
TYPE Original Research

PUBLISHED 25 January 2023

DOI 10.3389/fdata.2023.1008292

OPEN ACCESS

EDITED BY

Mario Ganau,

Oxford University Hospitals NHS Trust,

United Kingdom

REVIEWED BY

Naci Balak,

Istanbul Medeniyet University Goztepe

Education and Research Hospital, Türkiye

Ismail Zaed,

Humanitas University, Italy

*CORRESPONDENCE

Jianyi Zheng

jyzheng@must.edu.mo

†These authors have contributed equally to this

work and share first authorship

SPECIALTY SECTION

This article was submitted to

Machine Learning and Artificial Intelligence,

a section of the journal

Frontiers in Big Data

RECEIVED 01 August 2022

ACCEPTED 06 January 2023

PUBLISHED 25 January 2023

CITATION

Zheng L, Chen Y, Jiang S, Song J and Zheng J

(2023) Predicting the distribution of COVID-19

through CGAN—Taking Macau as an example.

Front. Big Data 6:1008292.

doi: 10.3389/fdata.2023.1008292

COPYRIGHT

© 2023 Zheng, Chen, Jiang, Song and Zheng.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Predicting the distribution of
COVID-19 through CGAN—Taking
Macau as an example

Liang Zheng†, Yile Chen†, Shan Jiang, Junxin Song and Jianyi Zheng*

Faculty of Humanities and Arts, Macau University of Science and Technology, Macau, Macao SAR, China

Machine learning (ML) is an innovative method that is widely used in data prediction.

Predicting the COVID-19 distribution using ML is essential for urban security risk

assessment and governance. This study uses conditional generative adversarial

network (CGAN) to construct a method to predict the COVID-19 hotspot distribution

through urban texture and business formats and establishes a relationship between

urban elements and COVID-19 so that machines can automatically predict the

epidemic hotspots in cities. Taking Macau as an example, this method is used to

determine the correlation between the urban texture and business hotspots of

Macau and the new epidemic hotspot clusters. Di�erent types of samples a�orded

di�erent epidemic prediction accuracies. The results show the following: (1) CGAN

can accurately predict the distribution area of COVID-19, and the accuracy can

exceed 70%. (2) The results of predicting the COVID-19 distribution through urban

texture and POI data of hospitals and stations are the best, with an accuracy of more

than 60% in experiments in di�erent regions of Macau. (3) The proposed method can

also predict other areas in the city that may be at risk of COVID-19 and help urban

epidemic prevention and control.
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1. Introduction

Since the outbreak of COVID-19 at the end of 2019, it has become a continuous global

epidemic. It is one of the deadliest epidemics in human history and is also a closely watched

urban public health governance issue. As of July 29, 2022, more than 574 million confirmed

cases have been globally reported, and more than 6.395 million people have died, with the

number continuously increasing. During the peak of the pandemic, the work order of hospitals

and doctors as well as the care of patients without COVID-19 became extremely challenging,

placing considerable strain on the city’s public health administration (Chibbaro, 2020; Ganau,

2020). Owing to the development of information technology and urban big data, epidemic

prediction models can be constructed data using the spatiotemporal information and future

epidemic situations can be simulated at fine spatial scales.

As early as May 25, 2020, a team from Lanzhou University in China built an

epidemic prediction system using the SIR prediction model, which is also the world’s

first epidemic prediction system. Subsequently, based on the development situation of

COVID-19 in various places and the characteristics of cities, various scholars have

established traditional dynamic and statistical models to simulate and predict the COVID-19
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spread and distribution. Among them, the infectious disease

dynamics research on COVID-19 has been mainly developed based

on the classic compartmental models, which is also the mainstream

prediction and simulation method (Dogan et al., 2021; Pei et al.,

2021). Compartmental models can be classified into several types,

such as SIR (Bjørnstad et al., 2002), SIER (Qian et al., 2020), SEIRS

(Wu et al., 2020), and SEIHR (Sanyi et al., 2020). They mainly

analyze crowd flow and spatiotemporal information and provide an

interaction model between individuals and complex environments

(Chen-Charpentier and Stanescu, 2010; Alsayed et al., 2020; Yu et al.,

2020). However, they excessively rely on the refinement degree of

the data, the modeling is extremely complicated, the parameters

dynamically change at different stages of the epidemic, and the

simulation accuracy of the spatial distribution of confirmed cases

is low. Statistical models mainly use historical data to predict and

simulate future epidemics, with high accuracy and simple data

processing, such as the logistic model based on spatiotemporal big

data (Song et al., 2020), the generalized spatiotemporal autoregressive

model (Pasaribu et al., 2021), and the ordinary differential equations

for population zoning models (Miranda et al., 2021). Moreover,

researchers have developed mathematical models of infectious

disease dynamics to aid in the identification of potential intervention

strategies (Balak et al., 2021).

With the development of artificial intelligence technology, the

value of machine learning (ML) algorithms has been demonstrated.

Different algorithms are trained through ML and prediction models

based on real-time data are established, which have been widely

used to predict the inflection point and end time of the epidemic.

Existing studies have shown that ML can well simulate the spatial and

temporal changes and accurately predict the evolution of high-fidelity

numerical simulations. Compared to the traditional dynamic models

whose prediction results deviate due to the different parameters and

modeling data in each stage of the epidemic, ML can continuously

update simulations based on real-time data (Hao et al., 2020; Pasaribu

et al., 2021; Silva et al., 2021). Simultaneously, the multi-disciplinary

crossmodel ofML combined with the geographic information system

model can well conduct spatial evolution simulation research. For

example, the time-domain difference model (Cong et al., 2020),

quintuple model (Shen et al., 2020a), and random forest model (Ong

et al., 2018) afford small prediction errors, showing the feasibility of

ML methods in spatial simulation.

Although the above ML methods solve the limitations of some

traditional epidemic prediction models, the structure of ML models

is relatively complex during modeling, they can only output a single

variable, and they do not consider the impact of crowd behavior and

control efforts on the spatial distribution of the epidemic. Therefore,

consideringmultiple factors such as the distribution of business types,

footprints, and hotspots in the city, further data mining through ML

is required to obtain accurate prediction methods for the current

development of COVID-19 in cities.

2. Research methodology and data
sources

Based on the image synthesis technology in ML and computer

vision (CV), this study predicts the footprint heat map of COVID-

19 using urban morphology maps and POI heat maps. First, the

TABLE 1 Classification of map POI data.

POI
category

Number of
points
(pieces)

POI
category

Number of
points
(pieces)

Catering 3,443 Supermarket 443

Hotel 145 Office 691

Station 268 School 148

Hospital 1,819 Residential 2,638

urbanmorphology maps and POI heat maps of theMacau Peninsula1

are used as training set A, and the corresponding COVID-19

footprint heat maps are used as training set B. Conditional generative

adversarial networks (CGANs) are used (Mirza and Osindero, 2014)

for training; subsequently, in the image translation using training sets

A and B, the generator and discriminator are confronted, thereby

improving the accuracy of image translation (Chrysos et al., 2018).

Finally, the ability of the urban morphology maps and POI heat maps

to predict the urban COVID-19 footprint hotspots is studied.

2.1. Sample processing

As the test dataset for training the network, the Macau map

data of the Macau Cartography and Cadastre Bureau as well as the

Macau POI data of the AutoNavi map are selected (Table 1). The

footprint hotspot data of COVID-19 are generated based on the

statistics of the footprint report of a total of 500 patients in Macau

(from mid-June to early July 2022), which was fully disclosed by

the Macau Health Bureau. The report investigated the location and

scope of each COVID-19 patient’s pre-illness activities. Footprints

from 3,982 specific addresses are eliminated (including 3,265 in the

Macau Peninsula), and the addresses are converted into latitude and

longitude coordinates using Google Maps API Web Services. They

are then input into ArcGIS Pro to generate hotspot data. CGAN

requires paired datasets for training; thus, to ensure that the data have

one-to-one correspondence, the above data are uniformly corrected

into the Observatorio Meteorologico 1965 Macau Grid (Figure 1).

Since ML methods require a large number of samples to obtain

accurate experimental data, the sample images are divided into grids

with a size of 512 × 512 pixels, and each image slice has an area of

about 4 ha. In the first test, since the Macau Peninsula is surrounded

by sea on three sides, using the entire Macau Peninsula as the scope,

slicing according to the network results in a large number of slices

with no useful information in the edge area, which considerably

impacts themodel accuracy. It has been verified by trial and error that

using the information-rich region in the central part of the Macau

peninsula is beneficial for training CGAN; thus, the central part of

the Macau peninsula is selected. In the processing of the epidemic

1 Macau is an inalienable part of China’s territory, comprising the Macau

Peninsula, Taipa, and Coloane, with a land area of 32.9 km2. The Macau

Peninsula is connected tomainlandChina (Zhuhai City, Guangdong Province) in

the north and to Taipa in the south by the Ponte Governador Nobre de Carvalho

(Carvalho Bridge), the Ponte de Amizade (Friendship Bridge), and the Ponte de

Sai Van (Sai Van Bridge). Taipa and Coloane are connected by a 2.2-km-long,

6-lane highway.
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FIGURE 1

The footprint and POI distribution of the COVID-19 epidemic on the Macau Peninsula.

trajectory map, using the above statistical coordinate points, a search

radius (search area) of 10m is set to generate a hotspot map wherein

different colors represent the density of the distribution of COVID-

19 patients, with lighter colors representing higher densities, darker

colors representing lower densities, and black color representing no

distribution (Figure 2).

In the processing of the Macau map, for data simplification,

various elements in the map are represented in different colors and

presented in the form of colored pictures (Shen et al., 2020b). In this

study, five colors are used to represent the map elements: roads are

red (R = 255, G = 0, B = 0), green spaces are green (R = 0, G = 255,

B = 0), water is blue (R = 0, G = 0, B = 255), buildings are white (R

= 255, G= 255, B= 255), and land is black (R= 0, G= 0, B= 255).

These five colors represent most of the content in the city map.

In the selection of POI samples, eight types of representative POIs

are selected based on the previous studies on the importance of POIs

(Cao et al., 2018) and the characteristics of Macau cities, namely

restaurants, supermarkets, hotels, offices, stations, schools, hospitals,

and residences. Since the COVID-19 virus can be transmitted by

aerosols in an environment of 10m (Setti et al., 2020), the heat map

is drawn with a radius of 10m. As shown in Figure 2, significant

differences exist in the distribution of hotspots in various categories:

① It is relatively uniform in restaurants, hotels, residences, and

epidemics. ② It is moderate in supermarkets and offices. ③ It is

concentrated and sparse in stations and schools. ④ It is minimal

in hotels.

As is well known, the quality of image datasets is critical to the

success of image generation. Therefore, the 10 types of pictures are

divided according to the size of 512 × 512 pixels. After weighing the

quality and quantity, a 9 × 6 grid is obtained. Each type of picture

is cut into 54 pictures, yielding a total of 540 samples (Figure 3).

Using the above samples, the COVID-19 footprint hotspot slice map

is combined with pictures of other categories as MLmaterials to train

nine different weight files. According to the CGAN characteristics,

the input data are divided into training sets A and B. Training set

A contains basic information about the city, including roads, green

space, water, buildings, and land, and POI data that indirectly reflect

the nature of urban land. Training set B contains the distribution of

COVID-19 hotspots as the prediction target.

2.2. Generative adversarial network (GAN)

This study uses CGAN to predict the distribution of urban

epidemic hotspots. CGAN is a variant of generative adversarial

networks (GANs). Consistent with the original GAN, CGAN is

mainly composed of two adversarial models: a generator responsible
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FIGURE 2

Area of sample selection.

for generating images and a discriminator for judging the authenticity

of the generated images. As shown in Figure 4, themain principles are

as follows: ① The generator generates fake pictures according to the

input picture (Train A) and random vector (Z). ②The discriminator

determines another set of corresponding images (Train B) and

random vectors as real images and simultaneously discriminates with

the fake images input by the generator. The real image is denoted as 1,

and the fake image is denoted as 0.③ If the generated picture is judged

to be false, the discriminator returns the deviation value between the

false picture and the real picture to the generator; the generator learns

so that it can generate a picture that is closer to the real picture.

In contrast, if the discriminator judges that the generated image is

real, the discriminator will continue to learn from the training set to

improve its recognition ability. ④ Through adversarial training, the

generator can finally generate fake and real pictures to achieve the

prediction target.

2.3. Image comparison method

Reliable methods for quantitatively and qualitatively assessing

and comparing the quality of the generated results of GANs are

still lacking (Borji, 2019). For example, the diversity of practical

needs and the lack of a method for comparing images with similarity

that is equivalent to human perception make it difficult to evaluate

generative models (Theis et al., 2015). Therefore, based on the

characteristics of the training set and the generated result images,

this study adopts two methods of image similarity comparison:

radial variance hash and histogram comparison. Utilizing additional

image comparison techniques not only enables more precise

quantitative evaluation of the quality of the generated results,

but also facilitates the identification of patterns and correlations

between samples.

Radial variance hashing judges whether two images are similar by

taking the global hash of the images and comparing the Hamming

distance of the hashes of two images. The more similar the two

images are, the smaller is the Hamming distance of the hash values

(Shuo-zhong and Xin-peng, 2007). The principle of the hash value

calculation algorithm is to perform lossy compression on the original

data. The fixed word length after lossy compression can be used

as a unique identifier for identifying the original data. This unique

identifier is the hash value. Different image hashing algorithms exist

according to the different ways of calculating the image hash value.

Herein, the radial variance hash value algorithm is mainly used to

compare the similarity between the sample images of the training set

to explore the relationship between theML results and the correlation

of similarities among the sample images.

Histogram comparison measures the similarity between the

histograms of two images according to the standard distance metrics.

The image histogram contains rich image detail information, which

reflects the probability of the distribution of the image pixels. The

number of pixels in the intensity value of each pixel is counted, and

the correlation between the two image histograms is calculated using

the correlation calculation formula (Srinivas et al., 2020). Unlike

the radial variance hash value, the histogram can well reflect the

probability distribution of the gray value of the image and has a
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FIGURE 3

Sample Sectioning.

FIGURE 4

Principle of CGAN.

higher similarity for images with similar brightness and darkness.

Herein, the COVID-19 trajectory prediction results are presented as

grayscale heat maps. The comparison of histograms, which are highly

sensitive to the grayscale values of images, well reflects the accuracy

of the model predictions.

2.4. Model training

The experiment comprises 10 different kinds of training sets,

which are divided into training sets A and B. Training sets A and B are

the feature and target images, respectively. Two training ensembles

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1008292
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Zheng et al. 10.3389/fdata.2023.1008292

TABLE 2 Model training results.

Samples Loss

Train A Train B G_GAN G_GAN_Feat G_VGG D_real D_fake

Urban form 1.691 4.156 2.611 0.062 0.038

Catering POI 2 11.357 3.991 0.025 0.021

Supermarket POI 0.564 11.056 4.934 0.051 0.483

Hotel POI 1.526 8.456 3.507 0.104 0.063

Office POI COVID-19 Hot Spot map 1.031 2.86 2.589 0.313 0.195

Station POI 0.873 3.545 1.92 0.231 0.301

School POI 1.568 5.397 3.289 0.104 0.052

Hospital POI 1.156 4.437 3.009 0.126 0.172

Residential POI 1.739 11.403 3.582 0.015 0.03

are used to train theMLmodel, with a total of nine sets ofmodels. The

model is trained for a total of 200 epochs, the gradient is evaluated

using the Adam optimizer, and the update step size is calculated.

Due to the limited number of training sets, the batch size is set as

2 and the learning rate is set as 1e-3 for the first 60 runs. Then, the

backbone feature extraction network is frozen for training, thereby

accelerating the convergence speed and preventing the destruction of

the pre-training weight. The learning rate is set to 1e-4 for the last

140 times, and the backbone feature extraction network is unfrozen.

The entire model is further trained with a smaller initial learning rate,

thereby speeding up the training time of the entire network. A weight

file is saved every 20 iterations. After training, the weight file with

the best loss value is selected for the prediction. The above method

is used to set up and train the model to find the connection between

training sets A and B. In this way, training set B can be output by

only inputting training set A, and the goal of predicting the trajectory

distribution of the new cluster can be achieved. The results of the

model training are shown in Table 2.

3. Results analysis and discussion

3.1. Similarity of heat maps

First, through the footprint distribution of COVID-19 infected

people on the Macau Peninsula is superimposed on the residents’

mobility hotspots of various major social functions in Macau, and

then, the distribution map is obtained (Figure 5). The blue areas

in the figure represent the cold spots of the POI heat map and

the density of COVID-19 infections, and the yellow areas represent

the hotspots. The overall distribution map of the footprints of

infected people shows that the footprints of infected people almost

cover most of the Macau Peninsula. Among them, three regions

are relatively concentrated: the northern, central, and southern

regions. The remaining heat maps show that the distribution areas of

restaurants, supermarkets, and hospitals are relatively similar, mainly

concentrated in the above three regions. The distribution areas of

schools and stations are similar and basically homogeneous. The

residences are mainly distributed in the central area.

After determining the footprint distribution of COVID-19

and the heat distribution map of each functional category, the

following table is obtained by analyzing and comparing the

epidemic footprint and the radial variance hash of various POI

heat maps (Table 3). The similarity between the COVID-19 footprint

and various POI heat maps is described by the compared hash

values, that is, the regional overlap between the two; the pink

and blue highlighted values in the table represent high and low

overlaps, respectively.

Table 3 shows that the distribution of the COVID-19 epidemic

has the highest overlap with the areas of station and school categories,

indicating that stations and schools are high-risk infection areas.

Food and beverage categories have a low risk of infection. The

high overlap between supermarket and station and school categories

as well as between the hotel and station categories denotes that

supermarkets and hotels have a high risk of infection spread, that is,

they are potential risk infection areas. The reasons for this result are

as follows:

① For high-risk areas, since people are more concentrated and

the short-term flow has high frequency, the virus rapidly

spreads (0.92–0.94).

② For the potential risk area, due to the high degree of activity

sequence correlation with the function of the high-risk area, the

risk of becoming a secondary transmission area of the epidemic

is relatively high (0.9–0.93).

3.2. Accuracy and stability of the model

For the accuracy and precision of model training, this study

improves the accuracy and stability of recognition and learning by

performing multiple iterations of convolution training on the model.

However, depending on the input information, the final accuracy

of the ML method differs. As shown in Figure 6, the orange line

represents the fluctuation curve during the ML process, that is,

the stability of the learning result. After inputting different types

of city information into the ML method, the ML results based on

urban form elements exhibit the smallest fluctuation range and the

highest stability after 200 iterations of learning. The fluctuation

range of the fluctuating curve learned based on the POI heat

map of the hospital and station significantly decreases after 200

iterations of learning, proving that the learning effect is good. The

learning results based on the remaining POI heat maps have different
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FIGURE 5

COVID-19 epidemic footprint and heat map of di�erent types of POIs.

degrees of volatility, which means that the learning results are

less stable.

Note that the stability of ML does not represent the accuracy of

the learning results of the model. For the stability of model training,

the stability of ML results varies according to the input conditions

and the completeness of the input data and indirectly reflects the

correlation between the learning conditions and target results. Taking

the different input data in Figure 6 as an example, when the urban

morphological fabric is used as the input data, the stability of the

model results after 200 iterations of learning shows that urban fabric

elements significantly impact the COVID-19 distribution; that is,

there is a strong correlation between them. The stability of the model

learning results when the POI heat maps of the hospital and station

are used as input data shows that the station and hospital affect the

COVID-19 distribution. The stability of the learning results of the

model when the POI heat maps of the remaining categories are used
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TABLE 3 Comparison of COVID-19 footprint and di�erent types of POI similarity.

COVID-19 Catering Supermarket Hotel O�ce Station School Hospital Residential

COVID-19 1 0.62 0.89 0.88 0.86 0.92 0.94 0.80 0.62

Catering 0.62 1 0.67 0.66 0.76 0.67 0.71 0.73 0.66

Supermarket 0.89 0.67 1 0.91 0.90 0.92 0.90 0.86 0.63

Hotel 0.88 0.66 0.91 1 0.90 0.93 0.88 0.81 0.55

Office 0.86 0.76 0.90 0.90 1 0.89 0.89 0.87 0.68

Station 0.92 0.67 0.92 0.93 0.89 1 0.92 0.84 0.62

School 0.94 0.71 0.90 0.88 0.89 0.92 1 0.81 0.62

Hospital 0.80 0.73 0.86 0.81 0.87 0.84 0.81 1 0.68

Residential 0.62 0.66 0.63 0.55 0.68 0.62 0.62 0.68 1

FIGURE 6

Iterative training LOSS numerical statistics.

as input data indicates that they are relatively weakly related to the

COVID-19 distribution.

Figure 7 displays the comparison of iterative training results

for model learning accuracy. Three comparison groups (columns)

performed 10, 100, and 200 iterations of learning for different

categories of city information (rows). Under the condition of

10 iterations of learning, the learning results are blurred and

less accurate than the real COVID-19 footprint map. The results

improved under the condition of 100 iterations of learning, but the

accuracy is still not ideal. Under the condition of 200 iterations

of learning, the similarity between the results of basic learning

and the actual COVID-19 footprint is high. This shows that under

the condition of maximizing the cost saving of the machine load

and learning time, the improvement of the accuracy of this ML
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FIGURE 7

Diagram of iterative training process.

model can basically meet the target requirements after 200 iterations

of learning.

3.3. Model application and analysis

By training the machine to learn the city information data of

the Macau Peninsula region, its connection with the distribution

map of COVID-19 is established. Using the nine weighted models

trained on the Macau Peninsula training set, predictions are made

for the same region of the Taipa area, Macau, and the predicted

distribution results of COVID-19 for the Taipa area are obtained by

the machine. The prediction results are divided into two categories:

prediction results obtained by inputting the texture elements of

the urban form (Figure 8) and prediction results obtained by

inputting the POI heat maps of different categories for learning and

training (Figure 9).

The first three groups in each category display the learning results

of some small-scale slices in the learning process. The fourth group

displays the overall learning results of the target area after splicing

the slices. “Input” in each group is the city information data of the

target area. “Real” is the actual epidemic distribution of the target

area, which is only used as a reference for comparing the results

and does not participate in the learning and training. “Predict” is the
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FIGURE 8

Taipa urban morphology prediction results.

FIGURE 9

The heat map prediction results of di�erent types of POIs in Taipa.

prediction result of the COVID-19 distribution in the target area by

the machine.

The prediction results obtained after learning the texture

elements of the urban form have a high similarity with the actual

COVID-19 distribution, reaching 70% in general. Compared to

the prediction results of the 1–3 groups of small-scale slices, the

prediction results include the main distribution points and regions

of the COVID-19 footprint, and simultaneously, a certain degree

of connection is made between different points. Compared to the

actual COVID-19 distribution, the predicted results more accurately

reflect the boundary of the city’s block and road, and they have more

practical guiding significance than the point map of the original

COVID-19 distribution.

According to the prediction results obtained after inputting the

POI heat maps of different categories for learning and training,

the POI heat maps of different categories in the input considerably

impact the learning results of the machine and the accuracy of the

model prediction results. The volatility is relatively large. Based on the

input of POI heat maps of offices, schools, and hotels, the accuracy

of the prediction results of the COVID-19 distribution is generally

lower than 50% (41% for offices, 47% for schools, and 33% for hotels).

Prediction results based on the residential POI heat map input have a
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FIGURE 10

Combined forecast results: (A) Taipa urban morphology map; (B) Overlay of prediction results (Similarity > 0.7); (C) Overlay of A and B.

median accuracy of 54%. The accuracy of the prediction results based

on the POI heat map input from hospitals, restaurants, supermarkets,

and stations is high, all higher than 60% (68% in hospitals, 73%

in restaurants, 60% in supermarkets, and 62% in stations). Analysis

shows that the reasons for the difference in the above prediction

results are as follows:

① Due to the limitation of the distribution density of the POI

heat map at the input end, the machine will yield erroneous and

invalid prediction results when making learning predictions, that is,

the all-gray prediction results in “predict”.

② Due to the limitation of the amount of information in the

COVID-19 distribution map, the machine cannot establish more

accurate association learning through more association conditions in

the process of establishing association learning.

After forecasting the COVID-19 distribution in the target area of

Taipa, the city base map of the area is superimposed on it to afford

a schematic of the final forecast of the COVID-19 distribution in

the target area (Figure 10). It has a more intuitive reference value

for future urban planning management and epidemic risk control in

urban units.

4. Conclusion and outlook

Based on ML, this study used the urban texture map and the heat

map of eight types of POIs to predict the COVID-19 distribution in

Macau. The following conclusions can be drawn:

(1) CGAN can accurately predict the COVID-19 distribution

and can effectively predict other areas in the city that may

be at risk of COVID-19. This method has applicability

and reference for public health governance and control in

other cities.

(2) The comparison of urban texture, POI, and distribution of

COVID-19 shows that ① the overall functional layout of the

city significantly impacts the COVID-19 distribution; ② there

is a high risk of COVID-19 infection in places such as bus stops

and schools; and ③ supermarkets and hotels have a high risk

of secondary transmission and diffusion.

(3) The results of model training and model application show

the following: ① When the urban texture and urban form

elements are used as input data for learning, the stability

and accuracy of the model learning results are good and

high. ② Considering the cost saving of machine load and

learning time, the prediction accuracy of the model after

200 iterations of learning and training can basically meet

the target prediction requirements. ③ The prediction of the

urban COVID-19 distribution through ML is more accurate

than the distribution of the existing COVID-19 point map.

Furthermore, the prediction results more clearly display the

boundary scope of the COVID-19 distribution area, which

is conducive to city managers for controlling the COVID-

19 spread.

The spread of COVID-19 has caused the public to rethink the

issue of public health governance. Method for predicting urban

epidemic situations using machine learning and its potential for

practical application:

(1) As an important reference for urban planning and design:

Prediction of the possible risk areas of public health epidemics

through CGAN could be used as a reference for design

schemes. Architects and researchers can adjust the design of

urban textures, such as building density, roads, and green

spaces, based on the epidemic prediction results to reduce the

intensity of epidemic risks.

(2) As a reference to urban public health governance and control:

The urban texture and business data in different regions are

different, and an epidemic prediction model can be established

based on the actual data of different cities. The prediction

results can be used to strengthen the city’s epidemic prevention

capabilities in a targeted manner, turn passive epidemic

prevention into active epidemic prevention, and improve the

efficiency of urban public health governance.

(3) As an issue of urban public health industry–university–

research cooperation: Since the characteristics of each

city differ, public health governance should “prescribe the

right medicine.” Correspondingly, cooperation among local
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scientific research institutions, architectural design offices,

medical and health prevention and control centers, etc.,

can be considered in the future to achieve the sustainable

development of urban public health governance.

(4) For implementation in smaller areas, such as hospitals: In

hospitals, a non-COVID-19 patient can be infected by other

COVID-19 patients. If the footprints of the COVID-19

patients can be tracked and used for ML, the COVID-19 risk

in the hospital can be predicted in real time. Areas can be

designed to prevent other hospital patients from becoming

infected and the workflow of medical staff can be adjusted.

Data availability statement

The original contributions presented in the study are included in

the article/Supplementary material, further inquiries can be directed

to the corresponding author.

Author contributions

LZ, YC, and JZ contributed to the topic selection, development of

the framework, writing of the manuscript, figures, and the literature

review. LZ and SJ contributed to the data analysis, drawings, and the

tables. JS and YC contributed to the revision of data analysis and

drawings. JZ contributed to the project administration and funding

acquisition. All authors contributed to the article and approved the

submitted version.

Funding

This research was funded by the Specialized Subsidy Scheme for

Higher Education Fund of theMacau SARGovernment in the Area of

Research in Humanities and Social Sciences (and Specialized Subsidy

Scheme for Prevention and Response to Major Infectious Diseases)

(No. HSS-MUST-2020-09).

Acknowledgments

We are very grateful to the students who assisted in the collection

of trajectory and statistical raw data: Hoi Ian Tam, Linsheng Huang,

Lei Zhang, Shaoxuan Li, Senyu Lou, SJ, JS, Nan Xu, Yanrong Wang,

Tong Ling, Liangqiu Lu, Wenjian Li, and Ut Chong Leong.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.

1008292/full#supplementary-material

References

Alsayed, A., Sadir, H., Kamil, R., and Sari, H. (2020). Prediction of epidemic peak and
infected cases for COVID-19 disease in Malaysia, 2020. Int. J. Environ. Res. Public Health
17, 4076. doi: 10.3390/ijerph17114076

Balak, N., Inan, D., Ganau, M., Zoia, C., Sönmez, S., Kurt, B., et al.
(2021). A simple mathematical tool to forecast COVID-19 cumulative case
numbers. Clin. Epidemiol. Glob. Health 12, 100853. doi: 10.1016/j.cegh.2021.
100853

Bjørnstad, O. N., Finkenstädt, B. F., and Grenfell, B. T. (2002). Dynamics of measles
epidemics: estimating scaling of transmission rates using a time series SIR model. Ecolog.
Monogr. 72, 169–184. doi: 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2

Borji, A. (2019). Pros and cons of gan evaluation measures. Comput. Vis. Image
Understand. 179, 41–65. doi: 10.1016/j.cviu.2018.10.009

Cao, H., Feng, J., Li, Y., and Kostakos, V. (2018). Uniqueness in the city: Urban
morphology and location privacy. Proc. ACM Interact. Mobile Wear. Ubiquit. Technol.
2, 1–20. doi: 10.1145/3214265

Chen-Charpentier, B. M., and Stanescu, D. (2010). Epidemic models with random
coefficients.Math. Comput. Modell. 52, 1004–1010. doi: 10.1016/j.mcm.2010.01.014

Chibbaro, S, Ganau, M, Todeschi, J, Proust, F, Cebula, H. (2020). How SARS-CoV-2 is
forcing us to reconsider and reorganize our daily neurosurgical practice. Neurochirurgie
66, 189–191. doi: 10.1016/j.neuchi.2020.05.001

Chrysos, G. G., Kossaifi, J., and Zafeiriou, S. (2018). Robust conditional generative
adversarial networks. arXiv preprint arXiv:1805, 08657.

Cong, W., Jie, Y., Xu, W., and Min, L. (2020). Analysis of early spatiotemporal spread
of novel coronavirus pneumonia. Acta Physica Sinica 69, 243–252.

Dogan, O., Tiwari, S., Jabbar, M. A., and Guggari, S. (2021). A systematic review
on AI/ML approaches against COVID-19 outbreak. Complex Intell. Syst. 7, 2655–2678.
doi: 10.1007/s40747-021-00424-8

Ganau, M, Netuka, D, Broekman, M, Zoia, C, Tsianaka, E, Schwake, M, et al.
(2020). Neurosurgeons and the fight with COVID-19: a position statement from the
EANS Individual Membership Committee. Acta Neurochir (Wien) 162, 1777–1782.
doi: 10.1007/s00701-020-04360-3

Hao, Y., Xu, T., Hu, H., Wang, P., and Bai, Y. (2020). Prediction and analysis of corona
virus disease 2019. PLoS ONE 15, e0239960. doi: 10.1371/journal.pone.0239960

Miranda, J. G. V., Silva, M. S., Bertolino, J. G., Vasconcelos, R. N., Cambui, E. C.
B., Araújo, M. L. V., et al. (2021). Scaling effect in COVID-19 spreading: The role of
heterogeneity in a hybrid ODE-network model with restrictions on the inter-cities flow.
Physica D: Nonlinear Phenomena 415, p.132792. doi: 10.1016/j.physd.2020.132792

Mirza, M., and Osindero, S. (2014). Conditional generative adversarial nets. arXiv
preprint arXiv:1411, 1784.

Ong, J., Liu, X., Rajarethinam, J., Kok, S. Y., Liang, S., Tang, C. S., et al. (2018). Mapping
dengue risk in Singapore using Random Forest. PLoS Neglect. Trop. Dis. 12, e0006587.
doi: 10.1371/journal.pntd.0006587

Pasaribu, U. S., Mukhaiyar, U., Huda, N. M., Sari, K. N., and Indratno, S. W.
(2021). Modelling COVID-19 growth cases of provinces in java Island by modified
spatial weight matrix GSTAR through railroad passenger’s mobility. Heliyon 7, e06025.
doi: 10.1016/j.heliyon.2021.e06025

Pei, T., Wang, X., Song, C., Liu, Y., Huang, Q., Shu, H., et al. (2021). Review on
spatiotemporal analysis and modeling of COVID-19 pandemic. J. Geo-Inform. Sci 23,
188–210. doi: 10.12082/dqxxkx.2021.200434

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2023.1008292
https://www.frontiersin.org/articles/10.3389/fdata.2023.1008292/full#supplementary-material
https://doi.org/10.3390/ijerph17114076
https://doi.org/10.1016/j.cegh.2021.100853
https://doi.org/10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2
https://doi.org/10.1016/j.cviu.2018.10.009
https://doi.org/10.1145/3214265
https://doi.org/10.1016/j.mcm.2010.01.014
https://doi.org/10.1016/j.neuchi.2020.05.001
https://doi.org/10.1007/s40747-021-00424-8
https://doi.org/10.1007/s00701-020-04360-3
https://doi.org/10.1371/journal.pone.0239960
https://doi.org/10.1016/j.physd.2020.132792
https://doi.org/10.1371/journal.pntd.0006587
https://doi.org/10.1016/j.heliyon.2021.e06025
https://doi.org/10.12082/dqxxkx.2021.200434
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Zheng et al. 10.3389/fdata.2023.1008292

Qian, L., Yanni, X., Jianhong, W., and Sanyi, T. (2020). Construction of a COVID-
19 epidemic time-lag model and analysis of confirmed case-driven tracing and isolation
measures. Chin. J. Appl. Math. 43, 238–250.

Sanyi, T., Yanni, X., Zhixing, P., and Hongbing, S. (2020). Predictive modeling of novel
coronavirus pneumonia epidemic, data fusion and analysis of prevention and control
strategies. Chin. J. Epidemiol. 41, 480–484.

Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M. G., Borelli, M.,
et al. (2020). Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter-
personal distance could not be enough. Int. J. Environ. Res. Public Health 17, 2932.
doi: 10.3390/ijerph17082932

Shen, J., Liu, C., Ren, Y., and Zheng, H. (2020b). “Machine learning assisted
urban filling,” in Proceedings of the 25th International Conference of the Association
for Computer-Aided Architectural Design Research in Asia (CAADRIA), 2, 679–688.
doi: 10.52842/conf.caadria.2020.2.679

Shen, Y., Yajie, X., Xiaoying, D., Xueye, C., Jun, Z., Han, G., et al. (2020a). Spatial
and temporal analysis of the spread of COVID-19 associated with geographic location.
J. Wuhan Univ. Inf. Sci. Ed. 45, 798–807.

Shuo-zhong, W., and Xin-peng, Z. (2007). Recent development of perceptual image
hashing. J. Shanghai Univ. (English Edition), 11, 323–331. doi: 10.1007/s11741-007-0401-2

Silva, V. L., Heaney, C. E., Li, Y., and Pain, C. C. (2021). Data Assimilation Predictive
GAN (DA-PredGAN): applied to determine the spread of COVID-19. arXiv preprint
arXiv:2105, 07729.

Song, Z., Lei, S., andWei, W. (2020). Analysis and evaluation of the development trend
of the new crown epidemic in Jiangsu Province from the perspective of spatiotemporal
big data.Modern Survey. Mapp. 43, 5–10.

Srinivas, K., Bhandari, A. K., and Singh, A. (2020). Low-contrast image
enhancement using spatial contextual similarity histogram computation and color
reconstruction. J. Franklin Inst. 357, 13941–13963. doi: 10.1016/j.jfranklin.2020.
10.013

Theis, L., Oord, A. V. D., and Bethge, M. (2015). A note on the evaluation of generative
models. arXiv preprint arXiv:1511, 01844.

Wu, J. T., Leung, K., and Leung, G. M. (2020). Nowcasting and forecasting the
potential domestic and international spread of the 2019-nCoV outbreak originating in
Wuhan, China: a modelling study. Lancet 395, 689–697. doi: 10.1016/S0140-6736(20)
30260-9

Yu, Z., Wanli, T., Zhongguang, W., Zongwei, C., and Ji, W. (2020). Propagation
mechanism of COVID-19 along transportation routes based on improved SEIR model.
Chin. J. Transport. Eng. 20, 150–158.

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2023.1008292
https://doi.org/10.3390/ijerph17082932
https://doi.org/10.52842/conf.caadria.2020.2.679
https://doi.org/10.1007/s11741-007-0401-2
https://doi.org/10.1016/j.jfranklin.2020.10.013
https://doi.org/10.1016/S0140-6736(20)30260-9
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Predicting the distribution of COVID-19 through CGAN—Taking Macau as an example
	1. Introduction
	2. Research methodology and data sources
	2.1. Sample processing
	2.2. Generative adversarial network (GAN)
	2.3. Image comparison method
	2.4. Model training

	3. Results analysis and discussion
	3.1. Similarity of heat maps
	3.2. Accuracy and stability of the model
	3.3. Model application and analysis

	4. Conclusion and outlook
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


