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Background: Cyber defense decision-making during cyber threat situations is based

on human-to-human communication aiming to establish a shared cyber situational

awareness. Previous studies suggested that communication ine�ciencies were

among the biggest problems facing security operation center teams. There is a need

for tools that allow for more e�cient communication of cyber threat information

between individuals both in education and during cyber threat situations.

Methods: In the present study, we compared how the visual representation of

network topology and tra�c in 3D mixed reality vs. 2D a�ected team performance

in a sample of cyber cadets (N = 22) cooperating in dyads. Performance

outcomes included network topology recognition, cyber situational awareness,

confidence in judgements, experienced communication demands, observed verbal

communication, and forced choice decision-making. The study utilized network data

from the NATO CCDCOE 2022 Locked Shields cyber defense exercise.

Results: We found that participants using the 3Dmixed reality visualization had better

cyber situational awareness than participants in the 2D group. The 3D mixed reality

group was generally more confident in their judgments except when performing

worse than the 2D group on the topology recognition task (which favored the 2D

condition). Participants in the 3Dmixed reality group experienced less communication

demands, and performed more verbal communication aimed at establishing a

shared mental model and less communications discussing task resolution. Better

communication was associated with better cyber situational awareness. There were

no di�erences in decision-making between the groups. This could be due to cohort

e�ects such as formal training or the modest sample size.

Conclusion: This is the first study comparing the e�ect of 3D mixed reality and

2D visualizations of network topology on dyadic cyber team communication and

cyber situational awareness. Using 3D mixed reality visualizations resulted in better

cyber situational awareness and team communication. The experiment should be

repeated in a larger and more diverse sample to determine its potential e�ect on

decision-making.
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1. Introduction

Decision-making in Cyber Threat Situations (CTSs) is subject to

many challenges due to the interconnectedness between decision-

making agents and assets in cyber and physical space, and the high

levels of uncertainty inherent to the cyber domain (Jøsok et al.,

2016). This results in decision-making often having to be made on

an insufficient information basis which makes it difficult to predict

the impact of decisions on own and third-party assets, as well as on

adversarial behavior (Jøsok et al., 2016). Other challenges to decision-

making include competence differences between analyst-level and

decision-making personnel (Knox et al., 2018), which are roles that

often are assigned to different individuals within organizations doing

cybersecurity operations (e.g., Security Operation Centers; SOCs).

Due to the interconnectedness between assets and decision-

making agents in the cyber and physical domains and the resulting

human-human and human-machine interactions, cybersecurity

operations unfold in a complex sociotechnical system. According

to the Situational Awareness (SA) model (Figure 1A) proposed

by Endsley (1988, 1995), establishing SA for decision-making in

sociotechnical systems is achieved in three levels, where all levels

must be achieved in order to have full SA.

SA Level 1 is the perception stage and involves perceiving the

elements in a situation. SA Level 2 is the comprehension stage

and involves understanding the relationship between the perceived

elements. SA Level 3 involves using the understanding of the

relationship between the elements to predict future states of the

system that the situation is occurring in, and how those future states

will be affected by decision-making (Endsley, 1995).

In a cybersecurity setting, SA is increasingly referred to as

Cyber SA (CSA; Barford et al., 2009; Franke and Brynielsson, 2014).

Extending on the formal definition of SA (Endsley, 1988), CSA is

considered a subset of SA and can in general terms be defined as

“the perception of the elements in the [cyber] environment within a

volume of time and space, the comprehension of their meaning and the

projection of their status in the near future” (Franke and Brynielsson,

2014, p. 4). It should be noted, however, that it is acknowledged that

actions in the physical domain may influence events in cyberspace

and vice versa (Jøsok et al., 2016). Consequently, stakeholders and

decision-makers are often required to have a SA that simultaneously

accounts for the impact of decisions in both the cyber and the

physical domain.

Seven requirements for achieving CSA for cyber defense

decision-making have been suggested (Barford et al., 2009). These

requirements can be arranged under the SA model proposed by

Endsley (Figure 1B). To achieve SA Level 1 during a CTS, one must

have perceived indicators of compromise allowing for (1) awareness

of the current situation; (2) awareness of the impact of the attack; (3)

awareness of adversarial behavior; and (4) awareness of the quality

and trustworthiness of CSA information. To achieve SA Level 2, one

must have (5) awareness of why and how the current situation is

caused (e.g., if it is an automatic or directed attack), and (6) awareness

of how situations evolve. To achieve SA Level 3, one must be able to

(7) assess plausible future outcomes.

Decision-making in CTSs is based on communication between

human agents that often differ in technical competence (Knox et al.,

2018). The point of communication is to establish a shared CSA

between the analyst and the decision-maker such that the decision-

maker can make good cyber defense decisions. This communication

happens in the form of the analyst communicating a Recognized

Cyber Picture (RCP) which is based on the analyst’s CSA and contains

carefully selected and actionable cyber threat information tailored to

the needs of the recipient (Ahrend et al., 2016; Staheli et al., 2016;

Ask et al., 2021a). A recent review of performance-related factors in

SOC teams suggested that insufficient communication was among the

biggest challenges faced by SOC team analysts but also one of the

least researched topics (Agyepong et al., 2019). Another recent review

(Ask et al., 2021a) that specifically looked at communication between

humans in CTSs found that (a) there were no common best practices

for information sharing; (b) technological aids (e.g., visualization

tools and information sharing platforms) were not suited to fit the

needs of the analysts; (c) there was a lack of studies simultaneously

assessing individual- and team-level performance metrics; and (d)

there was a general need for developing shared mental models for

effective cyber threat communication.

In contrast to many other working environments, the personnel

working within the cyber domain (NATOCooperative Cyber Defense

Center of Excellence, 2016) do not have direct sensory access to the

space where events are taking place. In other words, when cyber

personnel such as analysts are establishing CSA they are essentially

trying to predict the future state of an environment they cannot

directly observe. Instead, they are dependent on (1) tools that can

detect and visualize events and activities in their cyber domain; and

(2) their own mental models of that space. This may be a source

of friction when relaying information between individuals because

different individuals may have different mental models of the same

phenomena, with corresponding differences in their understanding

of the causal relationships contributing to those phenomena. This

may affect what information different individuals think is important

during a cyber threat situation (Ask et al., 2021a). For instance,

previous research on the RCP needs of local- and national-level

stakeholders in Sweden showed that no one listed knowledge about

adversarial behavior as important for their RCPs (Varga et al., 2018).

If awareness of adversarial behavior is required for achieving SA Level

1 during a CTS and is necessary to make good cyber defense decisions

(Barford et al., 2009), then ignoring information of adversarial

behavior may result in an insufficient CSA. Thus, stakeholders may

have a mental model of causal relationships during a CTS that affect

what kind of prioritizations they have and decisions that they make

based on those prioritizations (Ask et al., 2021a).

While developing shared mental models have been suggested

to ensure successful RCP communication during CTSs (Steinke

et al., 2015; Ask et al., 2021a), little is known about the effect of

visualization tools for cyber threat information communication and

shared CSA such as how network topology is represented visually.

The mammalian brain has evolved a neural architecture with an

innate ability to process and understand information that relates to

time and space (Eichenbaum, 2014; Ray and Brecht, 2016; Berggaard

et al., 2018). Typical representations of network topology are in

two dimensions (2D), which loses temporal and spatial relationships

between nodes in the network, in addition to not scaling well with

increased (but often necessary) complexity. Virtual Reality (VR) and

Mixed Reality (MR) tools that are able to visualize CSA-relevant

information such as network topology as 3D objects in space and

time, may aid in the development of shared mental models for

efficient RCP communication between technical and non-technical

personnel (Kullman et al., 2018, 2019a,b, 2020). For instance, SA

level 3 is the most vital stage for decision-making and appears to
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FIGURE 1

Situational Awareness model with suggested requirements for achieving Cyber Situational Awareness. (A) Situational Awareness is achieved in three

stages (Endsley, 1995). To account for the separation between analysts and decision-makers in SOCs (Knox et al., 2018; Ask et al., 2021a), a

“communication” element has been added to the model. (B) Seven requirements that can be organized under the Endsley model need to be met to

achieve Cyber Situational Awareness for cyber defense (Barford et al., 2009). Establishing Cyber Situational Awareness, communicating for shared Cyber

Situational Awareness, and decision-making based on Cyber Situational Awareness is influenced by individual factors such as emotion, metacognition,

self-regulation, and communication skills (Jøsok et al., 2016, 2019; Knox et al., 2017, 2018; Ask et al., 2021b, 2023; Sütterlin et al., 2022) and task and

environmental factors such as team-processes including macrocognitions, team mental models, and leadership (Jøsok et al., 2017; Ask et al., 2021a).

Modified from Lankton (2007).

be the stage that is the most dependent on human working memory

(Gutzwiller and Clegg, 2013). 3D visualizations of network topology

in VR/MR may leverage automatic neurocognitive processes for

encoding spatial information (Stackman et al., 2002; Angelaki and

Cullen, 2008; Moser et al., 2008) when individuals are establishing

a shared mental model of events in the network. If this allows

CTS information to be encoded more efficiently (e.g., Legge et al.,

2012; Wagner et al., 2021), it may also allow for more working

memory capacity to be allocated to sharing knowledge about the

course and impact of current and future events. Reducing the load on

working memory may in turn support establishing shared SA level 3

(Gutzwiller and Clegg, 2013) for decision-making in CTSs (Kullman

et al., 2019a).

Studies on VR navigation in humans and mice (Bohbot et al.,

2017; Safaryan and Mehta, 2021) showed that they were able to

generate brain waves in areas relevant for navigation, attention,

learning, and memory (Winson, 1978; Seager et al., 2002). Similarly,

previous VR research in humans showed that participants were

able to use knowledge about the relationship between geometrical

shapes in abstract space to navigate that space in a first-person VR

navigation task (Kuhrt et al., 2021). This may further indicate that 3D

visualizations that allow for exploring and interacting with network

data in a way that facilitates spatial encoding of CSA information

could leverage neurocognitive processes (Stackman et al., 2002;

Angelaki and Cullen, 2008; Moser et al., 2008) that are currently

underused in cyber defense.

The Virtual Data Explorer (VDE; Kullman et al., 2018, 2019a)

was developed to visualize network topology in a manner that is

idiosyncratic to the mental models that analysts use to conceptualize

the network (Figure 2). Based on interviews with expert analysts, the

VDE is able to visualize the relationship between nodes in an actual

network in space and time (Kullman et al., 2018, 2019a,b, 2020). The

visualizations produced by the VDE are interactive and can be shared

between individuals, even remotely, thus allowing for collaborative

development of shared mental models of events in the network. The

VDEmay therefore be a useful aid in the knowledge-transfer between

technical and non-technical personnel such that shared CSA can be

achieved to facilitate good cyber defense decision-making (Kullman

et al., 2019a).

The VDE uses two distinct sets of information to visualize

network topology: (1) the nodes included in a set of network traffic,

and (2) mockup connections during a specified time-window or an
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FIGURE 2

Visualization of network topography using the Virtual Data Explorer app. (A) Full overview of the metashape of the actual network that was used during

the NATO CCDCOE 2018 Locked Shields event as visualized in VR using the VDE app. (B) An individual interacting with the network topography in MR. (C)

A close-up of nodes in the network from di�erent angles and without the edges representing the connections between them. (D) A close-up of Blue

Team nodes in the network with descriptive information and the edges that connect them. Images taken from Kullman et al. (2019a).

attack path (Kullman et al., 2018). For the sake of clarity, we want to

specify that the VDE is not a tool for carrying out forensic analyses.

Instead, by visualizing network topology in time and space according

to the mental model of the operator (Kullman et al., 2018, 2019a),

the VDE may be a neuroergonomic tool for analysts to deepen their

own understanding of how a CTS relates to the network they are

tasked with defending, and for sharing CSA in complex working

environments such as cybersecurity (Kullman and Engel, 2022a,b).

In the present study, we assess the effect of 3D visualization of

network topology on communication and collaboration for CSA and

cyber defense decision-making. The aim of this study is to determine

if a 3D MR representation of a network attack, visualized by VDE is

better than a 2D representation for (1) achieving Cyber Situational

Awareness; (2) cyber team communication; and (3) decision-making

among cooperating dyads during a simulated CTS.

2. Materials and methods

2.1. Ethics statement

This study was conducted under the Advancing Cyber Defense

by Improved Communication of Recognized Cyber Threat

Situations (ACDICOM) project.1 The present study conformed

to institutional guidelines and was eligible for automatic approval

by the Norwegian Social Science Data Services’ (NSD) ethical

guidelines for experimental studies. Participation was voluntary

1 RCN #302941. Project website: https://www.hiof.no/hvo/vlo/english/

research/projects/acdicom/.

and all participants were informed about the aims of the study; the

methods applied; that they could withdraw from participation at

any time and without any consequences; and that, if they did so,

all the data that was gathered from them would be deleted. After

volunteering to participate in the study, participants were asked to

provide informed consent on the first page of an online form where

baseline data was collected. Participants were asked to generate and

remember a unique participant ID that they would use during data

collection for the duration of the study.

2.2. Participants and design

This experiment employed a pseudo-randomized head-to-head

design using VDE in the experimental condition and the packet

capture software Arkime (formerly Moloch) as the control condition.

Participants (N= 22, mean age= 22.5, female= 5) were cyber cadets

recruited from the Norwegian Defense University College, Cyber

Academy (NDCA). Half of the cadets were specializing in military

Information Communication Technology (ICT) systems while the

other half were specializing in cyber operations.

The study consisted of two parts distributed over 3 days, where

day one was used for gathering informed consent, and collecting

demographic and baseline cognitive trait data. Results related to the

cognitive data will be reported elsewhere. Day two and three was

used for the experiment. After providing informed consent and filling

out initial questionnaires, participants were randomized in dyads

and allocated to either the VDE or the Arkime condition. During

the experiment, dyads had to collaborate to familiarize themselves
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with the network topology and to identify indicators of compromise.

The participants in the VDE condition used HoloLens 2 (Microsoft)

for the MR visualizations of network topology as their only aid.

The participants in the Arkime condition also had a 2D schematic

illustration of the network topology available to them in paper format.

The network topology and activity used for this experiment was

visualized using network data from the 2022 Locked Shields Cyber

Defense Exercise (CDX) provided by the NATO Cooperative Cyber

Defense Center of Excellence (CCDCOE). The experiment lasted for

approximately 2 h per dyad.

2.3. HoloLens 2

Microsoft HoloLens 2 (Microsoft, Redmond, DC) has become

the most common MR headset to be used for various research

studies, fielded by enterprises and governments for Interactive

Stereoscopically Perceivable Multidimensional Data Visualizations

(ISPMDV; see Kullman and Engel, 2022b for an introduction), where

its mostly used for either geospatial or natively spatial datasets. For

the purposes of this study, HoloLens 2 was chosen for its capabilities,

ease of software development, and existing compatibility with VDE.

2.4. The Virtual Data Explorer and
visualization of network topology

VDE (Kullman et al., 2018, 2019a,b, 2020; [https://coda.ee/])

enables a user to perceive the spatial layout of a dataset, for example

the topology of a computer network, while the resulting ISPMDV

(Kullman and Engel, 2022a,b) can be augmented with additional data,

like TCP/UDP session counts between network nodes. Users can

customize ISPMDV layouts using textual configuration files that are

parsed by a VDE Server and used while showing the visualization by

a VDE Client.

VDE functionality is decoupled to server and client

components in order to accommodate timely processing

of large query results (from the user’s dataset) in a more

powerful environment (than a wireless MR headset) before

data is visualized either by a VR or MR headset. The VDE

Server also acts as a relay to synchronize the visualizations

(e.g., grabbed objects position in connected users’ views)

between connected users’ sessions so that a connected user’s

actions manipulating a visual representation of data can be

synchronized with other connected users working with that

same dataset.

Only a subset of VDE capabilities was employed in the present

study: the dataset was preloaded to the headset along with the

application (to avoid any possible networking related issues) while

VDE Server was used only to facilitate multi-user sessions.

A previous study indicated that there was a need for more

experimental collaboration between cognitive scientists and CDX

organizers (Ask et al., 2021a). For this study, a NATO CCDCOE

Locked Shields 2022 CDX Blue Team’s network topology was

visualized for the participants with VDE and overlaid with edges

(network session counts) between cubes (networked entities). Within

view at any given time (depending on user’s location and direction)

were up to 958 nodes and groups, with up to 789 edges.

All study participants perceived the ISPMDV being positioned

in the same location and direction in the room where the study

was conducted (see Figure 3A, image on the left). Participants did

not have the capability to reposition the visualization components

permanently, but they could grab (pinch) a node to better understand

its connections while temporarily moving the node around. Once

the participant let go of the node, it returned smoothly to its

initial location.

As the study participants did not have prior knowledge of Locked

Shields 2022 networks and topology, the topology visualization they

experienced was not created based on their mental models (as would

be the suggested course of using VDE after employing mental model

mapping method for cybersecurity; Kullman et al., 2020). Instead, the

participants received an introduction about the topology as described

in the task one procedures (Section 2.7.1.).

2.5. Arkime packet capture software

Arkime (v3.4.2 [https://arkime.com/]) was used for preparing the

dataset from Locked Shields 2022 network traffic both for the VDE

ISPMDV view, as well as for the comparative group that used 2D

and textual information. Participants were given access to an Arkime

instance and taught the basics of using its interface (Sessions and

Connections tabs). In the Connections tab, participants had a 2D

graph view (see Figure 3B, image on the right) onto the exact same

set of nodes and edges that VDE participants had with HoloLens.

When participants hoovered over the edges connecting nodes (hosts)

to each other, the amount of traffic was displayed on a left-hand panel

as described in the task two procedures (Section 2.7.2.).

2.6. Hardware functionality and operational
stability

The HoloLens 2 headsets had a tendency to overheat after a

period of use, upon which the Windows Operating System running

the headset froze the VDE application. This left the network

visualization flickering in the user’s view. As this issue only started

to manifest during the second half or the 1st day of the study, we

suspected that the problem originated from thermal issues. To keep

the study going, we relied on three HoloLens 2 headsets, of which

two were used by a dyad on the floor while the third one was being

charged. Rapid charging and then discharging while the headset’s

GPU and CPU were being heavily utilized by the VDE application

seemed to have been too much for the headset’s thermal dissipator.

Switching a participant’s malfunctioning headset during a trial was

sub-optimal, hence we needed a more sustainable setup. The solution

for the HoloLens 2 overheating problem was to use power delivery

capable battery packs. The setup on the 2nd day was for the users to

wear the headsets, while having battery packs in their pockets that

were connected to the headsets with power delivery capable cables.

This allowed the headsets to be used uninterrupted for the duration

of a given dyad’s trial.

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1042783
https://coda.ee/
https://arkime.com/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ask et al. 10.3389/fdata.2023.1042783

FIGURE 3

Overview of the visualization tools used in each condition. (A) The Virtual Data Explorer (VDE) representation of the network topology. The first image in

the panel (left-hand side) depicts an overview of the network layout used in the present study. The second image (right-hand side) is a representative

close-up (taken from Kullman and Engel, 2022a). White arrows have been superimposed on the image on the right to indicate node/hosts, edges that

represent connections between nodes, and the host IP address. (B) Images depicting the 2D network topology as shown in the Arkime condition. The first

image in the panel (left-hand side) depicts an approximation of the 2D representation of network topology as shown in the paper schematics. The second

image (right-hand side) depicts a graph representation of the network topology as shown in the Arkime software, where dots are hosts and edges are the

connections between them. Participants could zoom in, select nodes to see exclusive connections, session number, and so on. Black arrows have been

superimposed on the image on the right to indicate node/host, edges that represent connections between nodes, and the host IP address.

2.7. Procedure

The study was conducted at the NDCA. The two experimental

conditions were conducted in parallel, one dyad at a time, and

in separate rooms that were secluded from other activities. The

experiment consisted of two parts. In the first part, one participant

from each dyad was introduced to the network topology which

they then had to explain to the other participant in the dyad. In

the second part, participants in each dyad had to collaborate to

identify indicators of compromise. Measurements were done thrice;

baseline measures upon arrival and then outcome measures after

each part of the experiment. For the outcome measures after each

part, participants filled out questionnaires assessing task success,

confidence in answers, and how they experienced communicational,

coordination, emotional, and performance monitoring load related

to their teamwork. After part two the participants also had to answer

some CSA-related questions that they were not explicitly asked to

solve in the task instructions they were given. During the experiment,

verbal communication and the time dyads spent on finishing each

task was scored by observers. Figure 4 shows an overview of the study

and each part of the experiment.

2.7.1. Task one: Understanding the network
topology

Upon arriving at the experiment, both participants in the dyad

were given a link to the online form which they accessed with

laptops. The dyads in the VDE condition spent a few minutes having

the HoloLenses they were going to use calibrated to their eyes

before filling out the questionnaires. The dyads were referred to as

teammates for the duration of the experiment.

After filling out the questionnaires related to the baseline-

measurements the form presented a prompt telling the participant

to pause and wait for instructions. After both participants were done

filling out the questionnaires, one participant was asked to wait

outside the room until summoned by the experimenter. The other
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FIGURE 4

Overview of the experiment. RT, Red Team; BT, Blue Team; CSA, Cyber Situational Awareness; VDE, Virtual Data Explorer.

participant in the dyad was then either told to put on the HoloLenses

(if in the VDE condition) to see the 3D representation of the network

topology or seated at a table where the 2D schematics of the network

topology was depicted (Arkime condition).

Upon confirming that they saw a network in front of them, the

participants were played an English audio recording explaining that

what they saw was the network that the Blue Team had to defend

during the Locked Shields 2022 CDX. The recording lasted for 3min

and 30 seconds. It was explained to them what nodes each segment in

the network consisted of, what was considered normal activity, where

known Red Team nodes were, and which nodes were unknown. In

the VDE condition, the participant was instructed to walk through

the nodes and also how to interact with the nodes to probe for further

information (e.g., touch node to see the IP address or pinch node to

lift up in order to see which nodes it was connected to).

The briefing was only given once (which was stated in the

beginning of the recording). After the recording was over, the

participant was given the instruction that their task would be

to explain the network topology to their teammate. They were

instructed to get confirmation from their teammate that they

had understood the topology upon which they would either

(1) re-explain if their teammate did not understand or (2)

let the experimenter know that they had completed the task.

After confirming that they had understood the task, the other

participant in the dyad was summoned and then the first participant

was told to start at their convenience. In the VDE condition,

the participant that was summoned was told to put on their

HoloLens and confirm that they saw the network representation

in front of them before the first participant in the dyad was

given the signal to start. There were no time constraints on

this task.

After signaling that the task was over, the participants were

instructed to access their laptops and continue filling out the

questionnaires until getting to a prompt asking them to wait

for further instructions. In the VDE condition, the participants

were instructed to remove their HoloLenses while answering

the questionnaires.

2.7.2. Task two: Identifying Red Team hosts
targeting Blue Team systems

After both participants were done filling out the questionnaires,

they received the instructions for the second task. In the

VDE condition, both participants were told to put on

their HoloLenses again. This time the 3D representation

of the network topology was updated with more edges

connecting each node. The edges varied in brightness

depending on the number of sessions (traffic) associated with

the connections.

In the Arkime condition, both participants were introduced

to a graph representation of the Blue Team network

topology in Arkime. They were instructed (1) that they

could select nodes to see their associated IP addresses and

communications targets (represented by edges between the

nodes); and (2) that they could see the session count (amount

of traffic) associated with each connection by hovering

over the edges connecting each node. The edges varied in

thickness depending on the amount of traffic associated with

the connection.

The dyads were then instructed to collaborate to find the top five

Red Team hosts (nodes) targeting Blue Team systems according to

the amount of traffic associated with each connection. For this task,

they were given pen and paper to note the IP address associated with

each identified Red Team host. The dyads were instructed to confirm

with each other when they were done with the task before notifying

the experimenter.

Both conditions saw the same network, with the same number

of nodes and edges and the same amount of traffic. Participants in

the VDE condition could not see the session count associated with

each connection but could only use the edge brightness as cue. The

participants had 40min to finish the task, although this was not

disclosed to them.

Upon notifying the experimenter that they had finished the task,

the participants were given the instructions for the third task. If the

time ran out before a dyad could finish the task, they were stopped by

the experimenter and told to finish the last set of questionnaires.
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2.7.3. Task three: Identifying Blue Team hosts
abused for Red Team lateral movements

For the third task, the dyads were instructed to collaborate to find

evidence, if any, of Red Team lateral movements and to note down the

top five Blue Team hosts that were possibly abused for that purpose

according to the amount of traffic associated with the connection.

The dyads were told that they had a time limit and what the

duration of that time limit was (which was the time remaining from

the 40min they had to finish the previous task). As for the previous

task, they were instructed to confirm amongst each other that they

had finished the task before signaling to the experimenter that they

were done.

After completing the task (or if the time ran out), the dyads were

instructed to complete the last set of questionnaires. This was done

individually. They were allowed to look at their notes from tasks two

and three when answering questions about hosts and IP addresses

but were not allowed to communicate or collaborate when answering

the questionnaires.

After the Arkime group was done with the experiment, they also

did the first task of the VDE condition, receiving instructions as

described previously. The roles for task one were the same as in the

Arkime condition, meaning that the participant who explained the

topology to their teammate in the Arkime condition also did so in

the VDE condition. Initially, we wanted the Arkime group to run

through the entire experiment in the VDE condition as well. Due to

time constraints and the experiment needing to be conducted on the

same day, this was limited to completing the first task. Data related to

these measurements will be reported elsewhere.

2.8. Data measures

2.8.1. Understanding the network topology
Per definition (Endsley, 1988; Franke and Brynielsson, 2014),

to acquire CSA during a CTS in a cyber environment, one must

necessarily know the normal state of the environment. To assess

the participants’ understanding of the network topology, we used a

questionnaire partly inspired by the CSA for Analysts Questionnaire

(Lif et al., 2017). The CSA questionnaire asks participants to draw

a description of the network topology with sources and targets of

attack. As our measurements were collected digitally, we employed a

forced choice questionnaire where participants had to choose the one

of four images that had the most correct 2D depiction of the network

topology they had reviewed. The images varied in how connections

between Blue Team segments were depicted, while some network

segments were missing from the incorrect topology images. To avoid

problems with resolution, the images were numbered and presented

on laminated A3 paper while the participant provided their answers

in the online form. Correct answers were scored as 1 and incorrect

answers were scored as 0.

Our initial plan was to have two sets of forced choice

questionnaires (in two different formats) that both conditions had

to answer. One set would include the 2D schematics that were

used in the forced choice questionnaire administered in the present

study, while the other set of network topology images would be

based on the 3D representation in VDE. Each set of questionnaires

would therefore favor the condition where the format matched the

condition (e.g., the 2D images favor the Arkime condition where

2D representations of the network topology is part of the tools

available to the participants). The idea was that, if one condition

performed better on the forced choice set that favored the other

condition, this would say something about the level of understanding

of the network topology that the participants were able to extract

from either the 2D schematics or the VDE representation. However,

due to time restraints, we could only use one set of forced choice

questionnaires. As the current forced choice questionnaire favors

the Arkime condition, it also serves as a test for whether the VDE

representation induces overconfidence if the VDE group performs

worse on this test than the Arkime group but is more or equally

confident in their answers.

2.8.2. CSA item 1: Adversarial behavior
To assess the outcome of task two, one of the items asked: “What

are the possible Red Team hosts that were targeting the Blue Team

systems?”. The participants had to write down the five IP addresses

that they identified during task two. The answers were used to

generate three variables: (1) total number of hosts identified, (2) total

number of correctly identified hosts, and (3) total number of sessions

associated with correctly identified hosts.

2.8.3. CSA item 2: Impact of the attack
To further assess the participants’ CSA, they were asked to

“Choose Blue Team segments in which the Red Team has been trying

to compromise Blue Team hosts”. For this item, the participants were

given amultiple-choice questionnaire listing five Blue Team segments

that were possibly affected. The participants could choose as many as

they wanted. Because all of the segments were affected, answers on

this item were scored by adding up all the segments that were chosen

by the participants giving a numerical score ranging from 0 (the

minimum of correct answers) to 5 (themaximum of correct answers).

2.8.4. CSA item 3: Situational report
To assess their comprehension of the cyber threat situation

(awareness of the current situation, what caused it, and how it may

evolve), participants were asked to answer three qualitative, open-

ended questions. The questions were taken from a SITREP developed

by one of the co-authors for use in cyber defense exercises. The

questions included: “(1) Describe the activity you saw (specific but

not overly detailed)”, “(2) What type of incident do you think it

was?”, and “(3) If you could suggest anything - which actions should

be done?”.

The answers were blinded and scored individually by one of the

co-authors who participated at Locked Shields 2022 exercise and had

access to the ground truth of the dataset used. The answers were

scored on a 5-point scale ranging from 0 (not correct/irrelevant)

to 1 (correct/relevant). The answers were given an overall k-score

ranging from 0 (not thorough) to 9 (thorough) to indicate the level

of thoroughness combined in the answers to all three questions.

2.8.5. CSA item 4: Adversarial behavior and impact
of attack

Tomeasure the outcome of task three, participants were asked: “If

any, what were the indicators of Red Team lateral movements in Blue
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Team networks? Name BT hosts that were (possibly) (ab)used for that

purpose.” The participants had to write down the IP addresses that

they identified during task three. Answers on this item were used to

generate three variables: (1) total number of hosts identified, (2) total

number of correctly identified hosts, and (3) total number of sessions

associated with correctly identified hosts.

Because the information required to solve task three was available

to all participants at all times from the initiation of task two, all

participants had to answer this item regardless of whether they were

given the opportunity to solve task three or not.

2.8.6. Confidence in answers
After each question, participants were asked to rate how confident

they were in their answers on a 11-point scale ranging from 0 to 100%.

2.8.7. Decision-making forced-choice task
To assess the effect of condition on decision-making, participants

were asked to answer a forced-choice decision-making question with

four possible alternatives. The item asked: “If you could only pick one

course of action, which would you pick?”. The four alternatives were:

(1) Cut off all connectivity from the friendly networks to outside, (2)

Start incident response on selected hosts, (3) Launch attacks against

the hosts that the suspected adversaries might be using, or (4) Cut

off connectivity to a selection of network segments. An additional

question was asked: “If you picked 4, what would be your suggested

network segments?”. Each choice was used to generate four variables

scored as 0 (not chosen) and 1 (chosen).

2.8.8. Team workload questionnaire (select items)
The Team Workload Questionnaire (TWLQ; Sellers et al., 2014)

was used to assess how participants experienced workload demands

on team tasks during the exercise. The items are scored on an 11-

point Likert scale ranging from very low to very high. High scores

indicate higher levels of subjective workload. The TWLQ consists of

six subscales divided on two dimensions, the Teamwork component

(communication, coordination, team performance monitoring) and

Task-Team component (time-share, team emotion, team support).

For the purpose of the present study, we were mainly interested

in the communication demand item as an indicator of whether

the VDE would reduce communication demands. We were also

interested in the items related to coordination demand, demand for

controlling their own emotions, and demand for monitoring their

own performance. The four TWLQ items were administered two

times; the first at the end of task one and the second at the end of

the experiment.

2.8.9. Structured observation
Structured observation was performed to assess the frequency

of occurrence for four verbal communication behaviors: (1) Orient,

Locate, Bridge (OLB) processes, (2) perceptual shared mental

modeling, (3) task resolution, and (4) communication dysfunction.

OLB behaviors included communication behaviors related to

perspective taking and grounded communication to achieve a shared

understanding of the situation in accordance with the OLB model

(Knox et al., 2018). Some examples included when members of

the dyads asked questions to probe each other’s understanding of

what was communicated; adjusted language (from technical to less

technical) to make sure the recipient understood the significance of

what was communicated; and gave each other updates to maintain a

mutually shared overview of what they were doing and discovering at

any given moment.

Perceptual shared mental model behaviors included verbal

communication related to achieving a shared perception of anything

related to the task. Examples included utterances such as “Come here

and look at this,” “When I stand here I see x,” “Do you see this node?

It is communicating with that node over there,” and so on.

A previous observational study indicated that team

communication related to task resolution was different between well-

and poor-performing teams during a CDX (Jariwala et al., 2012). In

our study, task resolution behaviors included verbal communication

related to the status or completion of the specific tasks that they were

assigned. Examples included participants in the dyad asking each

other “How many hosts have we found now?”, “How many hosts did

we have to find again?”, and “Should we say that we have completed

the task?”.

Communication dysfunction behaviors included communication

where participants in the dyad talked over/interrupted each other, did

not answer each other’s questions, argued, went too long (over 2min)

without communicating, and so on. Examples included instances

where a participant started explaining what they were seeing and

the other participant interrupting them to talk about what they

were seeing.

Two observers/coders, one per condition, were used for the

scoring of items. Score per dyad was determined by noting frequency

of behavioral occurrence during the experiment. The coders agreed

how to categorize the behaviors prior to the experiment, and the same

coders were used throughout the experiment to ensure reliability.

To assess inter-rater reliability, both observers simultaneously scored

one of the dyads followed by performing a two-way mixed, absolute,

single measures intra-class correlation (ICC) analysis on the raw

scores for each item (Shrout and Fleiss, 1979; Hallgren, 2012). Inter-

rater reliability was excellent (ICC = 0.871; Cicchetti, 1994). The

observers also noted the time (minutes) spent to finish each task.

2.8.10. User experience measurements
To measure the experience participants had with using the

HoloLens 2 and the VDE, we administered the User experience in

Immersive Virtual Environment questionnaire (Tcha-Tokey et al.,

2016). This data will be reported elsewhere.

2.8.11. Cognitive tests and self-report measures
We collected a range of cognitive trait and state data including

measurements that have been identified as relevant for performance

in previous studies on cyber cadets and cyber security personnel

(Knox et al., 2017; Lugo and Sütterlin, 2018; Jøsok et al., 2019;

Ask et al., 2021b; Sütterlin et al., 2022). For instance, positive

moods and overconfidence has been found to be associated

with poorer metacognitive judgments of CSA during a cyber

engineering exercise (Ask et al., 2023), and in detecting cyber

threats not directly related to network intrusion (Sütterlin et al.,

2022). Conversely, self-regulation abilities measured through self-

report and neurophysiological indicators were found to predict
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cognitive flexibility in terms of mental context shifting during

a cyber defense exercise (Knox et al., 2017; Jøsok et al., 2019)

and better metacognitive judgements of performance (Ask et al.,

2023), respectively. Furthermore, metacognition, self-regulation, and

cognitive flexibility are necessary for establishing and communicating

CSA (Jøsok et al., 2016; Knox et al., 2018; Endsley, 2020; Ask

et al., 2023). Cognitive data was collected with tests and self-report

questionnaires on both days of the experiment. The cognitive data

collected on day one included cognitive styles, cognitive flexibility,

emotion regulation, vividness of mental imagery, and rumination.

The cognitive data collected during the experiment included affective

states (baseline) and metacognition (projections for how well they

thought they would perform at baseline and correction of how

well they thought they had performed after the experiment was

over). As noted, the results related to the cognitive data will be

reported elsewhere.

2.9. Data analysis

The data were summarized and presented in tables using

mean (M) and standard deviations (SD) for continuous and

numerical variables, and frequency (count) and percentage (%) for

ordinal variables.

The Shapiro-Wilk test of normality and confirmatory visual

inspection revealed that most variables were not normally

distributed. The exceptions included part one communication

demands, part one coordination demands, part one performance

monitoring demands, confidence in CSA 1 answers, confidence

in CSA 3 descriptions, part two emotion demands, part two

performance monitoring demands, and task two OLB. Non-

parametric tests were performed for all subsequent analyses except

for those variables.

For the non-parametric analyses, the Kruskal-Wallis H test was

used for comparisons between the VDE group and the Arkime group.

Results were presented as H statistic (degrees of freedom; df), p-

values, and effect size. Effect size (η2) for Kruskal-Wallis H test

was calculated as (H – k + df)/(n – k); where H was the Kruskal-

Wallis statistic, k was the number of groups, and n was the total

number of observations (n = 22). Dunn’s Post-Hoc test was used to

assess significant relationships for non-parametric variables between

groups and was reported as z-statistic and Bonferroni adjusted p-

values (pbonf).

For the parametric analyses, one-way ANOVAs were performed.

Results for ANOVA were reported as F statistic(df), p-values, and

effect size. Effect size (ω2) for ANOVA was calculated as [sum of

squares between − (k – 1) mean square within]/(sum of squares

total + mean square within). Tukey’s post hoc test was used to assess

significant relationships for parametric variables between groups and

was reported as mean difference (MD) and pbonf.

Between-group differences were visualized in interval plots with

95% confidence intervals.

The relationship between communication variables that were

significantly different between the groups and CSA variables that

were significantly different between the groups were assessed with

Spearman correlation (2-tailed) on z-transformed variables. Results

were visualized in a heat map and presented as correlation coefficients

(ρ) and p-values. Separate regression analyses were performed for

significant relationships. Results were reported as standardized beta

(β), p-values, adjusted R2 (R2Adj), and F(df) statistics.

Alpha levels for hypothesis testing were set at the 0.05 level for all

analyses. All data were analyzed using JASP version 0.15 (JASP Team,

2021).

3. Results

Table 1 presents descriptive statistics of participant characteristics

and experimental outcome measurements.

3.1. The e�ect of VDE on cyber situational
awareness

3.1.1. Baseline network topology recognition
Kruskal-Wallis H test was performed to assess the differences of

condition on task one outcome variables. Table 2 shows the results

of the comparisons between the VDE group and the Arkime group

on selecting the correct image depiction of the network topology,

confidence in image selection, and TWLQ item responses.

The Kruskal-Wallis test showed that the VDE group selected

the correct network topology image significantly different from the

Arkime group (p= 0.009). Dunn’s post hoc test showed that the VDE

group selected the correct network topology image significantly less

than the Arkime group (z=−2.63, pbonf = 0.004).

The Kruskal-Wallis test showed that the confidence in image

selection was significantly different between the VDE group and the

Arkime group (p= 0.006). Dunn’s post hoc test showed that the VDE

group was significantly less confident in their image selection than

the Arkime group (z=−2.73, pbonf = 0.003).

No significant differences were observed on any of the TWLQ

items measured after the completion of task one.

3.1.2. Red team movements, attack severity, and
situational reports

Kruskal-Wallis H test was performed to assess the differences

in the effect of condition on task two and three outcome variables.

Table 3 shows the results of the comparisons between the VDE

group and the Arkime group on identifying Red Team hosts

targeting Blue Team systems, identifying affected blue team

segments, assessment of the observed activity, assessment

of what incident it was, suggestions of what actions to do

as response, identifying Blue Team hosts abused for Red

Team lateral movements, confidence in responses, and TWLQ

item responses.

Two dyads, one from VDE group and one from Arkime group,

spent >40min on exploring the topology in task one. The dyad

in the VDE group spent the least amount of time of all dyads

on finishing task two (15min). The dyad in the Arkime group

could not finish task two in <40min. The maximum amount

of time spent to finish task two was 35min. Thus, the amount

of time the dyads had to finish task three ranged from five to

25 min.

There were no significant differences between the groups with

respect to finishing task two within the 40-min time limit (p= 0.495).

In general, the VDE group had higher scores than the Arkime group
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TABLE 1 Descriptive statistics (N = 22).

Total VDE Arkime

Variables M SD Count (%) M SD Count (%) M SD Count (%)

Age 22.59 1.36 22.50 1.44 22.70 1.33

Gender (male) 17 (77.27) 7 (58.33) 10 (100.00)

Military IT systems 13 (59.01) 8 (66.66) 5 (50.00)

Cyber operations 9 (40.90) 4 (33.33) 5 (50.00)

Part 1

Select correct image 0.59 0.50 13 (59.09) 0.33 0.49 4 (33.33) 0.90 0.31 9 (90.00)

Confidence in choice 61.36 35.49 41.66 33.25 85.00 21.21

Communication demand 5.90 1.95 5.91 1.73 5.90 2.28

Coordination demand 4.90 1.82 5.25 1.60 4.50 2.06

Emotional demand 3.81 3.01 3.66 2.93 4.00 3.26

Performance monitoring demand 5.13 2.03 4.66 1.96 5.70 2.05

Part 2

CSA 1 total RT hosts 3.36 1.62 4.41 1.16 2.10 1.10

CSA 1 correct RT hosts 2.59 2.01 4.00 1.34 0.90 1.19

CSA 1 RT hosts total traffic 26525.77 28681.35 48583.25 20069.14 56.80 104.19

CSA 1 confidence 41.81 26.30 54.16 23.14 27.00 22.63

Finished task 2 < 40min 0.72 0.56 16 (72.72) 0.66 0.49 8 (66.66) 0.80 0.42 8 (80.00)

CSA 2 total BT segments 1.59 0.73 2.00 0.73 1.10 0.31

CSA 2 confidence 40.90 29.09 52.50 26.32 27.00 27.10

CSA 3 SITREP—activity 0.62 0.36 0.77 0.31 0.45 0.35

CSA 3 SITREP—incident 0.60 0.42 0.72 0.40 0.45 0.40

CSA 3 SITREP—actions 0.52 0.42 0.60 0.44 0.42 0.39

CSA 3 SITREP—K-score 5.04 3.25 6.16 3.29 3.70 2.79

CSA 3 confidence 38.63 22.52 47.50 19.59 28.00 22.01

CSA 4 total BT hosts 0.96 1.61 1.50 1.97 0.30 0.67

CSA 4 correct BT hosts 0.81 1.53 1.33 1.87 0.20 0.63

CSA 4 BT hosts total traffic 640.54 1086.05 732.50 1040.58 530.20 1184.88

CSA 4 confidence 40.90 32.05 56.66 27.08 22.00 27.80

Communication demand 7.63 0.84 7.33 0.77 8.00 0.81

Coordination demand 6.72 1.77 6.50 2.23 7.00 1.05

Emotional demand 4.63 2.59 4.41 2.93 4.90 2.23

Performance Monitoring demand 6.09 2.11 5.91 2.39 6.30 1.82

Forced decision-making

Decision 1 0.04 0.21 1 (4.54) 0.08 0.28 1 (8.33) 0.00 0.00 0 (0.00)

Decision 2 0.90 0.29 20 (90.90) 0.83 0.38 10 (83.33) 1.00 0.00 10 (100.00)

Decision 3 0.00 0.00 0 (0.00) 0.00 0.00 0 (0.00) 0.00 0.00 0 (0.00)

Decision 4 0.04 0.21 1 (4.54) 0.08 0.28 1 (8.33) 0.00 0.00 0 (0.00)

CSA, Cyber situational awareness; RT, Red team; BT, Blue team; SITREP, Situational report.

on all performance outcomes and lower scores on all team workload

measures during the second part of the experiment, although

not all of these differences were significantly different between

the groups.

3.1.3. CSA 1: Identifying RT hosts targeting BT
systems

The Kruskal-Wallis H test showed that the total number

of identified Red Team hosts targeting Blue Team systems was
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TABLE 2 Task 1 comparisons between VDE and Arkime (N = 22).

Kruskal-Wallis test Dunn’s post hoc

Variables H (1) p η2 z pbonf

Select the correct image 6.916 0.009 0.295 −2.630 0.004

How confident are you about this? 7.469 0.006 0.323 −2.733 0.003

Emotional demand 0.059 0.808 −0.047 - -

One-way ANOVA Tukey’s post hoc

F (1) p ω2 MD pbonf

Performance monitoring demand 1.442 0.244 0.020 - -

Communication demand 0.000 0.985 0.000 - -

Coordination demand 0.919 0.349 0.000 - -

η2 , Effect size; pbonf , Bonferroni adjusted p-values; Bold, significant differences; ω2 , Effect size; MD, Mean difference.

TABLE 3 Comparison of task two and task three results between VDE and Arkime (N = 22).

Kruskal-Wallis test Dunn’s post hoc

Variables H (1) p η2 z pbonf

CSA 1. Number of identified possible RT hosts that were targeting the BT

systems

11.603 <0.001 0.530 3.406 <0.001

CSA 1. Correctly identified RT hosts that were targeting the BT systems 12.867 <0.001 0.593 3.587 <0.001

CSA 1. Correctly identified RT hosts that were targeting the BT systems—traffic

total

15.822 <0.001 0.741 3.978 <0.001

CSA 2. Compromised BT Segments correctly identified 8.863 0.003 0.393 2.977 0.001

CSA 2. How confident are you about this? 4.121 0.042 0.156 2.030 0.021

Finished task 2 on time 0.467 0.495 −0.026 - -

CSA 3. SITREP—Describe the activity you saw 4.035 0.045 0.151 2.009 0.022

CSA 3. SITREP—What incident do you think it was? 2.743 0.098 0.087 - -

CSA 3. SITREP—Which actions should be done? 0.988 0.320 −0.000 - -

CSA 3. SITREP—Thoroughness K-score 3.044 0.081 0.102 - -

CSA 4. Total BT hosts abused for RT lateral movements 1.735 0.188 0.037 - -

CSA 4. Correctly identified BT hosts abused for RT lateral movements 3.681 0.055 0.134 - -

CSA 4. BT hosts abused for RT lateral movements—Traffic 0.515 0.473 −0.024 - -

CSA 4. How confident are you about this? 6.651 0.010 0.282 2.579 0.005

Communication demand 3.919 0.048 0.145 −1.980 0.024

Coordination demand 0.029 0.866 −0.048 - -

One-way ANOVA Tukey’s post hoc

F (1) p ω2 MD pbonf

CSA 1. How confident are you about this? 7.667 0.012 0.233 27.458 0.012

CSA 3. SITREP—How confident are you about the descriptions above? 4.832 0.040 0.148 19.500 0.040

Emotion demand 0.182 0.674 0.000 - -

Performance monitoring demand 0.172 0.682 0.000 - -

η2 , Effect size; pbonf , Bonferroni adjusted p-values; Bold, significant differences; CSA, Cyber situational awareness; RT, Red Team; BT, Blue Team; SITREP, Situational report; ω2 , Effect size; MD,

Mean difference.

significantly different between the VDE and the Arkime group

(p < 0.001). Dunn’s post hoc test showed that the VDE group

identified significantly more Red Team hosts targeting Blue

Team systems compared to the Arkime group (z = 3.40, pbonf
< 0.001).

The Kruskal-Wallis H test showed that the total number of

correctly identified Red Team hosts targeting Blue Team systems

was significantly different between the VDE group and the Arkime

group (p < 0.001). Dunn’s post hoc test showed that the VDE group

identified significantly more correct Red Team hosts targeting Blue
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FIGURE 5

Interval plots for the di�erences in identifying Red Team hosts targeting Blue Team systems. (A) Correctly identified Red Team hosts. (B) Tra�c associated

with correctly identified Red Team hosts. The number of sessions associated with correctly identified hosts ranged from 27,083 to 75,554 in the VDE

group while ranging from 0 to 254 in the Arkime group. (C) Confidence in answers. Whiskers are 95% confidence intervals.

Team systems compared to the Arkime group (z = 3.58, pbonf <

0.001). Figure 5A shows interval plots for the differences in correctly

identified Red Team hosts targeting Blue Team systems.

The Kruskal-Wallis H test showed that the activity associated

with the correctly identified Red Team hosts targeting Blue Team

systems was significantly different between the VDE group and the

Arkime group (p < 0.001). Dunn’s post hoc test showed that the VDE

group identified significantly more highly-active Red Team hosts

targeting Blue Team systems compared to the Arkime group (z =

3.97, pbonf < 0.001). Figure 5B shows interval plots for the differences

in the traffic associated with correctly identified Red Team hosts

targeting Blue Team systems.

One-Way ANOVA showed that confidence in having correctly

identified Red Team hosts targeting Blue Team systems was

significantly different between the VDE group and the Arkime group

(p = 0.012). Tukey’s post hoc test showed that the VDE group was

significantly more confident in having correctly identified Red Team

hosts targeting Blue Team systems compared to the Arkime group

(MD = 27.45, pbonf = 0.012). Figure 5C shows interval plots for the

differences in how confident participants were in having identified

the correct hosts.

3.1.4. CSA 2: Identifying compromised BT
segments

The Kruskal-Wallis H test showed that the number of identified

Blue Team segments compromised by the Red Teamwas significantly

different between the VDE group and the Arkime group (p =

0.003). Dunn’s post hoc test showed that the VDE group identified

significantly more Blue Team segments that were compromised by

the Red Team compared to the Arkime group (z = 2.97, pbonf
= 0.001).

The Kruskal-Wallis H test showed that confidence in having

correctly identified Blue Team segments compromised by the Red

Team was significantly different between the VDE group and the

Arkime group (p= 0.042). Dunn’s post hoc test showed that the VDE

group was significantly more confident in having correctly identified

Blue Team segments compromised by the Red Team compared to

the Arkime group (z = 2.03, pbonf = 0.021). Figure 6 shows interval

plots for differences between the VDE group and the Arkime group in

having identified compromised Blue Team segments and confidence

in having identified compromised Blue Team segments.

3.1.5. CSA 3: Situational report
The Kruskal-Wallis H test showed that the accuracy score for

the description of what type of activity they saw was significantly

different between the VDE group and the Arkime group (p= 0.045).

Dunn’s post hoc test showed that the VDE group had a significantly

higher accuracy score compared to the Arkime group (z= 2.00, pbonf
= 0.022).

The accuracy score for the description of type of incident it was (p

= 0.098), the relevance score for the suggestion of actions that should

be done (p = 0.320), and the thoroughness k-score (p = 0.081) were

not significantly different between the groups.

One-Way ANOVA showed that confidence in the SITREP

descriptions was significantly different between the VDE group and

the Arkime group (p = 0.040). Tukey’s post hoc test showed that the

VDE group had a significantly higher confidence in their SITREP

answers compared to the Arkime group (MD= 19.50, pbonf = 0.040).

3.1.6. CSA 4: Identifying BT hosts abused for RT
lateral movements

The Kruskal-Wallis H test showed that neither the total number

of Blue Team hosts abused for Red Team lateral movements (p =

0.188), the number of correctly identified Blue Team hosts abused

for Red Team lateral movements (p = 0.055), nor the number of

sessions associated with correctly identified Blue Team hosts abused

for Red Team lateral movements (p = 0.473) were significantly

different between the groups, although the difference in the number

of correctly identified Blue Team hosts abused for Red Team lateral

movements approached significance.

The Kruskal-WallisH test showed that confidence in the answers

was significantly different between the VDE group and the Arkime

group (p = 0.010). Dunn’s post hoc test showed that the VDE group

had a significantly higher confidence in their answers compared to

the Arkime group (z= 2.57, pbonf = 0.005).

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2023.1042783
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ask et al. 10.3389/fdata.2023.1042783

FIGURE 6

Interval plots for the di�erences in identifying compromised Blue Team systems. (A) Identified compromised Blue Team systems. (B) Confidence in having

identified compromised Blue Team segments. Whiskers are 95% confidence intervals.

3.2. The e�ect of VDE on cyber team
communication

3.2.1. Self-reported communication demands
The Kruskal-Wallis H test showed that the communication

demands during part two of the experiment was significantly different

between the VDE group and the Arkime group (p = 0.048). Dunn’s

post hoc test showed that the VDE group experienced significantly

lower communication demands compared to the Arkime group

(z = −1.98, pbonf = 0.024). No other TWLQ measures were

significantly different between the groups. Figure 7A shows interval

plots displaying differences in part two communication demands

between the groups.

3.2.2. Observation of communication behaviors
Kruskal-Wallis H tests and One-Way ANOVAs were used

to assess differences on the observed verbal communication

scores between the VDE group and the Arkime group. Table 4

presents the result of the comparisons. Figures 7B–D shows

interval plots for between-group differences in task two OLB

communication, task two task resolution communication, and task

two communication dysfunction.

The Kruskal-Wallis H test showed that the VDE group had

significantly different task one OLB scores compared to the Arkime

group (p = 0.042). Dunn’s post hoc test showed that the VDE group

performed significantly more OLB communications during task one

compared to the Arkime group (z = 2.03, pbonf = 0.021). No other

comparisons from task one were significant.

The one-way ANOVA showed that the VDE group had

significantly different task two OLB scores compared to the Arkime

group (p = 0.028). Tukey’s post hoc test showed that the VDE group

performed significantly more OLB communications during task two

compared to the Arkime group (MD= 5.16, pbonf = 0.028).

The Kruskal-Wallis H test showed that the VDE group had

significantly different task two task resolution scores compared to the

Arkime group (p < 0.001). Dunn’s post hoc test showed that the VDE

group performed significantly less task resolution communications

during task two compared to the Arkime group (z = −3.99, pbonf <

0.001). The Kruskal-Wallis H test showed that the VDE group had

significantly different task two communication dysfunction scores

compared to the Arkime group (p = 0.043). Dunn’s post hoc test

showed that the VDE group had significantly less communication

dysfunction during task two compared to the Arkime group (z =

−2.02, pbonf = 0.021). The Kruskal-Wallis H test showed that the

VDE group had significantly different task two Time-to-finish scores

compared to the Arkime group (p < 0.001). Dunn’s post hoc test

showed that the VDE group had significantly lower time-to-finish

scores during task two compared to the Arkime group (z = −3.60,

pbonf < 0.001).

Perceptual shared mental models were not significantly different

between the groups. No comparisons were significantly different

between groups with respect to task three observational scores.

3.2.3. Relationship between communication
variables and CSA items

Spearman correlations were performed to assess the relationship

between communication variables and CSA variables that were

significantly different between the VDE group and the Arkime

group. Figure 8 presents a heat map showing the results from the

correlational analysis.

Task one OLB scores were significantly and positively correlated

with task two OLB scores (p= 0.035), total number of identified Red

Team hosts targeting Blue Team systems (p = 0.009), total number

of correctly identified Red Team hosts targeting Blue Team systems

(p = 0.005), and identifying compromised Blue Team segments (p

= 0.018).

Task two OLB scores were significantly and positively correlated

with total number of correctly identified Red Team hosts targeting

Blue Team systems (p= 0.048).

Task two Task resolution scores were significantly and positively

correlated with task two Communication dysfunction (p = 0.018),

communication demands (p= 0.024), and negatively correlated with

total number of identified Red Team hosts targeting Blue Team

systems (p < 0.001), total number of correctly identified Red Team
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FIGURE 7

Interval plots for between-group di�erences in self-reported and observed communication variables. (A) Self-reported communication demands after

part two of the experiment. (B) Observed task two OLB communication. (C) Observed task two task resolution communication. (D) Observed task two

communication dysfunction. Whiskers are 95% confidence intervals.

hosts targeting Blue Team systems (p < 0.001), total amount of

traffic associated with correctly identified Red Team hosts targeting

Blue Team systems (p < 0.001), identifying compromised Blue Team

segments (p= 0.002), and confidence in having identified Blue Team

hosts abused for Red Team lateral movements (p= 0.039).

Task two communication dysfunction scores were significantly

and negatively correlated with the accuracy score for the description

of what type of activity they saw (p= 0.010), and confidence in having

identified Blue Team hosts abused for Red Team lateral movements

(p= 0.027).

Part two communication demands were significantly and

negatively correlated with total number of correctly identified Red

Team hosts targeting Blue Team systems (p= 0.039), and identifying

compromised Blue Team segments (p= 0.031).

No other correlations were significant.

Separate linear regressions were performed for significant

correlations. Significant results are shown in Table 5. Task two task

resolution was a significant negative predictor of total number of

identified Red Team hosts targeting Blue Team systems (p < 0.001),

total number of correctly identified Red Team hosts targeting Blue

Team systems (p = 0.002), total amount of traffic associated with

correctly identified Red Team hosts targeting Blue Team systems (p

< 0.001), and identifying compromised Blue Team segments (p =

0.008). No other relationships were significant.

Task two communication dysfunction was a significant negative

predictor of the accuracy score for the description of what type of

activity they saw (p= 0.012), and confidence in having identified Blue

Team hosts abused for Red Team lateral movements (p= 0.012).

Communication demands was a significant negative predictor of

the total number of correctly identified Red Teamhosts targeting Blue

Team systems (p= 0.034). No other relationships were significant.

3.3. The e�ect of VDE on decision-making

All the participants except two (n= 20) picked the “Start incident

response on selected hosts” option on the forced-choice decision-

making task. Thus, there was no difference between the groups. The

other two participants, both in the VDE condition but not in the same

dyad, picked the “Cut off all connectivity from the friendly networks

to outside” and the “Cut off connectivity to a selection of network

segments” options.

4. Discussion

Cyber defense decision-making during CTSs is based on

human communication aiming to establish a shared CSA between
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TABLE 4 Comparison of observational scores between VDE and Arkime (N = 22).

Kruskal-Wallis test Dunn’s post hoc

Variables M ± SD H (1) p η2 z pbonf

Task 1 OLB 10.45± 13.00 4.145 0.042 0.157 2.036 0.021

Task 1 perceptual shared mental models 9.00± 11.75 0.461 0.497 −0.026 - -

Task 1 task resolution 6.36± 11.08 0.000 1.000 −0.50 - -

Task 1 communication dysfunction 0.27± 0.63 0.000 1.000 −0.50 - -

Task 1 time to finish (min) 11.72± 15.46 0.000 1.000 −0.50 - -

Task 2 perceptual shared mental models 16.90± 5.54 0.018 0.894 −0.049 - -

Task 2 task resolution 11.45± 7.46 15.968 <0.001 0.748 −3.996 <0.001

Task 2 communication dysfunction 2.72± 4.80 4.101 0.043 0.155 −2.025 0.021

Task 2 time to finish (min) 28.90± 9.12 13.013 <0.001 0.600 −3.607 <0.001

Task 3 OLB 6.09± 8.79 0.916 0.339 −0.004 - -

Task 3 perceptual shared mental models 5.45± 7.96 1.162 0.281 0.008 - -

Task 3 task resolution 3.00± 3.59 0.898 0.343 −0.005 - -

Task 3 communication dysfunction 0.90± 1.54 1.825 0.177 0.041 - -

Task 3 time to finish (min) 6.27± 7.09 0.299 0.585 −0.035 - -

One-way ANOVA Tukey’s post hoc

F (1) p ω2 MD pbonf

Task 2 OLB 16.81± 5.62 5.625 0.028 0.174 5.167 0.028

η2 , Effect size; pbonf , Bonferroni adjusted p-values; Bold, significant differences; OLB, Orient, Locate, Bridge; ω2 , Effect size; MD, Mean difference.

TABLE 5 Linear regressions (N = 22).

Predictor Dependent variable β p R2Adj F (1)

Task two task resolution RT hosts targeting BT systems total −0.763 <0.001 0.561 27.845

Task two task resolution RT hosts targeting BT systems correct −0.630 0.002 0.366 13.142

Task two task resolution RT hosts targeting BT systems traffic −0.665 <0.001 0.415 15.889

Task two task resolution Identifying compromised BT segments −0.547 0.008 0.264 8.534

Task two communication dysfunction SITREP—Describe the activity you saw −0.524 0.012 0.238 7.553

Task two communication dysfunction BT hosts abused for RT lateral movements

confidence

−0.525 0.012 0.239 7.594

Communication demands RT hosts targeting BT systems correct −0.454 0.034 0.166 5.178

RT, Red team; BT, Blue team; SITREP, Situational report.

analyst-level and decision-making personnel (Knox et al., 2018).

Communication for shared CSA is one of the main problems facing

SOC team analysts (Knox et al., 2018; Agyepong et al., 2019; Ask

et al., 2021a). Current visualization tools to support achieving a

shared understanding of the CTS include 2D graphs and schematics

of network topology. These visualization tools do not scale well with

increasing complexity. Furthermore, SA level 3 appears to be the SA

stage most dependent on human working memory (Gutzwiller and

Clegg, 2013). The mammalian brain has developed an innate ability

to understand time and space (Eichenbaum, 2014; Ray and Brecht,

2016; Berggaard et al., 2018). 3D representations of network topology

may leverage automatic spatial sensory processes (Stackman et al.,

2002; Angelaki and Cullen, 2008; Moser et al., 2008) that reduce load

on working memory during communication. Thus, 3D visualizations

may be more neuroergonomic than 2D representations by facilitating

more efficient communication and shared situational understanding

during CTSs, which could support decision-making (Kullman et al.,

2019a). In this study, we compared how the representation of

a network topology in 3D MR (Kullman et al., 2018, 2020) vs.

2D affected topology recognition, CSA, team communication and

decision-making in a sample of cyber cadets.

In the first part of the experiment, the Arkime group performed

better than the VDE group on the task where participants had to

identify the correct depiction of the network topology among four 2D

schematics. This finding was not surprising as the correct depiction

was in the same format as the 2D schematic the Arkime group had

used to familiarize themselves with the topology.

3D visualizations of network topology are expected to be

neuroergonomic in the sense that they leverage innate neurocognitive

processes that encode spatial information. Additionally, the VDE
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FIGURE 8

Heat map showing results from Spearman (ρ) correlations. All correlations are 2-tailed. Blue color indicates positive correlations. Red color indicates

negative correlations. *p < 0.050, **p < 0.010, ***p < 0.001. OLB, Orient, Locate, Bridge (Knox et al., 2018); CSA, Cyber situational awareness; RT, Red

team; BT, Blue team; SITREP, Situational report.

visualizes network data based on the mental model that operators

have of the network they are defending (Kullman et al., 2020).

While both being neuroergonomic and conserving connections

and sessions between nodes, the topological layout as visualized

in the VDE does not represent the actual reality of the network.

This may be problematic if the 3D visualizations contribute

to a false sense of confidence in one’s understanding of the

topology by virtue of being visually persuasive. For instance,

previous studies on cyber cadets have shown that high self-

confidence in combination with intuitive decision-making can

have detrimental effects on performance when counterintuitive

decisions are required (Lugo et al., 2016). Interestingly, while

performing worse, the VDE group was also less confident in

their answers on the topology recognition task. Thus, the 3D

visualizations did not give a false sense of confidence with respect to

topology recognition.

Awareness of adversarial behavior is suggested to be necessary

for achieving CSA for cyber defense decision-making (Barford et al.,

2009) although non-technical stakeholders may underestimate the

importance of such information (Varga et al., 2018). This may have

severe consequences for decision-making if analyst-level personnel

and decision-makers have different mental models of the CTS and

the network, especially if analyst-level personnel are not aware of

this discrepancy during RCP communication (Ask et al., 2021a).

Because the VDE allows for visualizing, thus sharing the mental

models that the analyst have of the network topology (Kullman

et al., 2018, 2020), this potential gap in information requirements

(Varga et al., 2018) may be bridged more efficiently if adversarial
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behavior can be visualized during RCP sharing. While non-technical

personnel were not included in the present study, the VDE group

outperformed the Arkime group on all metrics when they were

tasked to identify the top five Red Team hosts targeting Blue

Team systems. This was true for correctly identifying Red Team

hosts targeting Blue Team systems, but especially apparent for the

traffic associated with the identified Red Team hosts where the

differences in the session number associated with the identified

connections differed in the tens of thousands. Moreover, the

VDE group identified the connection with the highest amount of

associated traffic while the Arkime group did not. Considering

that the Arkime group could see the session number associated

with the connections when hovering over the edge connecting the

nodes while the VDE group had to go by edge brightness alone,

this difference in performance is arguably the most salient of the

experimental results.

Considering the role of working memory in SA (Gutzwiller

and Clegg, 2013), it could be that using edge brightness as a

cue for traffic provided an advantage over having access to actual

session statistics due to complexity reduction freeing up cognitive

resources. Albeit being allowed to write down their discoveries

(e.g., host IP, session number), having the actual statistics available

may result in deliberately or habitually engaging in analytical

procedures that require the application of additional cognitive

processes. This may include processes that tax attention allocation

and working memory which could be detrimental to performance in

a working environment that is already taxing on cognitive resources

(Champion et al., 2012; Sawyer and Hancock, 2018). Alternatively,

or additionally, it could be that having the network topology fixed

in space and at a scale where participants could walk from node to

node, facilitated a method of loci/memory palace-effect (Legge et al.,

2012; Wagner et al., 2021), due to the spatial encoding of information

(Stackman et al., 2002; Angelaki and Cullen, 2008; Moser et al., 2008).

By using edge brightness as the singular attentional cue combined

with a spatial layout, the VDE may have improved performance

by allowing for increased ease of visuo-cognitive processing of the

state of the network. But what if participants were tasked to find

the bottom five Red Team hosts (e.g., rare or ambiguous signals)

targeting Blue Team systems (with session number above zero)?

For instance, would edge brightness then be distracting, or would

the differences in performance remain? This question should be

addressed in future studies.

Interestingly, and without knowing that they had outperformed

participants in the Arkime group, some of the participants in

the VDE condition expressed that they would have liked to have

session number available for inquiry. This may further suggest

that taxing habitual or procedural (e.g., trained) cognitive processes

could have contributed to performance differences between the

groups. In a realistic scenario, however, the VDE would not

be used to replace packet capture software or any investigative

tools. Instead, the SOC analysts would have all their usual tools

available to them, while the VDE would be an additional tool

that analysts could use to interact with network data according to

their information processing needs (Kullman and Engel, 2022a,b).

If analysts would prefer to inquire about session statistics, they

could either probe for that through common means or incorporate

it in VDE. This, in turn, serves to deepen their understanding

of the cyber environment they are operating within on their

own terms, either for themselves or when communicating with

team analysts, decision-makers, or stakeholders (Kullman et al.,

2019a).

Awareness of the impact of an attack is also suggested to be

necessary for achieving CSA for good cyber defense decision-making

(Barford et al., 2009). In the present study, the VDE group identified

more Blue Team segments that were compromised by the Red Team

than the Arkime group. Given the level of uncertainty that is inherent

to the cyber domain (Jøsok et al., 2016), this difference in impact

awareness may be advantageous when attempting to reduce the level

of experienced uncertainty both when attempting to understand the

situation but also perhaps when evaluating the trustworthiness of

CSA information, especially for non-technical personnel. The latter

is also suggested to be important for achieving CSA for cyber defense

decision-making (Barford et al., 2009).

To assess the potential effect of VDE on RCP communication, we

asked participants to provide a short situational report based on three

open-ended questions which were later used to generate three scores

based on accuracy and relevance. In line with Barford et al. (2009),

the questions were aimed at measuring (a) awareness of the current

situation by describing the activity they saw, (b) what caused it by

describing what type of incident it was, and (c) how the situation may

evolve by suggesting which actions should be taken. A k-score was

generated based on the overall thoroughness of the situational report.

Although the VDE group scored higher than the Arkime group on

all four measures, only the activity description score was significantly

different between the groups.

In the present study, the VDE group identified more Blue Team

hosts that were abused for Red Team lateral movements. However,

this was not significantly different between the groups (although the

number of correctly identified abused Blue Team hosts approached

significance). Considering the difference in performance on task two,

the lack of difference in performance on task three could be due to

the time limit that the participants had to work under. It could also

be due to the limited sample size. This will have to be addressed in

future studies.

During the second part of the experiment, the VDE group was

more confident in their answers than the Arkime group on all CSA

measures. This should be considered in light of the fact that the

VDE group performed significantly better than the Arkime group

on several of the performance outcomes while having higher scores

on all performance outcomes (although not all were significantly

different). The outcome measures for the fourth CSA question (the

question relating to task three) was the only measure where not

one of the scores were significantly different between the groups.

When also considering the lower confidence scores when the VDE

group actually performed worse than the Arkime group, it could

indicate that these performance estimations are well-founded. A

second interpretation could be that the cyber cadets have good

metacognitive accuracy irrespective of the conditions they were

assigned to. Previous studies on cyber cadets have indicated that

they are similar in their cognitive profiles (Lugo and Sütterlin,

2018), and that cyber cadets with higher metacognitive accuracy have

better CSA, while overconfident cyber cadets have worse CSA (Ask

et al., 2023). Assessing the metacognitive accuracy of the participants

with respect to performance outcomes will be addressed in the

study examining the cognitive measures that were taken during

the experiment.
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It is important to restate here that the VDE is not a tool for

conducting forensic analyses per se. It is a neuroergonomic tool

for visualizing network topology in accordance with the analyst’s

mental model of the network (Kullman and Engel, 2022a,b). This

allows the analyst to not have to spend working memory on mentally

maintaining or navigating the representation of their mental models

when they are seeking to understand a CTS. Because individuals

collaborating in VDE will have the same spatial mental model of

the network (Kullman and Engel, 2022a,b), less mental effort may be

required to ground communication, thus making knowledge transfer

more efficient. While the experimental tasks and preliminary nature

of the present study does not capture traditional SOC activities

with sufficient realism, it still goes some way in capturing how

the VDE influences communication processes when individuals are

collaborating to establish CSA.

During the second part of the experiment, participants in

the VDE condition experienced a lower communication demand

compared to participants in the Arkime condition, suggesting that the

VDE improves communication efficiency. Thus, when considering

that communication inefficiencies are one of the biggest but least

researched problems facing SOC team analysts (Agyepong et al.,

2019; Ask et al., 2021a), this finding may indicate that the VDE could

aid in solving some of those communication problems.

Previous studies have indicated that task-related communication

is different between poor and well performing cyber teams during

CDXs (Jariwala et al., 2012; Ask et al., 2023) but that expert cyber

analysts communicate less than novice cyber analysts (Buchler et al.,

2016; Lugo et al., 2017). This could indicate that experts communicate

more effectively (e.g., are better at OLB processes; Knox et al., 2018)

and more readily achieve a shared mental model of the tasks they

are solving and of the cyber threat situation (Ask et al., 2023). A

recent review found that there was a lack of studies characterizing

the communication in cyber defense settings such as the purpose of

communication and the type of communication (Ask et al., 2021a).

In the present study, we noted the frequency of dyadic verbal

communication as they related to OLB processes, task resolution,

achieving a shared perceptual mental model, and communication

dysfunction. We found that the VDE group performed significantly

more OLB communication (which are aimed at achieving a shared

understanding of a situation; Knox et al., 2018) during task one

and task two, while the Arkime group performed significantly

more task resolution communications and had more communication

dysfunctions during task two. In our regression analysis, both

observed and self-reported communication variables that were

scored higher in the Arkime group compared to the VDE group were

negative predictors of CSA scores. This could indicate that the VDE

facilitates more efficient cyber team communication and should be

assessed further in future studies. The possibility for using VDE in

remote dyadic cooperation should also be assessed in future studies to

assess whether these potential effects are present when body language

cues are not available to the participants.

In the present study, almost all participants picked the same

decision regardless of assigned condition or individual performance.

This is likely due to cohort effects such as training but could also

potentially be due to the specific cognitive profiles that the cyber

engineering profession selects for Lugo and Sütterlin (2018). This

could explain why the relevance score for the actions suggested in the

situation report were not different between the groups. Future studies

should include a more diverse sample to avoid potential confounding

influences on the effect of VDE on decision-making. Because the

VDE visualizations are established through an interview with the user

of the visualizations (the analysts; Kullman et al., 2018, 2020), the 3D

layout of the network topology in VDE is generated through user-

centric cooperative-design principles. Due to the participants not

being familiar with the network they were working with in the current

experiment, the 3D layout was predefined. Usually, a cyber analyst

will know the network they are operating within, thus, there is always

a possibility that the unfamiliarity of the network made participants

choose “safer” and similar decision-making options.

4.1. Limitations and future perspectives

The present study has a few limitations. The VDE group had

higher scores on all performance measures and lower scores on all

team workload measures during the second part of the experiment,

although not all of these were significantly different. It is hard to say

whether differences would have reached significance with a larger

sample size. Considering this possibility, the experiment should be

repeated in a larger sample.

With most behavioral experiments, there is a question of whether

the experimental design produces results that can be generalized to

a real-world setting. Due to being high stakes and unfolding in a

complex working environment, defensive cyber operations can be

stressful and often entail being exposed to a number of distractors

(e.g., security alerts that are false positives) that may degrade

performance over time (Champion et al., 2012; Sawyer and Hancock,

2018). Future studies should therefore include more distractors to

ensure that results have high ecological value. This could include

explicating time limits on all tasks, or exposing participants to

periodic security alerts and increasing indicators of compromise

(scenario injections). This in turn would allow the assessment of

how taxing different senses and cognitive systems affect VDE vs.

Arkime usability for CSA generation, team communication, and

decision-making. Furthermore, applying the VDE in a setting that

captures SOC tasks with more realism, including analyst-to-decision-

maker communication will be necessary to fully validate the potential

usability of the VDE for achieving a shared CSA.

While the overall performance of the HoloLens 2 was good,

there were some instances where the HoloLens 2 headsets overheated

which negatively affected application’s stability and forced a few

minute-long breaks while the headset was being replaced. Wearing

a battery pack that provided the HoloLens 2 device with additional

power appeared to solve the problem but the form factor of the

battery pack and absence of dedicated gear (the participants kept the

battery in their pocket) made it a somewhat awkward experience.

This should be addressed in future research to ensure amore seamless

experience that works under various conditions.

5. Conclusions

In the present study, a collaborative, 3D mixed reality

representation of a network topology and network attack provided

better CSA compared to using paper-based, 2D topology schematics

and graph representation in the packet capture software Arkime.
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The most apparent difference was in the detection of the top five

Red Team hosts targeting Blue Team systems. The traffic associated

with the identified Red Team hosts in the mixed reality condition

differed in the tens of thousands. This is remarkable, as participants

in the mixed reality condition could only use edge brightness as

a cue for traffic while participants in the Arkime condition could

see the actual session number statistics. Observed and self-reported

communication was better for dyads in the VDE condition and

was associated with their CSA. This may suggest that the VDE

has neuroergonomic benefits when SOC team analysts need to

communicate for shared CSA. Although participants in the mixed

reality condition had higher CSA, we were not able to measure its

effect on decision-making. This could be due to cohort effects such

as training or the modest sample size. Finally, the experimental tasks

and preliminary nature of the study does not reflect SOC tasks with

sufficient realism. Thus, to truly assess the potential effects of VDE

on communication for shared CSA, the study should be repeated in a

naturalistic setting with a larger and more diverse sample.
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