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Introduction: Maintaining an a�ordable and nutritious diet can be challenging,

especially for those living under the conditions of poverty. To fulfill a healthy diet,

consumers must make di�cult decisions within a complicated food landscape.

Decisions must factor information on health and budget constraints, the food

supply and pricing options at local grocery stores, and nutrition and portion

guidelines provided by government services. Information to support food choice

decisions is often inconsistent and challenging to find, making it di�cult for

consumers to make informed, optimal decisions. This is especially true for low-

income and Supplemental Nutrition Assistance Program (SNAP) households which

have additional time and cost constraints that impact their food purchases and

ultimately leave them more susceptible to malnutrition and obesity. The goal of

this paper is to demonstrate how the integration of data from local grocery stores

and federal government databases can be used to assist specific communities in

meeting their unique health and budget challenges.

Methods: We discuss many of the challenges of integratingmultiple data sources,

such as inconsistent data availability and misleading nutrition labels. We conduct

a case study using linear programming to identify a healthy meal plan that stays

within a limited SNAP budget and also adheres to the Dietary Guidelines for

Americans. Finally, we explore the main drivers of cost of local food products

with emphasis on the nutrients determined by the USDA as areas of focus: added

sugars, saturated fat, and sodium.

Results and discussion: Our case study results suggest that such an optimization

model can be used to facilitate food purchasing decisions within a given

community. By focusing on the community level, our results will inform future

work navigating the complex networks of food information to build global

recommendation systems.

KEYWORDS

linear programming, food recommendation, diet cost, community-centered

optimization, food information networks, nutrition

1. Introduction

Research has shown that while many Americans pay attention to healthy eating habits,

they are often burdened with obstacles that limit their finding of food choices that are both

nutritious and affordable (Funk and Kennedy, 2016; Zorbas et al., 2018). This is especially

true for residents living in conditions of poverty who are not only often isolated from access

to quality food, but are also limited in economic stability and nutrition education to make

the most informed food choices for their health needs (Zorbas et al., 2018; Allcott et al.,

2019; De Leon et al., 2020). Because of these obstacles, many individuals in poverty struggle
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with food insecurity, and as a result, suffer higher risks of

chronic health diseases, such as malnutrition and obesity (Treuhaft

and Karpyn, 2010; Hanson and Connor, 2014; Leung et al.,

2014; Gregory and Coleman-Jensen, 2017; Hartline-Grafton and

Dean, 2017). To assist low-income households, the Supplemental

Nutrition Assistance Program (SNAP), a federal supplementary

aid program, provides monthly benefits up to $250 for single

person households (Food andNutrition Service U.S. Department of

Agriculture, 2021). Although SNAP has mitigated food insecurity

by 30%, many SNAP families are still unable to afford nutritious

foods that fulfill the US Department of Agriculture’s (USDA)

Dietary Guidelines for Americans (DGA) for healthy eating (Mulik

and Haynes-Maslow, 2017). A change in food choice behavior

toward nutritious well-balanced diets that are affordable is crucial

in reducing the health risks of these households (Ruder et al., 2022).

The ability to balance nutritional goals with the competing

constraints of time and money make it difficult for SNAP

consumers to make healthy food choices (Mancino and Guthrie,

2014). To achieve a healthy diet, consumers must be equipped to

identify foods that are nutritious based on their dietary needs and

also determine whether they are locally available and affordable.

Consumers must have the ability to understand the nutritional

value of foods and how much daily intake of these food products

would fulfill federal dietary guidelines outlined by government

services, and whether or not the costs fit their limited budgets.

Current recommendation systems pose complications because they

do not account for affordable pricing nor the lack of availability

of specific food products that some communities face. There is

a need to create a community-centered recommendation model

that focuses on the products available at local grocery stores to

assist SNAP participants with food purchase decisions that combine

nutrition and cost information to find an optimal daily food basket.

One key question that needs to be addressed when building amodel

is how feasible it is to combine information from local grocery

stores with the DGA to produce affordable and realistic diets.

In addition, we must identify whether there are additional cost

barriers that exist in specific communities which may hinder the

ability to create affordable recommendations. A recommendation

system must leverage information regarding local food availability

and pricing in tandemwith theDGA to produce healthy, affordable,

and realistic daily diets.

In order to meet these challenges, we implement a case study

using a linear programming optimization model that explores

whether data can be leveraged to make affordable and healthy food

purchase recommendations that meet federal dietary guidelines. In

this study, we collect product-specific data from Kroger, a grocery

store in the South Bend community, to produce an affordable and

realistic daily food basket. We evaluate the realistic quality of our

basket by determining whether the food products cover MyPlate

requirements, have diverse categories, and contain independently

consumable foods. In addition, we estimate price barriers for SNAP

participants in affording a nutritious diet that meets federal dietary

guidelines.

The goal of this paper is to demonstrate how the integration

of data from local grocery stores and federal government databases

can be used to assist specific communities in meeting their unique

challenges. Our research is guided by these questions:

• Is it possible to integrate product nutritional information from

local grocery stores with federal dietary guidelines to create a

community-centered recommendation system?

• Is it possible to produce realistic recommendations within the

SNAP allotment using this system?

• What barriers exist toward creating healthy and affordable

recommendations?

Through our case study, we explore how to integrate

information when focusing on community-centered optimizations.

We also examine how additional constraints can be utilized in local

grocery stores to influence the realistic quality of the daily diet

recommendations. Our work incorporating cost analysis allows

us to better understand the potential issues and complications

regarding affordability of healthy diets when conducting future

work. Our research contributes to a deeper understanding of the

challenges involved with integrating local grocery store data into a

food recommendation system.With our study, we analyze the effect

of realism constraints on cost and demonstrate the feasibility of

maintaining healthy diets within a constrained budget. This study

bridges the gap between nutritious and affordable food choices

and can serve as a valuable resource for community members,

nutritionists, and those living in poverty or facing economic

constraints in creating practical and budget friendly diet plans.

The results from this community-centered case study could inform

future work utilizing food information networks to aid in building

more complex, larger-scale recommendation systems (Rong et al.,

2006; Freyne and Berkovsky, 2010; Teng et al., 2012;Marshall, 2017;

Schäfer et al., 2017; Trattner and Elsweiler, 2017; Pai, 2018; Ruis,

2019; Ceniza et al., 2020; Tian et al., 2022).

2. Materials and methods

The objective of the case study is to determine the minimal

cost possible to achieve a diet that conforms to the DGA (U.S.

Department of Agriculture and U.S. Department of Health and

Human Services, 2020). In this section we provide an overview of

the different components of our case study.

We collect publicly available data from a local grocery store

and join it with nutritional information provided by the USDA

in the Food Data Central (FDC) database (U.S. Department of

Agriculture, Agricultural Research Service, 2022). We rely upon

the nutrition facts label as we optimize around the recommended

value of each of the macronutrients, minerals, and vitamins.

The nutrition facts label is provided on most products and is

implemented by the FDA as a policy tool to provide nutrition

information (U.S. Food and Drug Administration and others,

1994).

Following data collection, we apply a Linear Programming

model to create optimal budgets subject to the DGA. We

test the model under three sets of constraints measuring the

cost of maintaining a healthy diet under varying acceptability

assumptions. Finally, we assess our models under a set of heuristics

designed to evaluate the realism of each food basket, with a specific

focus on the cost of each basket compared to the maximum

monthly SNAP budget.
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2.1. Data collection and preprocessing

Due to the growing concern of food insecurity in its low socio-

economic neighborhoods, we focus on the Kroger store located in

South Bend, IN (Dits, 2017). Kroger’s Application Programming

Interface (API) (Kroger Developers, 2022) provides details on

available products at all Kroger locations in the United States. Using

the API, we search for products containing common ingredients

found in online recipes (Tian et al., 2021). For these products,

we download the Universal Product Code (UPC), price, and

availability in South Bend, IN. However, the product nutrition

label information is not available through the API. Instead, we

scraped Kroger’s website for the nutrition label information for

these products (Kroger, 2022). All information included in this

study is up-to-date as of October 6, 2022.

Of the 24,293 products originally pulled from Kroger’s API,

only 16,206 (67%) had nutritional labels available to scrape.

As Table 1 illustrates, the availability of nutritional information

varied by product category. Categories such as “Produce" and

“Deli” exclusively include food items but nearly a third do

not include nutrition labels. The percentage of nutrition labels

scraped is significantly smaller than other food categories such as

“Canned and Packaged.” This seems to indicate that produce items

such as fresh fruits, vegetables, and raw meat products may be

underrepresented in our dataset due to a lack of available nutrition

labels. This bias could be due to the voluntary requirement for

grocers to include nutrition labels for raw produce, fish, and

delicatessen-type food (U.S. Department of Health and Human

Services, 2013). In addition, the original API dataset contains many

non-food products which did not have nutritional labels.

2.2. Data challenges

There are several challenges with the data obtained from

Kroger that had to be addressed before it could be integrated

with federal guidelines in a recommendation system. First, the

nutritional information from Kroger contained inconsistent units

of measurement. For example, the product “Krogerr 2% Reduced

Fat Milk” has 5 mcg of Vitamin D but the DGA standard unit is in

International Units (IU). Table 2 shows the percentage of products

for each nutrient feature that are not listed in the DGA standard

unit. As the Table illustrates, 20 of the 22 features required unit

conversion to allow direct comparison of Kroger’s nutrients to the

DGA’s nutrients. To address this, we converted all nutrient values

to the unit listed in the DGA. This allows the Kroger products to be

easily compared against the DGA.

Additionally, we performed data cleaning to achieve

consistency in the number of servings within a product. The

nutrition label includes the nutrition contents of a food product

within a single serving. In order to compare the cost efficiency

of two different products, it is necessary to know the number of

servings within a product. Although the number of servings in a

packaged item is occasionally included within the nutrition facts

label, this information was missing in nearly 77% of the products

within the Kroger dataset. We attempted to calculate the number

of servings for each remaining product manually using the serving

TABLE 1 Number of products in the data downloaded from Kroger’s API

vs. the number of nutrition labels scraped from Kroger’s website in each

of the categories provided by Kroger.

Kroger categories API Scraped Percentage
scraped

Canned and packaged 1,647 1,513 91.9%

Breakfast 1,532 1,380 90.1%

Dairy 1,418 1,267 89.4%

Condiment and sauces 1,469 1,291 87.9%

Candy 778 678 87.1%

Frozen 2,411 2,054 85.2%

Meat and seafood 1,197 1,003 83.8%

International 795 662 83.3%

Pasta, sauces, grain 674 537 79.7%

Natural and organic 3,846 2,992 77.8%

Bakery 712 540 75.8%

Baby 389 291 74.8%

Beverages 2,773 2,064 74.4%

Snacks 2,385 1,733 72.7%

Baking goods 1,722 1,229 71.4%

Deli 562 386 68.7%

Produce 963 659 68.4%

Adult beverage 3 2 66.7%

Health 887 258 29.1%

Kitchen 143 8 5.6%

Apparel 81 4 4.9%

Garden and patio 112 3 2.7%

Cleaning products 786 14 1.8%

Beauty 740 10 1.4%

Personal care 1,044 11 1.1%

Pet care 767 8 1.0%

Home decor 154 0 0.0%

Entertainment 145 0 0.0%

Hardware 63 0 0.0%

Floral 6 0 0.0%

Sporting goods 10 0 0.0%

Party 7 0 0.0%

Halloween 9 0 0.0%

Automotive 4 0 0.0%

Electronics 1 0 0.0%

Office, school, and crafts 106 0 0.0%

Tobacco 3 0 0.0%

The percentage scraped column corresponds to the percentage of products in the original API

dataset with a nutrition label available on Kroger. These categories are not mutually exclusive.

size included on the nutritional label as well as the size listed in

the Kroger API. In ∼18% of the products, there was insufficient

information to calculate the number of servings so the number
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TABLE 2 Percentage of products for each nutrient that are not listed in

the DGA standard unit and the number of unique units present for each

nutrient.

Nutrient Percentage Number units

Protein 0.04% 4

Total carbohydrate 0.09% 6

Dietary fiber 0.04% 2

Sugar 90.79% 2

Total fat 98.53% 6

Saturated fat 81.48% 3

Calcium 0.19% 4

Iron 0.17% 4

Magnesium 0.01% 2

Phosphorus 0% 1

Potassium 0.09% 3

Sodium 0.28% 4

Zinc 0.01% 2

Vitamin A 12.61% 6

Vitamin E 0.85% 4

Vitamin D 60.38% 6

Vitamin C 0.12% 4

Thiamin 0.01% 2

Riboflavin 0.01% 2

Niacin 0.02% 2

Vitamin K 0% 1

Folic acid 0.01% 2

of servings was set to 1. While this assumption created some

impractical results, the number of servings is only relevant within

our case study as the denominator in the price per serving. Since

our objective is to minimize cost per serving, an underestimate of

the number of servings will result in an overestimate of the total

cost which we deemed preferable to the alternative.

Finally, when checking the data scraped from Kroger we

identified instances in which the nutritional label listed on the

website directly contradicted an image of the label on the actual

food product provided on the same webpage. For example, when

searching for Kroger Blueberry Sausage & Pancake on a Stick, the

user is presented with two conflicting nutritional labels. Despite the

serving size being the same on both labels, the values for calories,

total fat, sodium, and total carbohydrates do not match while other

nutrients such as Saturated Fat and Added Sugars are missing

entirely. Additionally, the unit of sodium listed on the product

nutrition label in mg does not match the unit listed on the online

nutrition label in g. Because of the problems with the nutritional

information scraped from Kroger, we instead joined the Kroger

information with nutrition information for branded products from

the government database FDC with a one-to-one matching using

the UPC.

Table 3 compares the alignment of FDC nutritional

information against Kroger after converting all paired nutrients to

the same unit. Overall, we generally see consistency between the

two datasets, but there are still many cases in which the nutritional

label from Kroger offers significantly different numbers than those

from FDC as evidenced by the 50% column suggesting some large

discrepancies between the two datasets. This implies that there are

many cases where Kroger’s information is not consistent with the

USDA’s.

After matching the information from FDC with that scraped

from Kroger, we had a dataset of 10,777 products, 67% of the size

of data scraped from Kroger. The final combined dataset consisted

of food products available from the local Kroger store including

the price and number of servings listed on Kroger’s website and

nutritional information including the amount of each nutrient

from FDC. Figure 1 lists each of the features and their sources for

our final dataset.

2.3. Linear programming formulation

Linear programming is a common optimization technique

used to find a minimum or maximum value of a linear function

subject to a number of constraints (Dantzig, 2002). Prior work has

established using linear programming models for diet and recipe

optimization (Briend et al., 2003; Donati et al., 2016; Elsweiler et al.,

2017; Van Dooren, 2018; Brink et al., 2019). A linear programming

model is particularly appropriate because it allows for easy

integration of user preferences in the form of additional constraints

which we refer to as “acceptability constraints." Additionally,

the flexibility of a linear programming model permits isolating

individual constraints and performing a deep analysis into their

impact on the recommendation. Observing the changes in the

model output provides insight into how individual constraints

may affect the final recommendation. Alternatively, by relaxing all

constraints we obtain a more comprehensive understanding of how

the various parameters interact with each other and are able to

identify which nutrients are more restricting than others.

The case study is designed to examine whether SNAP

participants are able to afford a healthy daily diet without exceeding

their limited food budget. We created an integer programming

model with the DGA’s recommended intake of the vitamins and

nutrients as constraints and the cost per serving of the products

as the target value to be minimized. In other words, the linear

programming model minimizes the cost of the diet while satisfying

the DGA nutritional constraints. Mathematically, this model can be

represented as:

min

n∑

i=1

xi ∗ ci, xi ∈ Z≥0

subject to vjmin ≤

n∑

i=1

xi ∗ vji ≤ vjmax

(1)

Here, xi is an integer variable corresponding to how many

servings of a particular product, i, should be included in the

optimal solution, ci is the cost per serving of product i at the South

Bend Kroger store, vj is a specific vitamin or nutrient within the

dietary guidelines, vjmin and vjmax are the respective minimum and
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TABLE 3 The percentage of products where the nutritional information from Kroger is within a percentage range of the nutritional information from

FDC.

Nutrient 0.0% 0.1% 1.0% 5.0% 10.0% 25.0% 50.0%

Calories 19.6% 46.3% 71.5% 79.4% 84.1% 90.2% 93.5%

Protein 35.1% 73.5% 83.9% 84.7% 86.4% 90.4% 93.8%

Total lipid 39.2% 74.6% 82.4% 83.6% 85.5% 91.0% 94.1%

Carbohydrate 22.0% 71.6% 75.9% 80.5% 84.9% 89.6% 93.2%

Dietary fiber 48.0% 49.5% 66.0% 84.9% 86.1% 87.6% 90.6%

Calcium 41.0% 44.9% 61.4% 70.2% 72.4% 77.1% 83.9%

Iron 42.7% 52.3% 66.4% 71.7% 74.3% 79.3% 84.9%

Magnesium 95.7% 95.8% 96.2% 97.0% 97.6% 97.8% 98.1%

Phosphorus 95.6% 96.0% 96.3% 96.6% 96.7% 97.3% 98.2%

Potassium 39.7% 49.5% 64.4% 67.6% 69.7% 72.9% 76.6%

Sodium 21.7% 50.2% 65.2% 75.6% 81.3% 87.5% 91.8%

Zinc 96.7% 97.0% 97.2% 97.3% 97.4% 97.7% 98.5%

Vitamin A 81.9% 83.4% 84.5% 84.6% 84.8% 85.1% 86.7%

Vitamin D 90.4% 90.5% 90.9% 91.0% 91.0% 91.1% 91.2%

Vitamin E 97.0% 97.0% 97.1% 97.3% 97.3% 97.5% 97.7%

Vitamin C 84.2% 85.3% 87.3% 88.2% 88.4% 88.8% 90.4%

Thiamin 93.8% 93.8% 93.8% 93.9% 94.1% 94.9% 96.0%

Riboflavin 93.2% 94.1% 94.9% 95.2% 95.3% 96.9% 97.3%

Niacin 91.6% 93.6% 93.7% 93.8% 93.9% 96.5% 96.9%

Vitamin K 99.2% 99.3% 99.3% 99.3% 99.3% 99.4% 99.4%

Folic acid 96.7% 96.8% 96.9% 96.9% 96.9% 96.9% 96.9%

Added sugars 26.6% 30.5% 36.3% 38.5% 40.9% 46.2% 50.1%

Trans fat 96.1% 96.2% 96.9% 97.2% 97.2% 97.2% 97.3%

Saturated fat 49.4% 72.8% 84.4% 85.2% 85.8% 89.6% 92.6%

For example the 5.0% column represents the number of products where the Kroger value of each nutrient is within 5.0% of the FDC value for that nutrient.

maximum allowable intakes within the dietary guidelines, and vji is

the amount of nutrient j in product i according to the FDC.

The model selects a set of products where eating the specified

number of servings per day will result in a diet conforming to

the DGA while minimizing the financial burden on the consumer.

The selected products within the dataset are represented by a non-

negative integer variable representing the number of servings in

the optimal solution where the unselected products are set to 0. By

doing this, the unselected products will not contribute to the overall

cost or nutrient values of the diet.

Because the nutritional information is provided per serving,

optimizing around the total cost of a product would penalize larger

“bulk" products which have more servings and may therefore cost

more despite potentially being more nutritious than a similar,

smaller product. To accommodate for this, all item prices were

divided by the estimated number of servings previously calculated.

The price per serving was used for the optimization value in the

model.

This model was implemented utilizing the Mixed Integer

Programming (MIP) python package (Toffolo and Santos, 2019).

It is a variation of the Knapsack Problem and is NP-Complete. The

MIP solver takes advantage of existing branch-and-cut methods to

efficiently solve the integer programming problem. Furthermore,

the solver is able to identify whether or not a solution is optimal or

a best estimate. All results discussed within this paper were proven

to be optimal by the solver .

2.3.1. Establishing optimal daily diets
With the use of linear programming models, our work

integrates data from the local grocery store with the DGA to

attempt to produce optimal daily diets. The diets need to be both

realistic and affordable for the user to accept and integrate the

recommendations into their daily meal plans.

The first goal in our case study is to demonstrate that it is

possible to produce an optimal diet under the DGA. The guidelines

provide a range of each nutrient that a person should consume per

day as part of a healthy diet. The specific ranges used as constraints

in our optimization formula are shown in Table 4.
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FIGURE 1

A list of all features within our dataset divided by the source used to

acquire them.

We developed 3 different models:

1. Model 1 searches the entire dataset of products for the minimal

cost diet that satisfies the constraints from the DGA.

2. Model 2 uses the same DGA constraints but limits the dataset

to food categories which are generally consumable on their

own without having to be combined with another product.

For example, the FDC category “baking additives and extracts”

which contains products such as “Kroger Pure Baking Soda”

is excluded in this model. The full list of categories that were

included in Models 1 and 2 are provided in the Supplementary

material Table S1 and Table S2.

3. Model 3 uses the same subset of the data as Model 2. However,

in this model we also introduce new acceptability constraints

along with the original DGA constraints. These constraints were

designed to emulate MyPlate which promotes a diverse plate of

TABLE 4 Constraints used in linear programming model to enforce DGA

in all three models.

Female 31–50 Male 31–50

Nutrient Min Max Min Max

Calories 1,600.0 2,200.0 2,200.0 3,000.0

Protein (kcal) 180.0 630.0 220.0 770.0

Protein (g) 46.0 N/A 56.0 N/A

Carbohydrates (kcal) 810.0 1,170.0 990.0 1,430.0

Carbohydrates (g) 130.0 N/A 130.0 N/A

Fiber (g) 25.0 N/A 31.0 N/A

Total lipid (kcal) 360.0 630.0 440.0 770.0

Calcium (mg) 1,000.0 N/A 1,000.0 N/A

Iron (mg) 18.0 N/A 8.0 N/A

Magnesium (mg) 320.0 N/A 420.0 N/A

Phosphorus (mg) 700.0 N/A 700.0 N/A

Potassium (mg) 2,600.0 N/A 3,400.0 N/A

Zinc (mg) 8.0 N/A 11.0 N/A

Vitamin A (mcg) 700.0 N/A 900.0 N/A

Vitamin E (mg) 15.0 N/A 15.0 N/A

Vitamin D (International Units) 600.0 N/A 600.0 N/A

Vitamin C (mg) 75.0 N/A 90.0 N/A

Thiamin (mg) 1.1 N/A 1.2 N/A

Riboflavin (mg) 1.1 N/A 1.3 N/A

Niacin (mg) 14.0 N/A 16.0 N/A

Vitamin K (mcg) 90.0 N/A 120.0 N/A

Folic acid (mcg) 400.0 N/A 400.0 N/A

Vitamin B-6 (mg) 1.3 N/A 1.3 N/A

Vitamin B-12 (mcg) 2.4 N/A 2.4 N/A

Added sugars (kcal) N/A 180.0 N/A 220.0

Saturated fat (kcal) N/A 180.0 N/A 220.0

Sodium (mg) N/A 2,300.0 N/A 2,300.0

protein foods, vegetables, fruits, dairy, and grain where protein

foods includes both meat products and vegetarian protein

foods such as legumes (U.S. Department of Agriculture, 2022).

Additionally, they limited the maximum amount of servings

of any other category to 2. The specific constraints added can

be seen in Table 5. Due to the similarity of FDC categories,

we manually condensed similar categories into a single

overarching category. These condensed categories include the

five MyPlate food groups to better represent MyPlate guidelines.

For example, the categories “frozen vegetables,” “canned

vegetables,” “vegetable based products/meals,” “pre-packaged

fruit and vegetables,” and “vegetables prepared/processed” were

combined into a single “vegetables” category. These new

categories are listed in the Supplementary material Table S3

and Table S4.
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TABLE 5 Acceptability constraints added in model 3.

Category Constraint
type

Constraint

Protein foods Min 142 g (female); 170 g (male)

Vegetables Min 2 servings (female); 3 servings

(male)

Fruits Min 2 servings (female); 3 servings

(male)

Soup Max 2 servings

Breakfast Max 2 servings

Other frozen desserts Max 2 servings

Snacks Max 2 servings

Grains Max 2 servings

Side dish Max 2 servings

Dough based

products/meals

Max 2 servings

Protein foods Max 2 servings

Cooked and prepared Max 2 servings

Frozen dinners and

entrees

Max 2 servings

Other deli Max 2 servings

Candy Max 2 servings

Mexican dinner mixes Max 2 servings

Chocolate Max 2 servings

Pizza Max 2 servings

Frozen bread and dough Max 2 servings

Entrees, sides and small

meals

Max 2 servings

Pizza mixes and other dry

dinners

Max 2 servings

Prepared wraps and

burittos

Max 2 servings

Prepared/preserved foods

variety packs

Max 2 servings

Deli salads Max 2 servings

Prepared subs and

sandwiches

Max 2 servings

2.3.2. Cost analysis
The second goal of the case study is to determine if any

nutrients are more cost prohibitive than others. According to

the Dietary Guidelines for Americans, one of the key elements

toward eating healthier is reducing intake of sodium, saturated

fat, and added sugars (U.S. Department of Agriculture and U.S.

Department of Health and Human Services, 2020). We refer

to these as the three areas of dietary concern. Each of these

nutrients are linked to adverse health effects and the average

American currently consumes significantly more than the daily

recommendation (DiNicolantonio et al., 2016; Grillo et al., 2019).

To better understand the ability of our model to reduce the overall

cost of American’s diets while increasing their healthy eating habits,

we sought to establish a connection between cost and each of these

individual nutrients. In other words, we set out to determine how

the adjustment of the total allowance of these nutrients would affect

the total diet cost.

Using the acceptability constraints in tandem with the DGA

constraints as a starting point, we independently adjusted the

maximum amount of each nutrient allowed in the model while

holding everything else constant and observed how the overall price

of the diet changed. For example, the recommended maximum

daily intake of sodium for both males and females is 2,300 mg. We

varied this maximum from a range of 1,000 to 5,000 mg in steps of

100. We repeated this for added sugar ranging from 50 to 400 kcals

in steps of 10 and saturated fat from 0 to 350 kcals in steps of 10.

After determining how each of these three nutrients affected

the cost independently, we examined how the interaction of

the constraints could affect the overall price. If two nutrients

were highly correlated with each other, altering their constraints

independently could hide their impact on the cost of a diet. To

address this, we simultaneously relaxed all constraints in the linear

programming model by a given tolerance level. That is, if the

tolerance level was 5% we lowered all minimum constraints by 5%

from the DGA standard and increased all maximum constraints by

5%. We did this for a range of tolerance levels from 0% to 50%.

After observing the optimization model at each tolerance level, we

calculated the total amount of each nutrient in the optimization

results and compared it to the original constraint established in

the DGA.

2.4. Evaluation

To evaluate the affordability of a diet, we compare the cost of

the recommended daily diet to the SNAP budget allotment for a

single person household. The monthly SNAP benefits for a single

person household is $250, or∼1$8.33 per day (Food and Nutrition

Service U.S. Department of Agriculture, 2021). As our focus is on

the SNAP participants within the local community, our goal is

to produce diet recommendations that are under the daily SNAP

allotment.

To evaluate the quality of a diet, we attempted to measure

realism by following a set of heuristics we designed using MyPlate

(U.S. Department of Agriculture, 2022) as a guide. The purpose of

evaluating the realism of our daily diet is to determine whether the

output reflects an “acceptable” daily meal plan. The evaluation will

also help us to identify the effectiveness of different acceptability

constraints.

1. Satisfaction ofMyPlate food groups:MyPlate publishes an image

of the recommended division of a plate into fruits, vegetables,

grains, protein, and dairy. Additionally, the MyPlate guidelines

include a number of cups of each of these food group categories

that should be consumed per day. In each diet, we determine

how many of these categories are contained within the results.

2. Overall diet diversity: In addition to the guidelines indicating

the minimum amount necessary of each category, MyPlate also

encourages variety in the diet. Specifically, the guidelines suggest

varying vegetables and protein and ensuring that at least 50% of
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the fruits are whole fruits and that 50% of grains are whole grains

(U.S. Department of Agriculture, 2022). Given this emphasis on

diversity within the guidelines, we are looking for diets with a

diverse set of food items for the consumer. We measure this by

the number of unique products and categories contained in the

diet.

3. Independently consumable foods: There are many food

products within our dataset that may be useful cooking products

but are not usually consumable as a standalone item. Because

we are looking at a daily meal plan and not considering recipes,

our goal is to suggest food items that are explicitly proteins,

grains, fruits, or vegetables. Therefore, we consider the inclusion

of these cooking products to be impractical for the purpose of

this study.

To evaluate the cost impact of specific nutrients we observe the

cost of each diet as the constraints for the three areas of concern

are gradually relaxed. We compare the cost of the diet at the DGA

threshold to the minimum cost diet. In addition, we evaluate at

what constraint value the diet reaches the minimum cost.

Finally, to evaluate the effect of relaxing all constraints

simultaneously, we determine which nutrients stay within the DGA

thresholds despite the relaxed constraints. A nutrient falling outside

the original constraint indicates that it is more difficult to affordably

achieve a healthy intake level of the nutrient and therefore it will be

more difficult to optimize for this in a recommendation system.

3. Results

The diets investigated in our case study are based on the DGA’s

daily nutritional goals for adult males and females in the 31–50 age

group. According to the SNAP Quality Control Database, 21% of

SNAP participants fall in the 31–50 age group which is the highest

proportion of participants compared to other age ranges in the

DGA (U.S. Department of Agriculture, Food and Nutrition Service,

2020).

3.1. Optimal daily diet results

Table 6 shows the optimal daily food basket produced using

Model 1. These baskets show minimal food diversity. For example,

the basket for females has three types of egg products (Eggland’s

best large white eggs, Eggland’s best cage free large brown organic

eggs, and Eggland’s best extra large white eggs) while the basket

for Males contains four servings of Carnation Breakfast Essentials

Rich Milk Chocolate Nutritional Drink Mix. Overall, the female

basket contains nine unique products and six unique categories

while the male basket contains 11 unique products and nine

unique categories. Neither basket contains any fruits. Additionally,

categories such as “vegetable and cooking oils” and “milk additives”

are shown in the output. While these products may be useful within

a set of recipes, they fail to provide sustenance as standalone items

in a daily diet. When we take into account all Kroger products

with federal dietary constraints, we see that the output is unrealistic

by our heuristics. The output produces multiple drinks and oil

products leaving the only actual food as pasta, eggs, and beans

which is not a substantial diet.

Table 7 shows the optimization results from Model 2. The

female results select 18 servings of food from only nine product

categories while the male results select 19 servings from only seven

categories. Neither of the results contain any fruits and there is

only a single vegetable in both results. Additionally the only dairy

product is a single cheese slice for females and none for males.

Considering the MyPlate food groups, we can see that at least

three of the five categories are inadequately represented in this

output. Also, while the outputs contain more unique products than

the original results, the total number of categories represented is

still relatively small. While this diet is more diverse than the one

produced byModel 1, it still fails to meet our standards of a realistic

result.

Table 8 contains the results from Model 3. In both cases, the

optimal result contains 15 unique products, an increase from all

previous outputs. Overall, 12 categories are represented in the

Female diet while 14 are represented in the Male diet providing a

more diverse output. In addition, this basket has more products

from vegetables, fruits, and dairy which were largely absent in the

previous results while maintaining a selection of grains and protein.

We consider these baskets to be more realistic than those from the

previous models.

3.2. Cost analysis results

Having established parameters within the optimization model,

the next step is to explore the cost of various nutrients. The

DGA identify three specific nutrients which Americans currently

overconsume: sodium, saturated fat, and added sugars. We sought

to answer the question: How does relaxing these constraints affect

the overall cost of the basket? Specifically, for each nutrient we

varied themaximum constraint over a range of values while holding

all other constraints constant. Figure 2 shows the results. In each of

these graphs, the average American is currently consuming more

than the daily guideline (to the right of the vertical lines). The

goal of a recommendation model would be to produce diets with

constraints lower than the DGA guideline (to the left of the line)

without significantly increasing the price.

In Figure 2A, the male recommended diet costs $8.80 at the

daily recommended maximum before reaching its minimum value

of $8.48 at 3,500 mg. The Female recommended diet costs $8.02

at the daily recommended maximum before reaching its minimum

value of $7.72 at 3,200 mg. Sodium appears to have a direct impact

on cost as the price of the optimal diet continues to decrease as it

passes the vertical line in the maximum sodium allowance. While

the line flattens out between 3,000 and 3,500 mg, which is notably

still lower than the average American adult consumption, it does

so at a cost 30–40 cents cheaper than the healthy diet, nearly 5%

savings.

In Figures 2B, C, the cost flattens out at a level below the

recommended maximum daily intake of saturated fat or added

sugars. Notably, neither macronutrient appear to have any effect

on price. The optimal cost basket can be achieved with less of
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TABLE 6 Model 1: daily diet results using full dataset with DGA constraints.

Number servings Product Category Price per serving

(a) Females 31–50

2 Sun Vistar pinto beans Canned and bottled beans $0.03

3 Carnation breakfast essentials rich milk chocolate nutritional drink mix Breakfast drinks $0.55

1 Mazola corn oil Vegetable and cooking oils $0.07

1 Eggland’s best large white eggs Eggs and egg substitutes $0.29

1 Eggland’s best cage free large brown organic eggs Eggs and egg substitutes $0.50

2 Eggland’s best extra large white eggs Eggs and egg substitutes $0.30

2 Krogerr spaghetti noodles Pasta by shape and type $0.12

2 Krogerr vitamin D whole milk Milk $0.20

1 Barillar whole grain linguine pasta Pasta by shape and type $0.24

Total price $4.05

(b) Males 31–50

1 Bigelowr blackberry citrus herbal tea caffeine free tea bags plus zinc Tea bags $0.19

3 Sun Vistar pinto beans Canned and bottled beans $0.03

4 Carnation breakfast essentials rich milk chocolate nutritional drink mix Breakfast drinks $0.55

1 Krogerr sugar free hazelnut coffee creamer Milk additives $0.05

2 Mazola corn oil Vegetable and cooking oils $0.07

1 Eggland’s best large white eggs Eggs and egg substitutes $0.29

2 Eggland’s best extra large white eggs Eggs and egg substitutes $0.30

2 Krogerr spaghetti noodles Pasta by shape and type $0.12

1 Lipton raspberry iced tea mix Powdered drinks $0.01

2 Krogerr vitamin D whole milk Milk $0.20

1 Barillar Whole grain linguine pasta Pasta by shape and type $0.24

Total price $4.45

each nutrient than the daily guidelines as represented by the line

flattening out prior to the vertical line.

Finally, we examine the interaction of the nutrients by relaxing

all constraints simultaneously. We compare the amount of each

nutrient in the optimal diet against the standard guideline value

as shown in Table 9. In these tables a row with False values

represents a nutrient which is more difficult to optimize within

the DGA.

4. Discussion

Through our case study, we demonstrate the potential of

building a community-centered recommendation system that

integrates information from grocery stores with federal dietary

guidelines. The case study demonstrates that we can use this

information at a community level to assist consumers in finding

affordable and healthy food options that meet their dietary needs.

Creating diet recommendations with products available in their

community gives them a personalized, actionable plan which

fits the nutritional guidelines. Through our research we observe

that it is possible to have healthy and realistic diets that are

affordable for those who rely on SNAP benefits. In doing so, we

highlight some of the practical challenges that exist in the creation

of local-community recommendations, such as the issues with

data integration, taxonimization of categories, and availability of

products for dietary fulfillment.

The optimal daily diets produced in the results indicate that

it is possible to achieve a daily diet within the monthly SNAP

budget of $250 for a single household, or ∼1$8.33 per day (Food

and Nutrition Service U.S. Department of Agriculture, 2021). Our

results show that Model 1 and Model 2 produced a diet for males

and females that is under the SNAP daily budget. In Model 3,

although the female diet is within the SNAP budget, the cost of the

male diet is $8.80 which is slightly above the SNAP budget.

In addition, our results show that adding acceptability

constraints to the model produces diets that are more realistic

which contain a diverse set of product categories. Model 1, without

any acceptability constraints, produces a diet with minimal food

diversity and with items that fail to provide sustenance on their

own. The lack of constraints also produces fewer unique products

which is an observation consistent with previous studies (Conforti

and D’Amicis, 2000). The addition of acceptability constraints

produces a more realistic diet with more diverse product categories
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TABLE 7 Model 2: Daily diet results using filtered dataset with DGA constraints.

Number servings Product Category Price per serving

(a) Females 31–50

1 Raisin bran whole grain wheat and bran cereal Cereal $0.36

1 Kraft singles American cheese slices Cheese $0.21

1 Good to doughr enriched white bread Breads and buns $0.05

1 Plantersr dry roasted peanuts Popcorn, peanuts, seeds, and related snacks $0.23

1 Eggland’s best cage free large brown organic eggs Eggs and egg substitutes $0.50

3 Eggland’s best extra large white eggs Eggs and egg substitutes $0.30

3 Krogerr spaghetti noodles Pasta by shape and type $0.12

1 Dole spinach Pre-packaged fruit and vegetables $0.86

3 Welch’s value size mixed fruit snacks Candy $0.22

1 Tasty chicken tikka masala dinner kit Cereal $0.60

1 Krogerr salted with sea salt peanuts Popcorn, peanuts, seeds, and related snacks $0.17

1 Krogerr Spanish salted with sea salt peanuts Popcorn, peanuts, seeds, and related snacks $0.17

Total price $5.07

(b) Males 31–50

2 Raisin bran whole grain wheat and bran cereal Cereal $0.36

1 Good to Doughr enriched white bread Breads and buns $0.05

1 Zero king size candy bar Candy $0.01

1 Plantersr dry roasted peanuts Popcorn, peanuts, seeds, and related snacks $0.23

1 Eggland’s best cage free large brown organic eggs Eggs and egg substitutes $0.50

3 Eggland’s best extra large white eggs Eggs and egg substitutes $0.30

3 Krogerr spaghetti noodles Pasta by shape and type $0.12

1 Dole spinach Pre-packaged fruit and vegetables $0.86

3 Welch’s value size mixed fruit snacks Candy $0.22

1 Tasty chicken tikka masala dinner kit Cereal $0.60

2 Krogerr salted with sea salt peanuts Popcorn, peanuts, seeds, and related snacks $0.17

Total price $5.23

and with more products that are representative of MyPlate food

groups.

While difficult to apply, the application of acceptability

constraints has been shown by other literature to assist with

creating realistic linear programming outcomes (Parlesak et al.,

2016; Van Dooren, 2018; Toledo et al., 2019). However, as we

have seen both within our case study and in other optimization

studies, introducing acceptability constraints can have a significant

impact on the price of the basket (Maillot et al., 2010; Donati

et al., 2016; Parlesak et al., 2016). Specifically, in our case study

we show that adding acceptability constraints produces a budget

that is higher than the daily SNAP allotment. Future research will

need to consider that the application of acceptability constraints

may lead to more expensive diets and may not be feasible for SNAP

participants to afford.

Furthermore, our study focuses primarily on analyzing

affordable diets compared to SNAP budgets, but considering

the influence of other food assistance programs, such as the

Special Supplemental Nutrition Program for Women, Infants, and

Children (WIC), could add depth to the interpretation of our

model results. WIC’s unique food package encourages healthier

choices like fruits, vegetables, whole grains, and lean proteins.

Dual recipients of SNAP and WIC could potentially have access

to a wider range of nutritious products, which could moderate

the impact of price point changes observed in our models.

In future models, additional constraints for these WIC benefits

could be introduced to ensure they fully leverage their benefits.

Incorporating additional constraints for WIC benefits could allow

users to maintain a healthy and diverse diet while fully expending

the resources available to them. However, handling the WIC

benefits could be a challenge due to the inconsistency in the

measurement of the constraints. Some product benefits are in dollar

amounts while others are in weights or quantities. This variation

in the measurement presents a challenge given the limitations
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TABLE 8 Model 3: Daily diet results using filtered dataset with DGA constraints and acceptability constraints.

Number servings Product Category Price per serving

(a) Females 31–50

1 Blue Diamondr honey roasted almonds Popcorn, peanuts, seeds, and related snacks $0.62

1 Blue Diamondr lightly salted almonds Popcorn, peanuts, seeds, and related snacks $1.29

1 Kellogg’s special K original breakfast cereal family size Cereal $0.61

1 Krogerr pineapple chunks in pineapple juice Canned fruit $0.28

1 Krogerr whole berry cranberry sauce Canned fruit $0.26

1 Krogerr no salt added cut green beans Canned vegetables $0.25

1 Sun Vistar Pinto beans Canned and bottled beans $0.03

2 Carnation breakfast essentials rich milk chocolate drink Candy $1.33

1 Hunt’s four cheese pasta sauce Prepared pasta and pizza sauces $0.22

1 Eggland’s best extra large white eggs Eggs and egg substitutes $0.30

1 Krogerr spaghetti noodles Pasta by shape and type $0.12

1 Dole spinach Pre-packaged fruit and vegetables $0.86

1 Honey nut cheerios gluten free breakfast cereal Cereal $0.29

1 Rothr original havarti cheese Cheese $0.05

2 Flavor ice giant freezer pops Ice cream and frozen yogurt $0.09

Total price $8.02

(b) Males 31–50

1 Blue Diamondr honey roasted almonds Popcorn, peanuts, seeds, and related snacks $0.62

1 Blue Diamondr lightly salted almonds Popcorn, peanuts, seeds, and related snacks $1.29

1 Kellogg’s special K original breakfast cereal family size Cereal $0.61

3 Krogerr whole berry cranberry sauce Canned fruit $0.26

1 Sun Vistar pinto beans Canned and bottled beans $0.03

2 Carnation breakfast essentials rich milk chocolate drink Candy $1.33

1 Ragu chunky tomato garlic and Onion pasta sauce Prepared pasta and pizza sauces $0.35

1 La Banderita white corn tortillas Mexican dinner mixes $0.12

1 Eggland’s best extra large white eggs Eggs and egg substitutes $0.30

1 Krogerr spaghetti noodles Pasta by shape and type $0.12

1 Dole spinach Pre-packaged fruit and vegetables $0.86

2 Muir Glen organic tomato puree Vegetables prepared/processed $0.27

1 Honey nut cheerios gluten free breakfast cereal Cereal $0.29

1 Rothr original havarti cheese Cheese $0.05

2 Flavor ice giant freezer pops Ice cream and frozen yogurt $0.09

Total price $8.80

of our dataset and linear programming model. In the future, we

would like to explore a more holistic perspective that integrates the

dynamics of multiple food assistance programs that could enhance

the realism and adaptability of these dietary models.

Our study also indicates that a future recommendation system

will need to better integrate user preferences. One key issue in

accomplishing this is the lack of a quality taxonimization of

products. While both Kroger and FDC provide product categories,

they are incomplete and difficult to employ. These categories are

not at the level of granularity needed to accurately represent a user’s

preferences. One example is that there are multiple categories for

poultry, but there are no categories for other specific meat products

such as beef or pork. This creates limitations within the model for

users who may have preferences for a specific type of meat. These
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FIGURE 2

In each of these graphs, the x-axis corresponds to the maximum

amount of the specified nutrient allowed within the constraints and

the y-axis is the price of the optimal basket generated. The verical

lines represent the DGA threshold for males (blue), females (green),

or (black). (A) Relaxing the tolerance for sodium within the DGA can

result a slightly lower cost basket. (B) Relaxing the tolerance for

saturated fat does not lower the price of the optimal healthy basket

for males or females. (C) Relaxing the tolerance for added sugar

does not lower the price of the optimal healthy basket for males or

females.

categories are how we currently introduce acceptability and more

granular information could allow for finer-tuned constraints that

more accurately portray user preferences. Additionally, there does

not currently exist an accepted method to analyze the realism of a

diet short of user feedback. While the heuristics used in this paper

were well suited for our purposes, better product categorization

would allow one to more precisely analyze the overall quality of a

diet within a user’s preferences.

Our results explore potential cost barriers that may limit future

optimization models’ ability to find affordable recommendations.

Through our case study, we demonstrate that an affordable diet

can be attained without concern for added sugars or saturated fat.

The results indicate that neither of these nutrients is considerably

expensive and that it is possible to create recommendations within

the DGA without sacrificing cost. On the other hand, the opposite

is seen for sodium. Our results indicate that in order to create

recommendations which satisfy the sodium DGA, consumers may

have to consider a higher cost diet. This finding presents a unique

challenge when creating future recommendation systems. Lower

sodium foods tend to be less expensive and have a longer shelf

life than alternatives but are less healthy. This also suggests that

it is more challenging for individual users with strict budget

restrictions to make changes to their eating habits which satisfy

the DGA as many of these cheaper foods are processed foods

which have sodium being added at the manufacturer level. In future

recommendation systems, it will be important to consider this

trade-off between health and budget and attempt to best optimize

around a specific user’s needs.

In addition to these three areas of concern, our results examine

the interaction between nutrients to further identify whether any

particular nutrient is relatively more expensive. The results indicate

that many of the vitamin and mineral daily goals are difficult to

achieve. For example, as seen in Table 9 Phosphorus and Vitamin

D are difficult for both men and women to achieve. Notably,

many vitamins and minerals are difficult to acquire because of

their rarity in products. Table 10 shows the percentage of products

within our final dataset where the value of the nutrient is equal

to 0. As shown, many of the vitamins and minerals are absent in

over 90% of the products while a more prominent macronutrient,

such as sodium, is absent in only ∼112% of products. This

indicates that greater availability of these nutrients through

better product offerings could assist Americans in achieving a

healthy diet.

While our study offers valuable insights into diet optimization,

there are some limitations to our method which could be

addressed in future work. Linear Programming requires linear

constraints which make it difficult to capture the complexities of

dietary guidelines. For example, the constraints within our model

treat macronutrients and micronutrients independently, when an

approach that considers their balance within a diet may be more

suitable. Furthermore, our results do not take into account meal

preparation methods or the shelf life of food items which would be

important considerations in practice. Finally, we utilized a daily diet

model that operates under the assumption of a flat budget per day.
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TABLE 9 Constraint relaxation results.

0% 2.5% 5% 10% 15% 20% 25% 30% 40% 50%

(a) Females 31–50

Cost $8.02 $7.94 $7.80 $6.99 $6.69 $6.02 $5.42 $5.11 $4.22 $3.53

Protein TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Total carbohydrates TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Fiber TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE

Added sugars TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Total lipid TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Saturated fat TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE

Calcium TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE

Iron TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Magnesium TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

Phosphorus TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Potassium TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

Sodium TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

Zinc TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE

Vitamin A TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Vitamin E TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Vitamin D TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Vitamin C TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE

Thiamin TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Riboflavin TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Niacin TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Vitamin K TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Folic acid TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Vitamin B-6 TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Vitamin B-12 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

(b) Males 31–50

Cost $8.80 $8.73 $8.65 $8.20 $7.50 $7.23 $6.78 $6.49 $4.83 $4.19

Protein TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Total carbohydrates TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Fiber TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

Added sugars TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE

Total lipid TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Saturated fat TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE

Calcium TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

Iron TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Magnesium TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

Phosphorus TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE

Potassium TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Sodium TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

Zinc TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

Vitamin A TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

(Continued)
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TABLE 9 (Continued)

0% 2.5% 5% 10% 15% 20% 25% 30% 40% 50%

Vitamin E TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

Vitamin D TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Vitamin C TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

Thiamin TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE

Riboflavin TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Niacin TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE

Vitamin K TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Folic acid TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Vitamin B-6 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

Vitamin B-12 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

The x-axis shows the percentage by which all constraints were relaxed.

A value of TRUE identifies a nutrient whose value in the optimal basket falls within the original DGA constraints. A FALSE identifies a nutrient whose value falls outside the original DGA

constraints indicating it is more difficult to optimize for this nutrient.

TABLE 10 Percentage of Products where the value of the nutrient is equal

to 0.

Nutrient Percent zero

Protein 26.66%

Total carbohydrates 10.28%

Fiber 44.56%

Added sugars 65.8%

Total lipid 30.79%

Saturated fat 44.29%

Calcium 41.27%

Iron 40.24%

Magnesium 96.17%

Phosphorus 96.03%

Potassium 47.75%

Sodium 12.09%

Zinc 97.17%

Vitamin A 87.26%

Vitamin E 99.15%

Vitamin D 97.68%

Vitamin C 85.25%

Thiamin 97.17%

Riboflavin 93.94%

Niacin 92.27%

Vitamin K 99.39%

Folic acid 96.81%

Vitamin B-6 95.23%

Vitamin B-12 96%

With the current economic and food landscapes affecting grocery

prices and product availability, a more dynamic approach which

anticipates the user’s needs over a longer time frame may be more

suitable.

Our results demonstrate the benefits in building a community-

centric recommendation system. We propose that through the

integration of local grocery store data with federal guidelines,

we are able to create diet recommendations that are both

nutritious and affordable within the SNAP allocation. These

diets provide a daily meal plan that could improve health

outcomes for low-income communities. We believe that

recommendation systems can further incorporate data from

local communities with government databases to directly address

their specific health and economic challenges. With a better

understanding of the obstacles encountered in the building of

community-focused models, our work will contribute toward

the development of broader food information networks for

future recommendation systems. Our work demonstrates

possible solutions for those suffering food insecurity in other

low-income communities that may be used as a stepping stone

in creating a more global food information network for future

recommendation systems.
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