size and number of single authorships, there are

rather small gender-specific differences, and these alone can

presumably contribute little to the explanation of the gender gap

in mathematics.

In addition, we have trained a model to predict the number

of solo authorships, taking into account the gender variable as

well, and illustrated its reasoning by applying SHAP decision

plots to predictions for twelve personas. We provide the trained

model together with code for the computations of SHAP

decision plots in the project’s Github repository to enable other

researchers to explore the predictions performed by the model

in more detail.

In addition to pure network size, there are a number of other

collaboration-related parameters, such as gender or seniority

of coauthors, ranking of affiliated university, frequency of co-

authorship or connectivity within the ego-network, which we

do not investigate in more detail. For other disciplines, not

only correlations of such aspects with performance but also

gender-related differences are known (Bozeman and Gaughan,

2011; Lindenlaub and Prummer, 2016; Jadidi et al., 2018; Ductor

et al., 2021; Kwiek and Roszka, 2022). Future work could

investigate corresponding questions for mathematics. However,

some aspects such as university-level considerations require the

extraction of respective named entities from affiliation strings

and a significantly higher availability of affiliation data.

We focus on coauthorship as the main form of documenting

collaboration in mathematics (and most other sciences).

Although other forms of collaboration, such as sharing ideas or

giving feedback at seminars or conferences, play an important

role in scientific work in general, coauthorship is, through

databases such as zbMATH Open, a comprehensively available,

measurable, and creditable form of contribution and therefore

not only important for scientific careers, but also particularly

suitable from a methodological point of view. Nevertheless,

other, less formal types of scientific collaboration deserve a

closer look but typically lack data that can be utilized for

respective analyses. However, recently, acknowledgments in

scholarly articles that serve as a form of credit attribution were

analyzed in more detail, suggesting that corresponding practices

are associated with academic status and gender (Paul-Hus et al.,

2020). More in-depth analyses would also be of interest for the

field of mathematics.
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Mihaljević, H., Tullney, M., Santamaría, L., and Steinfeldt, C. (2019).
Reflections on gender analyses of bibliographic corpora. Front. Big Data 2:29.
doi: 10.3389/fdata.2019.00029
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