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NuSegDA: Domain adaptation for
nuclei segmentation

Mohammad Minhazul Haq*, Hehuan Ma and Junzhou Huang

Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX,

United States

The accurate segmentation of nuclei is crucial for cancer diagnosis and further

clinical treatments. To successfully train a nuclei segmentation network in a

fully-supervised manner for a particular type of organ or cancer, we need the

dataset with ground-truth annotations. However, such well-annotated nuclei

segmentation datasets are highly rare, and manually labeling an unannotated

dataset is an expensive, time-consuming, and tedious process. Consequently,

we require to discover a way for training the nuclei segmentation network with

unlabeled dataset. In this paper, we propose a model named NuSegUDA for

nuclei segmentation on the unlabeled dataset (target domain). It is achieved

by applying Unsupervised Domain Adaptation (UDA) technique with the help of

another labeled dataset (source domain) that may come from di�erent type of

organ, cancer, or source. We apply UDA technique at both of feature space and

output space. We additionally utilize a reconstruction network and incorporate

adversarial learning into it so that the source-domain images can be accurately

translated to the target-domain for further training of the segmentation network.

We validate our proposed NuSegUDA on two public nuclei segmentation datasets,

and obtain significant improvement as compared with the baseline methods.

Extensive experiments also verify the contribution of newly proposed image

reconstruction adversarial loss, and target-translated source supervised loss to

the performance boost of NuSegUDA. Finally, considering the scenario when we

have a small number of annotations available from the target domain, we extend

our work and propose NuSegSSDA, a Semi-Supervised Domain Adaptation (SSDA)

based approach.

KEYWORDS

nuclei segmentation, domain adaptation, Unsupervised Domain Adaptation, Semi-

Supervised Domain Adaptation, adversarial learning

1. Introduction

Nuclei are the fundamental organizational unit of life (Sharma et al., 2022). Nuclei

segmentation, a subclass of biomedical image segmentation, is considered as an essential

task of digital histopathology image analysis (Yang S. et al., 2021; Haq and Huang, 2022).

However, accurate nuclei segmentation is quite challenging due to the significant variations

in the shape and appearance of nuclei, clustered and overlapped nuclei, blurred nuclei

boundaries, inconsistent staining methods, scanning artifacts, etc. (see Figure 1). Also,

histopathology of different organs or cancer types may exhibit different textures, color

distributions, morphology, and scales (Xu et al., 2017; Mahmood et al., 2019).

Nuclei segmentation problem can be seen as a semantic segmentation problem in which

we want to segment the nuclei from it’s background. Figure 1 shows the input image, and

corresponding output of semantic segmentation of nuclei. Convolutional Neural Network

(CNN) based approaches like Fully Convolutional Network (FCN) (Long et al., 2015),
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FIGURE 1

The semantic segmentation of nuclei. In this figure, the input image

comes from Triple Negative Breast Cancer (TNBC).

U-Net (Ronneberger et al., 2015), UNet++ (Zhou et al., 2018),

etc. give very promising results in biomedical image segmentation

tasks as well as in nuclei segmentation problems (Sirinukunwattana

et al., 2016; Haq and Huang, 2022; Sharma et al., 2022). However,

to successfully train these fully-supervised methods, we need at

least a few amount of annotated data (i.e., images with their

corresponding pixel-level ground-truth labels) (Zeiler and Fergus,

2014; Kumar et al., 2017; Sharma et al., 2022). Unfortunately, such

well-annotated datasets, even if very small-sized, are highly rare in

biomedical domain. Moreover, due to the heterogeneity of nuclei,

it’s even harder to learn good models under the scenario of lacking

annotations and samples. Also, commonly used strategy which

first collects an unannotated histopathology dataset and then do

the manual pixel-level labeling with the help of experts is also an

expensive, time-consuming, and tedious process (Xu et al., 2017;

Chen C. et al., 2019; Yang S. et al., 2021). For example, annotating

even a small nuclei segmentation dataset consisting of 50 image

patches takes 120–130 h of an expert pathologist’s time (Hou

et al., 2019). Therefore, an urgent question is raised: how could we

robustly train a deep CNN model for nuclei segmentation without

any further need for annotations?

For nuclei segmentation problem, simply applying Transfer

Learning (i.e., models trained with one organ or cancer type, and

then evaluated with different organ or cancer types) unfortunately

leads to poor performance due to the domain shift problem

(Sharma et al., 2022). This domain shift problem happens due to

different scanners, scanning protocols, tissue types, etc. (Sharma

et al., 2022). In this paper, we propose Domain Adaptation,

a subclass of Transfer Learning, based framework to solve the

domain shift problem for nuclei segmentation. We consider the

unannotated dataset (i.e., for which we want to predict the labels)

as the target domain. Then, with the help of another related but

different annotated dataset, referred as the source domain, we

apply adversarial learning (Goodfellow et al., 2014) based domain

adaptation technique for nuclei segmentation problem. Thus, our

proposed framework, learns from the labeled source domain and

adapts to the unlabeled target domain.

In this work, we first propose an Unsupervised Domain

Adaptation (UDA) model for nuclei segmentation to close the

gap between the annotated source domain and unlabeled target

domain. Unsupervised Domain Adaptation methods are capable

to minimize the labeling cost by utilizing cross-domain data and

aligning the distribution shift between labeled source domain data

and unlabeled target domain data. We empirically and carefully

observed that, images from different nuclei datasets, even if

collected from different organ or cancer types, exhibit dissimilarity

although their corresponding segmentation ground-truth labels

are quite similar (see Figure 2). In summary, ground-truth labels

for nuclei segmentation are domain-invariant. Because of the

aforementioned observation, we apply domain adaptation in the

output space. Thus, with the help of adversarial learning, we

train a robust nuclei segmentation network to generate source-

domain look-alike outputs for target images. Adversarial learning

attempts to align target-domain predictions with source-domain

ground truths via discriminator training. In addition to image-level

domain adaptation at the output space, we apply domain-invariant

class-conditional feature-level domain adaptation in the feature

space. However, simply forcing the target-domain distribution

toward the source-domain distribution can destroy the latent

structural patterns of the target domain, leading to a drop in

the model’s accuracy. Consequently, we also use a reconstruction

network to maximize the correlation between target images and

target predictions. Again, a reconstruction network alone can not

perfectly reconstruct original images (i.e., the reconstructed images

lack original texture, style, color distribution, etc.) for which we

incorporate adversarial learning into the reconstruction network,

which in turn helps us to translate source domain images to

the target domain. We additionally train our UDA model with

these target-translated source images, and observe a significant

performance boost. Finally, we extend our UDA framework to

Semi-Supervised Domain Adaptation (SSDA) model considering

that we have some annotations available from the target domain.

Conducting extensive experiments on two nuclei segmentation

datasets we conclude that, our proposedUDAmethod, NuSegUDA,

outperforms fully-supervised model trained on source domain and

evaluated on target domain, and baseline generic and biomedical

UDA segmentationmodels. Experimental result (see Section 4) also

shows the impacts of training NuSegUDA with proposed image

reconstruction adversarial loss, target-translated source images,

and feature-level clustering loss. Furthermore, the accuracy of

our SSDA model, NuSegSSDA, is highly competitive to the upper

bound of fully-supervised model trained in the target domain.

Therefore, the main contributions of this paper are: (1) We

propose an adversarial learning based Unsupervised Domain

Adaptation (UDA) approach, which is applied at both of feature

space and output space to solve nuclei segmentation problem for

unannotated datasets. (2) Additionally, we incorporate adversarial

learning into a reconstruction network to translate source domain

images to the target domain, and train proposed model with

these target-translated source images. (3) Compared to many of

the baselines, our proposed method is simple as it does not

depend on any data synthesization or data augmentation. (4)

Our proposed UDA framework can be easily extended to Semi-

Supervised Domain Adaptation (SSDA) in the scenario where a

small portion of the target domain is labeled. (5) Extensive and

comprehensive experiments on two datasets have demonstrated the

superiority of the proposed methods.
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FIGURE 2

Images from di�erent domains look dissimilar while their pixel-level segmentation outputs are similar. In this figure, source domain and target

domain images come from Kidney Renal Clear cell carcinoma (KIRC) and Triple Negative Breast Cancer (TNBC), respectively.

2. Related works

In literature, several domain adaptation models have been

proposed for generic image segmentation. Isola et al. (2017)

applied conditional GAN (Mirza andOsindero, 2014) for image-to-

image translation problems. CyCADA proposed an Unsupervised

Domain Adaptation (UDA) model utilizing both of input space

and feature space adaptation (Hoffman et al., 2017). A multi-

level adversarial network based domain adaptation approach for

semantic segmentation was proposed in AdaptSegNet (Tsai et al.,

2018). Zhang et al. (2018) proposed a fully convolutional adaptation

network for semantic segmentation. CrDoCo proposed a cross-

domain consistency loss based pixel-wise adversarial domain

adaptation algorithm (Chen Y.-C. et al., 2019). Yang J. et al.

(2021) proposed adversarial self-supervision UDA model which

maximizes agreement between clean samples and their adversarial

examples. Toldo et al. (2021) proposed feature-clustering based

UDA framework that groups features of the same class into tight

and well-separated clusters.

Domain adaptation has also been employed in different

biomedical image segmentation tasks. A multi-connected domain

discriminator based UDA model for brain lesion segmentation

was proposed by Kamnitsas et al. (2017). Dong et al. (2018)

introduced another UDA framework for cardiothoracic ratio

estimation through chest organ segmentation. Huo et al. (2018)

proposed an end-to-end CycleGAN (Zhu et al., 2017) based

whole abdomen MRI to CT image synthesis and CT splenomegaly

segmentation network. Mahmood et al. (2019) proposed a nuclei

segmentation approach in which a large dataset is generated

using synthesization. Gholami et al. (2019) proposed a biophysics-

based medical image segmentation framework which enriches

the training dataset by generating synthetic tumor-bearing MR

images. Hou et al. (2019) also synthesized annotated training

data for histopathology image segmentation. Haq and Huang

(2020) utilized adversarial learning at output space along with a

reconstruction network for nuclei segmentation. Xia et al. (2020)

proposed Uncertainty-aware Multi-view Co-Training (UMCT)

framework which is capable of utilizing large-scale unlabeled data

to improve volumetric medical image segmentation. Raju et al.

(2020) proposed an user-guided domain adaptation framework for

liver segmentation which uses prediction-based adversarial domain

adaptation to model the combined distribution of user interactions

and mask predictions. EndoUDA proposed another UDA-based

segmentation model for gastrointestinal endoscopy imaging which

comprises of a shared encoder and a joint loss function for

improved unseen target domain generalization (Celik et al., 2021).

Li et al. (2021) proposed another GAN (Mirza and Osindero, 2014)

based framework for Unsupervised Domain Adaptation of nuclei

segmentation which also utilized self-ensembling and conditional

random field (Boykov and Kolmogorov, 2004). Sharma et al. (2022)

proposed a mutual information based UDA method for cross-

domain nuclei segmentation.

Several previous approaches (Dong et al., 2018; Tsai et al., 2018;

Haq and Huang, 2020; Toldo et al., 2021) employed Unsupervised

Domain Adaptation technique either in the output space or the

feature space. Differently from these approaches, in our work we

apply domain adaptation at both of output space and feature space.

Additionally, unlike previous works, we utilize a reconstruction

network to ensure that the target domain predictions spatially

correspond to the target domain images. Also, several recent works

(Huo et al., 2018; Gholami et al., 2019; Hou et al., 2019; Mahmood

et al., 2019) applied complicated data synthesization techniques to

generate a large training dataset. On the contrary, in our work we

simply incorporate adversarial learning so that the source domain

images can be translated to the target domain for further training.

3. Methodology

In this section, we first describe the problem that we

aim to solve. Then, we introduce the details of our proposed

Unsupervised Domain Adaptation (UDA) and Semi-Supervised

Domain Adaptation (SSDA) framework. Finally, we discuss the

implementations of the proposed models.

3.1. Problem definition

In our nuclei segmentation problem, we have nuclei

histopathology image patches as input X of size H × W × 3.

The input X comes from either the source domain or the target

domain. Depending on the problem (i.e., unsupervised or semi-

supervised) and domain (i.e., source or target), we may also

have the corresponding pixel-wise ground-truth label Y of size
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H × W × 1 which is basically a binary mask. Then, using the

segmentation network, we want to predict the segmentation output

Ŷ of size H ×W × 1.

Formally, in Unsupervised Domain Adaptation (UDA)

problem, the source domain consists of Ns annotated images

{(Xs,Ys)}, and the target domain has Nt unannotated images

{(Xt)}. In the case of Semi-Supervised Domain Adaptation

(SSDA) problem, the source domain is the same as it is in UDA

problem, and we assume that the target domain has N l
t images

with annotations {(Xl
t ,Yt)} and Nu

t unannotated images {(Xu
t )}.

In both of UDA and SSDA problem, the source domain data

and target domain data are the related data but they come from

different distributions (i.e., different organ or cancer types). For

both of unsupervised and Semi-Supervised Domain Adaptation,

our ultimate goal is to learn nuclei segmentation models that

accurately produce the segmentation outputs in the target domain.

3.2. Unsupervised Domain Adaptation

We refer our nuclei segmentation Unsupervised Domain

Adaptation (UDA) model as NuSegUDA, and the framework

is shown in Figure 3. NuSegUDA consists of four modules:

Segmentation network (S), Reconstruction network (R), Prediction

Discriminator (DP), and Image Discriminator (DI).

3.2.1. Segmentation network
The segmentation network S takes image X as the input and

produces the segmentation prediction Ŷ of the same size as the

input. Here, X can be either the source domain image Xs, or the

target domain image Xt . Hence, the source domain prediction

Ŷs = S(Xs), and the target domain prediction Ŷt = S(Xt). From

the perspective of GAN (Goodfellow et al., 2014) framework, the

segmentation network S can be thought as the generator module.

We train S to generate the source domain segmentation

predictions Ŷs to be similar to the source domain ground-truth

labels Ys. Since in Unsupervised Domain Adaptation (UDA) the

ground-truth labels are not available for target images, we can not

compute any supervised pixel-level loss for target predictions. In

practice, we found that combining dice-coefficient loss and entropy

minimization loss is more effective than simply using binary cross-

entropy loss for nuclei segmentation tasks. Therefore, we define

segmentation loss Lseg as:

Ldice(Xs) = 1−
2.Y ′

s .Ŷ
′
s

Y ′
s + Ŷ ′

s

(1)

Lem(Xs) = −
1

H ×W

∑

h,w

Ŷs log(Ŷs) (2)

Lseg(Xs) = Ldice(Xs)+ Lem(Xs) (3)

where Y ′
s and Ŷ ′

s are the flattened Ys and Ŷs, respectively.

Here, question may arise that why we are using single

segmentation network S in NuSegUDA although we have two

different domains. Since we are particularly looking for nuclei

from both domain images, it is very unusual to use multiple

segmentation networks. Additionally, using two segmentation

networks would increase the number of learnable parameters which

would slow down the training process in turn. Therefore, single

segmentation network helps to prevent the memory issues and

training latency in NuSegUDA.

Training the segmentation network S with only the annotated

source data teaches S to make accurate predictions for source

images. However, this segmentation network may generate

incorrect outputs for target images as there are visual discrepancies

between source images and target images (see Figure 2). This visual

gap between domains causes the domain shift problem. According

to our aforementioned observation that nuclei segmentation

outputs are domain-invariant, we require S to produce target

domain predictions as much as close to the source domain

predictions. In other words, we want to make the distribution of

target predictions Ŷt closer to the distribution of source predictions

Ŷs. For this reason, we utilize Prediction Discriminator DP in

NuSegUDA, and we define the prediction adversarial loss as:

LadvP(Xt) = −
1

Hp ×Wp

∑

hp ,wp

log (DP(Ŷt)) (4)

where Ŷt = S(Xt), and Hp and Wp are height and width

of the prediction discriminator output DP(Ŷt). The details of the

Prediction Discriminator DP is discussed in Section 3.2.3.

The prediction adversarial loss in Equation (4) helps S to

fool the prediction discriminator so that it considers Ŷt as

source domain segmentation outputs. Segmentation loss and the

prediction adversarial loss jointly guide S to generate target domain

predictions Ŷt which look similar to source domain ground-truths.

3.2.2. Reconstruction network
As we mentioned earlier, the segmentation network S produces

domain-invariant predictions for both domains. In other words, we

want to generate the target domain predictions in a way so that

they become similar to the source domain predictions. However,

it is highly probable that the target predictions are not well-

correlated with corresponding target input images. In this scenario,

the ability of reconstructing the images from the predictions with

similar visual appearance as input images will ensure that there is a

correlation between the input image and segmentation output.

To ensure that our target domain predictions spatially

correspond to the target domain images, reconstruction network R

is used in NuSegUDA. In a similar way to Xia and Kulis (2017),

we consider the segmentation network S and the reconstruction

network R as an encoder and a decoder, respectively. R reconstructs

target images from the corresponding predictions. Thus, S and R

altogether works as an autoencoder.

Using our reconstruction network R, we first reconstruct target

input images Xt from Ŷt . Then, we calculate the reconstruction loss

as:

Lrecons(Xt) =
1

H ×W × C

∑

h,w,c

(Xt − R(Ŷt))
2

(5)

where, R(Ŷt) is the output of reconstruction network for Ŷt , and

C is the number of channels of input image Xt .
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FIGURE 3

Complete architecture of NuSegUDA. Segmentation network generates segmentation outputs, from which reconstruction network reconstructs

input images. Prediction discriminator distinguishes between source domain outputs and target domain outputs. Image discriminator distinguishes

between original images and reconstructed images.

FIGURE 4

Visualization of the target-translated source domain images Xs→t which are also the same as reconstructed source images X̃s. (A–C) and (D–F) are

chosen from Kidney Renal Clear cell carcinoma (KIRC) domain, and Triple Negative Breast Cancer (TNBC) domain, respectively. In (C) and (F), we see

that KIRC domain image is translated (i.e., reconstructed) into TNBC domain styles, and vice versa, respectively. In (B, C) and (E, F), Xs→t w/o LadvI and

Xs→t w/ LadvI refer to the translated image when NuSegUDA is trained without and with image reconstruction adversarial loss LadvI, respectively.

Although we use above reconstruction loss to reconstruct

the target domain images from its predictions, the reconstructed

images may have very different textures and styles (for both of

nuclei and background) than the original images (see Figure 4). The

reason is that the pixel-wise reconstruction loss Lrecons (in Equation

5) can not capture the overall pixel distribution of target domain

images. To solve this issue, in addition to Lrecons, we also utilize an

Image Discriminator DI to distinguish the original images and the

reconstructed images. To train R and S to generate original-alike

reconstructed images, we define image reconstruction adversarial

loss as:

LadvI(Xt) = −
1

Hi ×Wi

∑

hi ,wi

log (DI(X̃t)) (6)

where X̃t = R(Ŷt), and Hi and Wi are height and width of

the image discriminator output DI(X̃t). This adversarial loss LadvI

trains R and S to reconstruct target domain images of similar

distributions (in terms of texture, style, color distribution, etc.) to

the original images from target domain.
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In NuSegUDA, LadvP helps the segmentation network S

to generate target predictions Ŷt to be similar to the source

predictions Ŷs. And, due to LadvI , reconstruction network R learns

to reconstruct target images (i.e., X̃t) which are very similar to the

original target images in terms of texture, style, color distribution,

etc. In other words, S maps both domain images (i.e., Xs and Xt)

to a common prediction subspace Rn
p , and from R

n
p R reconstructs

the images in target domain. Therefore, using S and R we can

translate source domain images Xs to the target domain. Thus,

target translated source domain images Xs→t = R(S(Xs)). Figure 4

shows the visualizations of the impacts of image reconstruction

adversarial loss LadvI on Xs→t . Finally, we train the segmentation

network S with {(Xs→t ,Ys)} using following Ltrans loss which is a

combination of dice-coefficient loss and entropyminimization loss:

Ldice(Xs→t) = 1−
2.Y ′

s .Ỹ
′
s

Y ′
s + Ŷ ′

s

(7)

Lem(Xs→t) = −
1

H ×W

∑

h,w

Ỹs log(Ỹs) (8)

Ltrans(Xs→t) = Ldice(Xs→t)+ Lem(Xs→t) (9)

where Ỹs = S(Xs→t). And, Y
′
s and Ỹ ′

s are the flattened Ys and

Ỹs, respectively.

3.2.3. Discriminators
We utilize two discriminators in NuSegUDA: Prediction

Discriminator (DP) and Image Discriminator (DI). Prediction

Discriminator distinguishes between source domain outputs and

target domain outputs, whereas Image Discriminator distinguishes

between original images and reconstructed images. We discuss the

details of both discriminators in the following.

Prediction discriminator As our goal is to generate similar

predictions for both of source images and target images, we

incorporate prediction discriminator DP in NuSegUDA. This

discriminator takes source domain prediction or target domain

prediction as input, and then distinguishes whether the input (i.e.,

prediction) comes from the source domain or the target domain.

To train DP, we use following cross-entropy loss:

LdisP(Ŷ) = −
1

Hp ×Wp

∑

hp ,wp

zp. log (DP(Ŷ))

+ (1− zp). log (1− DP(Ŷ)) (10)

where zp=0 when DP takes target domain prediction as its

input, and zp=1 when the input comes from source domain

prediction.

Image discriminator We use image discriminator DI in

NuSegUDA so that the reconstructed image distribution becomes

similar to original image distribution. The input of DI is either the

original target image or the reconstructed target image. Then, DI

distinguishes whether the input is original or the reconstructed

one. Similar to DP, we use following cross-entropy loss to train DI :

LdisI(X) = −
1

Hi ×Wi

∑

hi ,wi

zi. log (DI(X))+ (1− zi). log (1− DI(X))

(11)

where zi=0 when DI takes reconstructed target image X̃t as

its input, and zi=1 when the input comes from original target

images Xt .

3.2.4. Feature-level adaptation
In addition to image-level domain adaptation at the outputs,

we also apply feature-level domain adaptation in NuSegUDA to

reduce the domain gap in the feature space. We assume that,

our segmentation network S is composed of an encoder SE and a

decoder SD (i.e., S = SEoSD). Here, the encoder SE works as a

feature extractor. Due to the discrepancy of input statistics across

domains, there is also a shift of feature distribution in the feature

space spanned by SE. Similar to Toldo et al. (2021), we utilize a

clustering loss at the feature-level to serve as a constraint toward

a class-conditional feature alignment between domains.

Given source image Xs and target image Xt , we first extract the

features Fs = SE(Xs) and Ft = SE(Xt). Then, the clustering loss is

computed as:

Lcl(Xs,Xt) =
1

| Fs,t |

∑

fi∈Fs,t ,ŷi∈Ŷs,t

d(fi, cŷi )

−
1

| C | (| C | −1)

∑

j∈C

∑

k∈C,k6=j

d(cj, ck) (12)

where fi is the feature vector corresponding to a spatial

location of Fs or Ft , ŷi is the corresponding predicted class, and

C is the set of semantic classes which is {0, 1} for our nuclei

segmentation problem. To compute ŷi, the segmentation prediction

Ŷ is downsampled to match the spatial dimension of F. We set the

function d(.) to L1 norm. In Equation (12), cj denotes the centroid

of semantic class j, which is computed using following formula:

cj =

∑
fi

∑
ŷi

δj,ŷi fi∑
ŷi

δj,ŷi

, j ∈ {0, 1} (13)

where δj,ŷi is equal to 1 if ŷi = j, and to 0 otherwise.

In Equation (12), the clustering loss is composed of two terms:

the first term measures how close the features are from their

respective centroids, and the second term measures how far the

semantic class centroids are from each other. Therefore, according

to the first term, the feature vectors of the same class from same or

different domain are tightened around the class feature centroids.

And, because of the second term, features from different classes gets

a repulsive force applied to feature centroids which moves them

apart.

Thus, we minimize the following total loss when training our

segmentation network S and reconstruction network R:

Luda(Xs,Xt) = Lseg(Xs)+ λadvPLadvP(Xt)+ λreconsLrecons(Xt)+

λadvILadvI(Xt)+ λtransLtrans(Xs→t)+ λclLcl(Xs,Xt)

(14)

where, λadvP, λrecons, λadvI , λtrans, and λcl are the weights to

balance corresponding losses.
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3.3. Semi-Supervised Domain Adaptation

In Semi-Supervised Domain Adaptation (SSDA) problem,

we aims to ensure the best usages of available target domain

annotations Yt when training our segmentation network S. In

such scenarios, we extend proposed NuSegUDA framework to

NuSegSSDA, a nuclei segmentation SSDA model.

In NuSegSSDA, for unannotated target images Xu
t we follow

the same steps as NuSegUDA. However, when we encounter

an annotated target data (Xl
t ,Yt) while training, we additionally

compute the segmentation loss Lseg(X
l
t) in the similar manner to

Equation (3). Then, while computing the total loss we incorporate

Lseg(X
l
t) so that the segmentation network learns to generate the

predictions closer to target ground-truths. Therefore, Equation (14)

is now modified as below:

Lssda(Xs,X
l
t ,X

u
t ) = Lseg(Xs)+ Lseg(X

l
t)+ λadvPLadvP(X

u
t )

+λreconsLrecons(X
u
t )+ λadvILadvI(X

u
t )

+λtransLtrans(Xs→t)+ λclLcl(Xs,X
l
t ,X

u
t )

(15)

4. Experiments

4.1. Datasets

In our experiments, we use two H&E stained histopathology

datasets with ground-truth annotations for nuclei segmentation.

Both of the datasets that we used are public. We present the brief

of the datasets in the following.

Dataset-1 (KIRC) This dataset is taken from Irshad et al. (2014)

in which the images are extracted at 40x magnification from

Whole Slide Images (WSI) of Kidney Renal Clear cell carcinoma

(KIRC). This dataset, referred as KIRC, consists of 486 H&E stained

histology images of 400× 400 pixel size with annotations made by

expert pathologists and research fellows. In our experiments, we

randomly split KIRC into 80% for training, 10% for validation, and

10% for testing.

Dataset-2 (TNBC) Naylor et al. (2018) generated this dataset

by collecting slides from Triple Negative Breast Cancer (TNBC)

patients at 40x magnification. For a total of 50 H&E stained

histology images of pixel size 512× 512, labeling was performed by

expert pathologist and research fellows. We follow the same data

splitting as KIRC for this dataset. We refer this dataset as TNBC in

our experiments.

Visual differences among datasets Although both datasets consist

of H&E stained histopathology images, they are collected from two

different organs, cancer types, and institutions. KIRC images are

collected from TCGA portal (image acquiring tools are unknown

to us), whereas TNBC images were acquired at Curie Institute

using Philips Ultra Fast Scanner 1.6RA. Organ difference, cancer

type difference, institutional difference, and using different imaging

tools and protocols cause the visual difference among the images

from these two datasets. See Figure 2, where TNBC image looks

dimmer than KIRC image.

4.2. Implementations

In our work, we use U-Net (Ronneberger et al., 2015) as both

of our segmentation network and reconstruction network. We

choose U-Net so that our proposed segmentation framework can

be directly applied in other biomedical domains. We preferred U-

Net over UNet++ (Zhou et al., 2018) because of the less number of

parameters. Following DCGAN (Radford et al., 2015), we designed

our prediction discriminator and image discriminator consisting of

five convolutional layers. To train NuSegUDA and NuSegSSDA,

we followed the training strategy from GAN (Goodfellow et al.,

2014). Adam optimizer (Kingma and Ba, 2014) with learning

rate 0.0001, 0.001, 0.001, and 0.001 are used in segmentation

network, reconstruction network, prediction discriminator, and

image discriminator, respectively. We empirically choose 0.001,

0.01, 0.001, 0.001, and 0.002 as λadvP, λrecons, λadvI , λtrans, and λcl,

respectively. We implement NuSegUDA and NuSegSSDA using

PyTorch (Paszke et al., 2019), and trained on a single GPU. We do

not use any data augmentation in our experiments.

4.3. Experimental results

4.3.1. Unsupervised Domain Adaptation
Experiment-1 (KIRC → TNBC) In our first experiment, we

choose KIRC as source domain and TNBC as target domain,

denoted by KIRC → TNBC. In our experiment, we choose U-Net

(Ronneberger et al., 2015) as the representative of Convolutional

Neural Network (CNN) based approaches. Fully-supervised

segmentation model U-Net gives an insight of how it performs

when directly applying transfer learning (i.e., training with only

KIRC and then test it on TNBC without any modifications).

AdaptSegNet (Tsai et al., 2018) and OrClEmb (Toldo et al.,

2021) represent generic Unsupervised Domain Adaptation (UDA)

models. DA-ADV (Dong et al., 2018), CellSegUDA (Haq and

Huang, 2020), EndoUDA (Celik et al., 2021), SelfEnsemb (Li

et al., 2021), and MaNi (Sharma et al., 2022) are chosen as the

representatives of UDA model for biomedical image segmentation.

From Table 1, we see that source-trained U-Net gives the lower-

bound of experimental performance (see first row of Table 1) which

happens because of the visual domain gap between source training

images and target test images, also known as domain shift problem.

We see that, our proposed UDAmodel NuSegUDA outperforms all

UDA baseline models in terms of IoU%, Dice score, and Hausdorff

distance. Specifically, NuSegUDA has 1.28 and 0.42 higher IoU%

than best generic UDA baseline OrClEmb, and best biomedical

UDA baseline MaNi, respectively. Figure 5 shows the visualization

results of CellSegUDA, SelfEnsemb, MaNi, and NuSegUDA. In

Table 1, the second to last row [i.e., U-Net (target-trained)] shows

the upper-bound of experimental performance (i.e., training U-Net

with TNBC-train and testing it on TNBC-test).

Experiment-2 (TNBC → KIRC)We conduct another experiment

in the similar way to experiment-1 by selecting TNBC as source

and KIRC as target domain. This experiment also reflects the

excellence of NuSegUDA compared to other approaches in terms

of segmentation accuracies (see last three columns of Table 1).
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TABLE 1 Baseline sociodemographic characteristics of participants in the study.

Experiment-1 Experiment-2

KIRC → TNBC TNBC → KIRC

Method IoU% Dice
score

HD IoU% Dice
score

HD

U-Net (source-trained) 52.66 0.6875 10.1214 54.82 0.7056 9.2487

DA-ADV 54.93 0.7079 9.6531 55.43 0.7107 9.0142

AdaptSegNet 56.49 0.7198 9.1512 56.87 0.7235 8.3477

CellSegUDA 59.02 0.7394 8.5653 57.09 0.7242 8.1739

OrClEmb 59.23 0.7402 8.5564 57.05 0.7236 8.1923

EndoUDA 59.81 0.7445 8.3317 57.39 0.7277 8.1254

SelfEnsemb 60.02 0.7468 8.2524 57.45 0.7292 8.1121

MaNi 60.09 0.7477 8.2746 57.48 0.7293 8.1493

U-Net (target-trained) 66.57 0.7985 7.7301 62.04 0.7621 7.6281

NuSegUDA (ours) 60.51 0.7525 8.0011 57.68 0.7303 8.0881

Unsupervised Domain Adaptation (UDA) results for Experiment-1 and Experiment-2. IoU and HD denotes Intersection over Union, and Hausdorff distance, respectively. Results are from

testing on TNBC-test and KIRC-test for experiment-1 and experiment-2, respectively.

FIGURE 5

Visualizations of Unsupervised Domain Adaptation (UDA) for KIRC→TNBC. (A) Target image, (B) Ground-truth, (C) CellSegUDA, (D) SelfEnsemb, (E)

MaNi, and (F) NuSegUDA (ours). In (C–F), green pixels, red pixels, and blue pixels indicate the true positives, false positives, and false negatives,

respectively. In other words, green and red pixels indicate the predicted nuclei pixels, whereas green and blue pixels indicate the ground-truth nuclei

pixels. This average-dense nuclei histopathology image in (A) is chosen so that the reader can easily find out the visual di�erences without further

zooming-in.

4.3.2. Semi-Supervised Domain Adaptation
Experiment-1 (KIRC → TNBC) In experiment-1, we assess our

Semi-Supervised Domain Adaptation (SSDA) method NuSegSSDA

for KIRC→ TNBC. Table 2 shows the experimental performances

of NuSegSSDA. For this experiment, the source dataset KIRC is

the same as UDA experiments. However, now we treat TNBC

as partially labeled. We train NuSegSSDA considering 10%, 25%,

50%, and 75% images from TNBC-train dataset have annotations

available. Then, testing on TNBC-test gives us increasing IoUs and

Dice scores, and decreasing Hausdorff Distances. This happens

because more false negative nuclei can be identified and some false

positive nuclei can be removed by NuSegSSDA as we train it with

more target annotations (see Figure 6). We compare NuSegSSDA

with fully-supervised model U-Net (Ronneberger et al., 2015), and

baseline biomedical SSDA model CellSegSSDA (Haq and Huang,

2020) to demonstrate the superiority of our proposed SSDAmodel.

To train U-Net, we combine full KIRC dataset with the same 10%,

25%, 50%, and 75% of TNBC-train we chose to train NuSegSSDA.

We observe that, the accuracy of NuSegSSDA approaches to the

upper-bound (only lower by 1.35 IoU%) as we train with more

annotations from target domain.

Experiment-2 (TNBC → KIRC) In our second experiment,

we select TNBC as source and KIRC as target domain. The

second experiment also demonstrates the excellence of NuSegSSDA

compared to U-Net (Ronneberger et al., 2015) and CellSegSSDA

(Haq and Huang, 2020) (see last three columns of Table 2). Similar

to experiment-1, for the second experiment we again see that the

segmentation accuracies of NuSegSSDA increase when more target

images are annotated.

4.3.3. Ablation studies
To verify the robustness of proposed UDA framework, we

perform extensive ablation studies on the adaptation of NuSegUDA

from KIRC to TNBC, and from TNBC to KIRC. First, we examine

the contribution of each loss to the final IoU%, Dice score, and

Hausdorff Distance; then, we investigate the effects of different

segmentation network backbones on NuSegUDA.
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TABLE 2 Semi-Supervised Domain Adaptation (SSDA) results for Experiment-1 and Experiment-2.

Experiment-1 Experiment-2

KIRC → TNBC TNBC → KIRC

Method IoU% Dice HD IoU% Dice HD

U-Net (source 100% + target 10%) 60.74 0.7534 8.3627 56.89 0.7194 8.5122

CellSegSSDA (source 100% + target 10%) 60.96 0.7557 8.3563 58.81 0.7377 7.9817

NuSegSSDA (source 100% + target 10%) (ours) 61.12 0.7578 8.3274 58.99 0.7401 7.9629

U-Net (source 100% + target 25%) 61.67 0.7607 8.2742 59.32 0.7405 7.9211

CellSegSSDA (source 100% + target 25%) 62.94 0.771 8.0966 59.73 0.7443 7.8647

NuSegSSDA (source 100% + target 25%) (ours) 63.15 0.7732 8.0487 59.79 0.7449 7.8752

U-Net (source 100% + target 50%) 56.73 0.7208 9.1473 59.95 0.7464 7.8461

CellSegSSDA (source 100% + target 50%) 63.59 0.7748 7.9802 60.32 0.7494 7.7958

NuSegSSDA (source 100% + target 50%) (ours) 63.97 0.7802 7.9549 60.53 0.7511 7.7754

U-Net (source 100% + target 75%) 59.06 0.7394 8.6286 61.63 0.7592 7.7026

CellSegSSDA (source 100% + target 75%) 64.96 0.7862 7.8496 61.01 0.7541 7.7275

NuSegSSDA (source 100% + target 75%) (ours) 65.22 0.7901 7.7928 61.68 0.7598 7.6872

U-Net (target 100%) 66.57 0.7985 7.7301 62.04 0.7621 7.6281

IoU, Dice, and HD denotes Intersection over Union, Dice score, and Hausdorff Distance, respectively. NuSegSSDA refers to our proposed SSDA model. NuSegSSDA (source 100% + target n%)

denotes n% annotations available in TNBC-train and KIRC-train for experiment-1 and experiment-2, respectively. Results are from testing on TNBC-test and KIRC-test for experiment-1 and

experiment-2, respectively. Bold values denote the best scores among the experiments for different n percentages (i.e., source 100%+ target n%).

FIGURE 6

Visualizations of Semi-Supervised Domain Adaptation (SSDA) for KIRC→TNBC. (A) Target image, (B) Ground-truth, (C) NuSegSSDA (10%), (D)

NuSegSSDA (25%), (E) NuSegSSDA (50%), and (F) NuSegSSDA (75%). In (C-F), green pixels, red pixels, and blue pixels indicate the true positives, false

positives, and false negatives, respectively.

Effectiveness of losses The contribution of image adversarial loss

LadvI , target-translated source supervised loss Ltrans, and clustering

loss Lcl to our proposed NuSegUDA model is shown in Table 3.

We see that, simply applying only LadvI or Lcl to CellSegUDA (Haq

and Huang, 2020) gives little better performance than CellSegUDA

alone. However, when we apply only target-translated source

supervised loss Ltrans to CellSegUDA, the performance is inferior

due to the absence of LadvI loss.Without applying image-adversarial

loss LadvI , target-translated source images Xs→t looks very different

from the target-domain images in terms of texture, style, color

distribution, etc. (see Figure 4). As a result, the performance of

the model (i.e., CellSegUDA w/ Ltrans) decreases when trained with

these Xs→t images.

Similarly, NuSegUDAw/o LadvI gives much worse performance

than NuSegUDA which happens because of training NuSegUDA

with less-realistic target-translated source domain images. This

again validates the effectiveness of LadvI on NuSegUDA. Finally,

with all the proposed losses enabled, we achieve the best performing

model NuSegUDA for both of the experiments which demonstrates

the combined impact of newly proposed image adversarial loss,

target-translated source supervised loss, and clustering loss on

NuSegUDA. Figure 7 shows the visualization results of NuSegUDA

w/o LadvI , NuSegUDA w/o Ltrans, NuSegUDA w/o Lcl, and

NuSegUDA.

Impacts of different segmentation networks In NuSegUDA,

we use U-Net (Ronneberger et al., 2015) as the backbone

segmentation network. We also assess the model performance

by replacing the backbone segmentation network with two

more frequently-used Convolutional Neural Network (CNN)

based approaches: FCN (Long et al., 2015) and UNet++ (Zhou

et al., 2018). As mentioned earlier, CNN based approaches are

still the dominant ones for semantic segmentation of nuclei.

However, due to the intrinsic locality nature and limited receptive

fields of convolution operations, CNN based models may be

incapable of capturing the global context of the input (Chen

et al., 2021; Jia et al., 2021; Zheng et al., 2021). To this end,

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2023.1108659
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Haq et al. 10.3389/fdata.2023.1108659

TABLE 3 Impacts of LadvI, Ltrans, and Lcl loss on NuSegUDA for Experiment-1 and Experiment-2.

Experiment-1 Experiment-2

KIRC → TNBC TNBC → KIRC

Method LadvI Ltrans Lcl IoU% Dice HD IoU% Dice HD

CellSegUDA 59.02 0.7394 8.5653 57.09 0.7242 8.1739

CellSegUDA w/ LadvI X 59.38 0.7405 8.4316 57.17 0.7252 8.1422

CellSegUDA w/ Ltrans X 58.44 0.7357 8.6123 56.77 0.7209 8.3865

CellSegUDA w/ Lcl X 59.11 0.7398 8.5734 57.02 0.7237 8.1203

NuSegUDA w/o LadvI X X 58.59 0.7365 8.5914 56.82 0.7212 8.3685

NuSegUDA w/o Ltrans X X 59.45 0.7411 8.4021 57.19 0.7253 8.2468

NuSegUDA w/o Lcl X X 60.36 0.7512 8.1963 57.63 0.7298 8.1247

NuSegUDA (ours) X X X 60.51 0.7525 8.0011 57.68 0.7303 8.0880

IoU, Dice, andHDdenotes Intersection over Union, Dice score, andHausdorffDistance, respectively. NuSegUDAw/o LadvI , NuSegUDAw/o Ltrans , andNuSegUDAw/o Lcl refer to our proposed

UDAmodel without image adversarial loss, target-translated source supervised loss, and clustering loss, respectively. Results are from testing on TNBC-test and KIRC-test for experiment-1 and

experiment-2, respectively.

FIGURE 7

Visualizations of the e�ectiveness of proposed LadvI, Ltrans, and Lcl loss on NuSegUDA for KIRC→TNBC. (A) Target image, (B) Ground-truth, (C)

NuSegUDA w/o Ladvl, (D) NuSegUDA w/o Ltrans, (E) NuSegUDA w/o Lcl, and (F) NuSegUDA. In (C-F), green pixels, red pixels, and blue pixels indicate

the true positives, false positives, and false negatives, respectively.

TABLE 4 Impacts of di�erent segmentation network backbones in NuSegUDA.

Segmentation network Experiment-1 Experiment-2

KIRC → TNBC TNBC → KIRC

IoU% Dice score HD IoU% Dice score HD

FCN 59.23 0.7398 8.4125 55.81 0.7165 8.7365

U-Net 60.51 0.7525 8.0011 57.68 0.7303 8.0880

UNet++ 60.57 0.7529 8.0336 57.41 0.7282 8.1575

TransUNet 59.87 0.7476 8.1562 57.02 0.7256 8.1742

we explore the feasibility of Transformers, an alternative to

CNNs, as the backbone segmentation network in NuSegUDA.

Transformer mainly utilizes self-attention mechanism to extract

inherent features (Tay et al., 2020), and due to this self-attention

mechanism, transformers are powerful at modeling the global

context of an input (Zheng et al., 2021). To examine the

effectiveness of Vision Transformer based model, we replace U-Net

in NuSegUDA with TransUNet (Chen et al., 2021) which basically

combines a hybrid CNN-transformer encoder architecture with a

decoder.

Table 4 shows the quantitative results of using different

segmentation networks in NuSegUDA. We see that, among

CNN-based models, UNet++ and U-Net outperform other CNN

approaches in Experiment-1, and Experiment-2, respectively. We

also see that, Transformer-based model TransUNet does not give

any better accuracy than U-Net and UNet++ for both of the

experiments. This happens due to our small-sized training datasets,

because Vision Transformers (VT) need lot of data for training,

usually more than what is necessary to standard CNNs (Liu et al.,

2021).

5. Conclusion

Accurate nuclei segmentation is a significant step for cancer

diagnosis and further clinical procedures. Collecting a fully

annotated nuclei segmentation dataset, or manually labeling

an unannotated dataset is expensive, time-consuming, and
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impractical although such annotations are required to train

Convolutional Neural Networks in fully-supervised manner. In

this work, we propose a novel Unsupervised Domain Adaptation

(UDA) framework named NuSegUDA for segmenting nuclei

in unannotated datasets by utilizing adversarial learning. In

NuSegUDA, we apply domain adaptation at both of feature space

and output space. We also incorporate image adversarial loss and

target-translated source supervised loss into NuSegUDA, and train

the model with target-translated source domain images. Extensive

and prominent experimental results validate the effectiveness of

each of the newly proposed modules and losses, and the superiority

of NuSegUDA over baseline models. Finally, assuming we have a

few annotations available, we extend our work to Semi-Supervised

Domain Adaptation (SSDA). We expect our proposed UDA and

SSDA approaches to be very useful in other biomedical image

segmentation tasks.
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