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AI-based radiodiagnosis using
chest X-rays: A review

Yasmeena Akhter, Richa Singh and Mayank Vatsa*

Indian Institute of Technology Jodhpur, Jodhpur, India

Chest Radiograph or Chest X-ray (CXR) is a common, fast, non-invasive, relatively

cheap radiological examination method in medical sciences. CXRs can aid in

diagnosing many lung ailments such as Pneumonia, Tuberculosis, Pneumoconiosis,

COVID-19, and lung cancer. Apart from other radiological examinations, every year,

2 billion CXRs are performed worldwide. However, the availability of the workforce

to handle this amount of workload in hospitals is cumbersome, particularly in

developing and low-income nations. Recent advances in AI, particularly in computer

vision, have drawn attention to solving challenging medical image analysis problems.

Healthcare is one of the areas where AI/ML-based assistive screening/diagnostic aid

can play a crucial part in social welfare. However, it faces multiple challenges, such

as small sample space, data privacy, poor quality samples, adversarial attacks and

most importantly, the model interpretability for reliability on machine intelligence.

This paper provides a structured review of the CXR-based analysis for di�erent tasks,

lung diseases and, in particular, the challenges faced by AI/ML-based systems for

diagnosis. Further, we provide an overview of existing datasets, evaluation metrics for

di�erent0mm]Q5 tasks and patents issued. We also present key challenges and open

problems in this research domain.
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chest X-ray, trusted AI, interpretable deep learning, Pneumoconiosis, tuberculosis,
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1. Introduction

Advances in medical technology have enhanced the process of disease diagnosis, prevention,

monitoring, treatment and care. Imaging technologies such as computer tomography (CT),

medical imaging resonance (MRI), ultrasonography (USG), PET and others, along with digital

pathology, are at ease for medical practitioners to assess and treat any disorder. Table 1

provides a comparative overview of the existing common imaging modalities used in medical

sciences.1,2 Every year across the globe, a massive number of investigations are performed to

assess human health for disease diagnosis and treatment and the data generated from hospitals

annually is in petabytes (IDC, 2014). The generated ‘big data’ include all electronic health

records (EHR) consisting of medical imaging, lab reports, genomics, clinical notes and financial

and operational data (Murphy, 2019). Out of the total generated data from the hospital, the

maximum contribution is made by radiology or imaging data. However, 97% of this data

remained unanalyzed or unused (Murphy, 2019).

Among all the imaging modalities, X-ray is the most common, fast and inexpensive

modality used to diagnose many human body disorders such as fractures and

dislocations and ailments such as cancer, osteoporosis of bones, chest conditions

such as pneumonia, tuberculosis, COVID-19, and many more. It is a non-invasive

and painless medical examination that uses an electric device for emission to pass

through the patient body, and a 2-D image with the impression of internal body

1 https://www.healthimages.com/mri-vs-ct-scan/

2 https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
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TABLE 1 Comparative analysis of common and widely used imaging modalities for medical applications.

Specifications CT MRI X-Ray PET SPECT USG

Acronynm Computer Tomography Magnetic Resonance Imaging X-radiation/ Rontgen radiation Positron Emission Tomography Single Photon Emission

Computed Tomography

Ultrasound/ Ultrasonography

Working principle Uses multiple X-rays at different

angles to generate 3D image

Uses magnet and pulsing radio

waves to generate response from

presence of water molecules

inside the human body

X-ray beam passed through

body gets blocked due to denser

tissue which results in shadow

of the tissue

Injection with Radioactive

tracer that emits positrons.

Later, these positrons are

tracked over time in the form of

a 3D image.

Same as PET Uses high frequency sound

waves as short pulses from area

of interest as reflections

received by transducer

Usage/ application Recommended for all structures

of human body (soft/

bone/blood vessels)

Best Suited for soft tissues Recommended for diseased

tissues/organs like lungs and

bony structures such as teeth,

skull etc.

Allows to trace the biological

processes within human body

Same as PET Best suited for internal organs.

Not recommended for bony

structures

Scanner cost ($) 85–450 K 225–500 K+ 40–175 K 225–750 K 400–600 K 20–200 K

Radiation exposure Yes None Yes Yes Yes None

Per scan cost ($) 1,200–3,200 1,200–4,000 ∼70 3,000–6,000 100–1,000

Time of scanning 30 s 10 min–2 h A few seconds 2–4 h 2–4 h 10–15 min

Side effect Excessive exposure can lead to

cancer

Prolonged exposure is

hazardous

Radioactive allergy can occur.

Overdue exposure can be

dangerous

Same as PET Comparatively safer

Spatial resolution

(mm)

0.5–1 0.2 - 6–10 7–15 0.1–1

Details of soft/hard

tissue

Higher contrast images are

generated and ideal for both

types of

Data with higher details of soft

tissues are received

Can be used for soft tissues as

well such Gall bladder, lungs etc.

Covers biological phenomenon

such as drug delivery etc.

Allows to inspect functioning of

various body organs and useful

in brain disorders, heart

problems and bone disorders

Soft tissues such as muscles,

internal organs etc.

Limitations Patients with large body size

may underfit the scanning

process

Patients with heavy weight may

underfit the scanning process.

Also, patients with pacemakers,

tattoos are not advised the scan

Limited to few body parts Kids and pregnant women are

not recommended. Expensive.

Long scan time, low resolution,

higher artifacts rate. Expensive

Objects deeper or hidden

under bone are not captured.

Presence of air spaces also fail

scanning process.
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FIGURE 1

Showcasing the chest-X rays for three projections. (A) AP view, (B) PA view, and (C) Lateral View.

structures is generated. It is estimated that more than 3.5 billion

diagnostic X-rays are performed annually worldwide (Mitchell, 2012)

and they contribute 40% to the total imaging count per year

(WHO, 2016), billion CXRs are performed worldwide. However, the

availability of a trained workforce to handle this amount of workload

is limited, particularly in developing and low-income nations. For

instance, in some parts of India, there is one radiologist for 100,000

patients, and in the U.S., it is one radiologist for 10,000 patients.

In recent years, with the unprecedented advancements in deep

learning and computer vision, computer-aided diagnosis has started

to intervene in the diagnosis process and ease the workload

for doctors. CXR-based analysis with machine learning and deep

learning has drawn attention among researchers to provide an easy

and reliable solution for different lung diseases. Many attempts

have been made to provide easy automatic CXR-based diagnosis

to increase the acceptance of AI-based solutions. Currently, many

commercial products are available for clinical use which have

cleared CE marked (Europe) and/or FDA clearance (United States),

for instance, qXR by qure.ai (Singh et al., 2018), TIRESYA by

Digitec (Kim et al., 2017), Lunit INSIGHT CXR by Lunit (Hwang

et al., 2019), Auto lung by Samsung Healthcare (Sim et al.,

2020), AI-Rad companion by Seimens Healthineers (Fischer et al.,

2020), CAD4COVID-XRay by Thirona (Murphy et al., 2020) and

many more.

Based on the projection, CXRs are differentiated into three

categories; posteroanterior (PA), anteroposterior (AP) and lateral

(LL). Figure 1 showcases CXR samples for three different projections.

PA view is the standard projection of the X-ray beam traversing the

patient from posterior to anterior. On the other hand, AP is the

opposite alternative to PA, where an X-ray beam passes the patient

chest from anterior to posterior. A lateral view is performed erect left

lateral (default). It demonstrates a better anatomical view of the heart,

and assesses posterior costophrenic recesses. It is generally done to

assess the retrosternal and retrocardiac airspaces.3 Table 2 tabulates

the differences in the AP and PA views. The patient alignment

also compromises the assessment of the chest X-ray for different

organs such as the heart, mediastinum, tracheal position, and lung

appearances. Rotation of the person can lead to certain misleading

appearances in CXRs, such as heart size. In a left rotation in PA CXR,

the heart appears enlarged and vice-versa. Moreover, the rotation

can affect the assessment of soft tissue in CXRs, misleading the

impressions in the lungs, for instance, costophrenic angle.4 About

25% of the total CXR count per year, faces the ‘reject rates’ due to

image quality or patient positioning (Little et al., 2017).

In the existing literature, with the release of multiple datasets

for different lung diseases, different tasks have been established with

CXR data. Below is the list of tasks accomplished for CXR-based

analysis using different ML and DL approaches. Figure 2 showcases

the transition across different tasks for CXR-based image analysis.

• Image enhancement: The collected data from the hospitals do

not always contribute to the detection process. The reason

is varying quality samples. So, before proposing a detection

pipeline, authors have used different CXR enhancement

techniques for noise reduction, contrast enhancement, edge

detection and many more.

3 https://radiopaedia.org/articles/chest-radiograph

4 https://www.radiologymasterclass.co.uk/tutorials/chest/chest_quality/

chest_xray_quality_rotation
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• Segmentation: In CXR, segmentation of ROI usually gives a

better edge to the disease detection pipeline. This reduces the

ineffectual part of CXR, allowing lesser chances of misdiagnosis.

Existing work has focused on the segmentation of the lung field,

ribs, diseased part, diaphragm, costophrenic angle and support

devices.

• Image classification: For the CXR datasets, multi-class and

multi-label classification tasks have been performed using ML

and DL approaches. With datasets such as CheXpert (Irvin

et al., 2019), ChestXray14 (Wang et al., 2017) etc., multi-label

classification is done. It reflects the different manifestations

(local labels) in CXR due to any disease. For instance,

Pneumoconiosis can cause multiple manifestations in the lung

tissue, such as atelectasis, nodules, fibrosis, emphysema and

many more. Similarly, in multi-class, we differentiate CXR

into a particular class for diseases. For instance, the detection

of pneumonia in CXR is a multi-class problem. We need to

distinguish viral, bacterial and COVID-19, representing three

classes (types) of pneumonia.

• Disease localization: It specifies the region within CXR infected

by any particular disease. This is generally indicated by a

bounding box, dot or circular shape.

• Image generation: Generally, the datasets are small in number

and also suffer class imbalance problems. In order to improve

the training set number, different approaches apart from affine

transformation-based data augmentation, such as Generative

Adversarial network-based approaches, are used. Moreover,

analysis are done on the real and synthetic CXRs.

TABLE 2 Illustrates the di�erences between two common CXR projections.

PA view AP view

Standard frontal Chest projection Alternative frontal projection to the

PA

X-ray beam traverses the patient from

posterior to anterior

X-ray beam traverses the patient

from anterior to posterior

Needs full aspiration and standing

position from patient

Can be performed patient sitting on

the bed

Best practice to examine lungs,

mediastinum and thoracic cavity

Best practice for intubated and sick

patients

Heart size appear normal Heart size appear magnified

Images are of higher quality and a better

option to assess heart size

Not a good option to assess the size

of heart

• Report generation: The generation of reports for a given CXR

is one of the recent areas covered in CXR-based image analysis.

The task involves reporting all the findings present in CXR in a

text file.

• Model explainability: With the remarkable performance of the

deep model, model explainability is a must to build trust in the

machine intelligence-based decision. Explanation of machine

intelligence justifies the decision process and builds trust in

the automatic decision process. Interpretability encourages

understanding the mechanism of algorithmic predictions.

The availability of intelligent machine diagnostics for Chest X-rays

aids in reducing information overload and exhaustion of radiologists

by interpreting and reporting the radiology scans. Many diseases

affect the lungs, including lung cancer, bronchitis, COPD, Fibrosis,

and many more. The literature review below is based on the publicly

available datasets and the work done for these common diseases.

Figure 3 showcases different areas for which existing literature is

available for CXR-based analysis.

In this review article, we focus on using computer vision,

machine learning, and deep learning algorithms for different

disorders where CXR is a standard medical investigation. We

discuss the related work about the tasks mentioned above for

CXR-based analysis. We further present the literature for widely

studied disorders such as TB, Pneumonia, Pneumoconiosis, COVID-

19, and lung cancer available in terms of publications and

patents. We also discuss the evaluation metrics used to assess the

performance of different tasks, publicly available datasets for various

disorders and tasks. Figure 4 shows the schematic organization of

the paper.

2. Task-based literature review

We first present the review of different tasks with respect to

CXR-based analysis, such as pre-processing and classification and

disease localization.

2.1. Image pre-processing

Image pre-processing includes enhancement and

segmentation tasks and are either rule-based/handcrafted or deep

learning based.

FIGURE 2

Showcasing the transition across di�erent tasks in CXR-based analysis for a given input image.
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FIGURE 3

Showcasing research problems which have been studied in the literature.

FIGURE 4

Illustrating the schematic structure of the paper.

2.1.1. Pre-deep learning based approaches
Sherrier and Johnson (1987) used a region-based histogram

equalization technique to improve the image quality of CXR

locally and finally obtain an enhanced image. Zhang D. et al.

(2021) used the dynamic histogram enhancement technique (Abin

et al., 2022) used different image enhancement techniques such

as Brightness Preserving Bi Histogram (BBHE) (Zadbuke, 2012),

Equal Area Dualistic Sub-Image Histogram Equalization (DSIHE)

(Yao et al., 2016), Recursive Mean Separate Histogram Equalization

(RMSHE) (Chen and Ramli, 2003) followed by a Particle swarm

optimization (PSO) (Settles, 2005) for further enhancing the CXRs

for detecting pneumonia. Soleymanpour et al. (2011) used adaptive

contrast equalization for enhancement, morphological operation-

based region growing to find lung contour for lung segmentation
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followed by oriental spatial Gabor filter (Gabor, 1946) for rib

suppression. Candemir et al. (2013) used graph cut optimization

(Boykov and Funka-Lea, 2006) method to find the lung boundary.

Van Ginneken et al. (2006) used three approaches, Active shape

model (Cootes et al., 1994), active appearance models (Cootes et al.,

2001), pixelwise classification to segment the lung fields in CXRs. Li

et al. (2001) used an edge detection-based approach by calculating

vertical and horizontal derivatives to find the RoI in CXR. Annangi

et al. (2010) used edge detection with an active contourmethod-based

approach for lung segmentation.

2.1.2. Deep learning based approaches
Abdullah-Al-Wadud et al. (2007) proposed enhancing the

CXR images input for a CNN model for pneumonia detection.

Hasegawa et al. (1994) used a shift-invariant CNN-based approach

for lung segmentation. Hwang and Park (2017) proposed a Multi-

stage training approach to perform segmentation using atrous

convolutions. Hurt et al. (2020) used UNet-based (Ronneberger et al.,

2015) semantic segmentation for extracting lung field and performed

pneumonia classification. Li B. et al. (2019) used the UNet model

to segment the lung part, followed by the attention-based CNN for

pneumonia classification. Kusakunniran et al. (2021) and Blain et al.

(2021) used UNet for lung segmentation for COVID-19 detection.

Oh et al. (2020) used the extended fully convolution DenseNet (Jégou

et al., 2017) to perform pixel-wise segmentation for lung fields in CXR

to improve the classification performance for COVID-19 detection.

Subramanian et al. (2019) used UNet based model to segment out

the central venous catheters (CVCs) in CXRs. Cao and Zhao (2021)

used a UNet-based semantic segmentation model with variational

auto-encoder features in the encoder and decoder of UNet with an

attentionmechanism to perform automatic lung segmentation. Singh

et al. (2021) propose an approach based on DeepLabV3+ (Chen

et al., 2017b) with dilated convolution for lung field segmentation.

Figures 5A, B showcase examples of the preprocessing tasks.

2.1.3. Patent review
Hong et al. (2009a) proposed an approach to segment the

diaphragm from the CXR using a rule-based method. Huo and

Zhao (2014) proposed an approach to suppress the clavicle bone in

CXR based on the edge detection algorithm. Chandalia and Gupta

(2022) proposed a deep learning-based detection model to detect

the inputted image as CT or CXR. Jiezhi et al. (2018) proposed a

method to determine the quality of the inputted CXR image using

deep learning.

2.1.4. Discussion
From the above literature, pre-deep learning-based approaches

require well-defined heuristics to either enhance or segment

the lung region. A major focus has been laid on noise removal

or contrast enhancement and lung segmentation. However,

limited attention has been given to diseased ROIs segmentation.

The common datasets used to perform lung segmentation are

Montgomery and Shenzhen (Jaeger et al., 2014); however, the

number of samples is limited. No dataset is available to focus on

local findings.

2.2. Image classification

This section covers the literature on CXR classification for

multiclass and multilabel settings. Input CXR images undergoes

feature extraction followed by classification algorithms, which are

either rule-based or handcrafted or use deep learning.

2.2.1. Pre-deep learning based approaches
Katsuragawa et al. (1988) developed an automated approach

based on the two-dimensional Fourier transform for detecting and

characterizing interstitial lung disorder. The approach uses the

textural information for a given CXR as normal or abnormal.

Ashizawa et al. (1999) used 16 radiological features fromCXR and ten

clinical parameters to classify a given CXR as one of the classes among

11 interstitial lung diseases using ANN. A statistically significant

improvement was reported over the diagnostic results from the

radiologists.

2.2.2. Deep Learning based approaches
Thian et al. (2021) combined two large publicly available

datasets, ChestXray14 (Wang et al., 2017) and MIMICCXR (Johnson

et al., 2019), to train a deep learning model for the detection

of pneumothorax and assess its generalizability on six external

validation CXR sets independent of the training set.

Homayounieh et al. (2021) proposed an approach to assess the

ability of AI for nodule detection in CXR. The study included an

in-house dataset trained on the deep model, which is pretrained on

ChestXray14 (Wang et al., 2017) and ImageNet datasets for 14 class

classifications. Lenga et al. (2020) used the existing continual learning

approach for the medical domain for CXR-based analysis. Zech et al.

(2018) assessed deep models for pneumonia using the training data

from different institutions. Figure 5C showcases the classification

pipeline using CXR for different lung diseases.

2.2.3. Patent review
Lyman et al. (2019) proposed a model to differentiate CXR into

normal or abnormal. The model is trained to find any abnormality

like effusion, emphysema etc., to classify a given CXR as abnormal.

Hong et al. (2009b) proposed a method for feature extraction to

detect nodules in the CXR to reduce the false positives. Hong and

Shen (2008) proposed an approach for automatically segmenting

the heart region for nodule detection. Guendel et al. (2020)

proposed a deep multitask learning approach to classify CXR for

different findings present in it. The proposed approach also performs

segmentation along with disease localization simultaneously. Clarke

et al. (2022) proposed a computer-assisted diagnostic (CAD) method

using wavelet transform-based feature extraction for automatically

detecting nodules in the CXRs. Putha et al. (2022) proposed a deep

learning-based method to predict the risk of lung cancer associated

with the characteristics (size, calcification etc.) of nodules present

in the CXR. Doi and Aoyama (2002) proposed a neural network-

based approach to detect the presence of nodule and further classify

them as benign or malignant. Lei et al. (2021) created a cloud-

based platform for lung-based disease detection using CXR. Ting

et al. (2021) proposed a transfer learning approach for detecting
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FIGURE 5

Showcases the examples of outputs obtained after tasks such as pre-processing and classification. (A) shows output of contrast enhancement. (B) shows

output of the segmentation task and (C) shows the classification pipeline.

lung inflammation from a given CXR. Kang et al. (2019) proposed

a transfer learning-based approach for predicting lung disease in

the CXR image. Qiang et al. (2020) proposed a lung disease

classification approach, which extracts the lung mask and enhances

the segmented image and CNN-based model for feature extraction

and classification. Luojie and Jinhua (2018) proposed a deep learning-

based classification for lung disease for 14 different findings. Kai et al.

(2019) proposed a deep learning system to classify the lung lesion

in a given CXR. Harding et al. (2015) proposed an approach for

lung segmentation and bone suppression in a given CXR to improve

CAD results.

2.2.4. Discussion
Researchers have generally developed algorithms for

classification using supervised machine learning approaches.

Both multilabel and multi-class classification tasks are studied. Due

to availability of small sample size datasets with data imbalance,

transfer learning is widely used in most research.

2.3. Image generation

This section covers the existing work for the image generation

task. This is a new field, where mostly generative models are used for

other tasks and verify the model performance on synthetic and real

CXR-based disease detection. Figure 6 showcases the synthetically

generated CXR samples.

Tang et al. (2019b) proposed XLSor, a deep learning model for

generating CXRs for data augmentation and a criss-cross attention-

based segmentation approach. Eslami et al. (2020) proposed a

multi-task GAN-based approach for image-to-image translation,

generating bone-suppressed and segmented images using the JSRT

dataset. Wang et al. (2018) proposed a hybrid CNN-based model

for CXR classification and image reconstruction. Madani et al.

(2018) used GAN based approach to generate and discriminate

CXRs for the classification tasks. Sundaram and Hulkund (2021)

used GAN based approach to perform data augmentation and

evaluated the classification model for synthetically generated and

affine transformation-based data in the CheXpert dataset.

2.3.1. Discussion
The current work in image generation for CXR has focused

on alleviating the data deficiency for training deep models. It

is observed that the synthetic data generated using GAN-based

approaches improve model performance compared to the standard

data augmentation methods such as rotation and flip.

2.4. Disease localization

Disease localization is an interesting task for localizing diseased

ROIs. This allows us to look at the difference between the predicted

and the actual diseased area in the CXR. Yu et al. (2020) proposed a

multitasking-based approach to segment Peripherally inserted central
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FIGURE 6

Showcasing the synthetically generated chest-X ray images. For a given normal image (A), the proposed approach by Tang et al. (2019b) generates the

abnormal images (B–G) is predicted segmentation mask for same input image and results in mask-image pairs from (B–G). Figure is adapted from Tang

et al. (2019b).

catheter (PICC) lines and detect tips simultaneously in CXRs. Zhang

et al. (2019) proposed SDSLung, a multitasking-based approach

adapted from Mask RCNN (Girshick et al., 2014) for lung field

detection and segmentation. Wessel et al. (2019) proposed a Mask

RCNN-based approach for rib detection and segmentation in CXRs.

Schultheiss et al. (2020) used a RetinaNet (Ren et al., 2015) based

approach to detect the nodule along with lung segmentation in CXRs.

Kim et al. (2020) used Mask RCNN and RetinaNet to assess the effect

of input size for nodule and mass detection in CXRs. Takemiya et al.

(2019) proposed a CNN-based approach to perform nodule opacity

classification and further used R-CNN to detect the nodules in CXRs.

Kim et al. (2019) compared existing CNN-based object detection

models for nodule and mass detection in CXRs. Cho et al. (2020)

used a YOLO (Redmon and Farhadi, 2017) object detection model

to detect different findings in CXRs.

2.4.1. Patent review
Putha et al. (2021) proposed a deep learning-based system for

detecting and localizing infectious diseases in CXR alongside using

the information from the clinical sample for the same patient. Jinpeng

et al. (2020) proposed a deep learning approach for automatic disease

localization using CXRs based on weakly-supervised learning.

2.4.2. Discussion
The current work in CXR-based analysis has focused on detecting

the lung part in the given CXR or the disease area in the bounding

box. Most of the work have used object detection algorithms such as

YOLO, RCNN and its variants (Mask RCNN, Faster RCNN).

2.5. Report generation

This section covers the existing work in report generation

for CXR image analysis. This is a recent area which combines

two domains; Natural Language Processing (NLP) and Computer

Vision (CV).

Xue et al. (2018) proposed a multimodal approach consisting

of LSTM and CNN for the cohesive indent-based report generation

with an attention mechanism. Li X. et al. (2019) proposed VisPi, a

CNN and LSTM-based approach with attention to generating reports

in medical imaging. The proposed algorithm performs classification

and localization and then finally generates a detailed report. Syeda-

Mahmood et al. (2020) proposed a novel approach to generate reports

for fine-grained labels by fine-tuning themodel learnt on fine-grained

and coarse labels.

2.5.1. Discussion
This recently explored area requires more attention. In CXR-

based analysis, report generation allows amulti-modal learning using

CNNs and sequential models. However, the task is challenging as the

large text corpus is required with the CXR dataset and only a fewer

datasets are available for this task.

2.6. Model explainability

Jang et al. (2020) trained a CNN on three CXR-based datasets

(Asan Medical Center-Seoul National University Bundang Hospital

(AMC-SNUBH), NIH, and CheXpert) for assessing the robustness

of deep models in labeling noise. Authors added different noise

levels in the labels of these datasets to demonstrate that the deep
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models are sensitive to the label noise; as for huge datasets, the

labeling is done using report parsing or NLP, leading to a certain

extent in labeling the CXR samples. Kaviani et al. (2022) and Li

et al. (2021) reviewed different deep adversarial attacks and defenses

on medical imaging. Li and Zhu (2020) proposed an unsupervised

learning approach to detect the different adversarial attacks in CXRs

and assess the robustness of deepmodels. Gongye et al. (2020) studied

the effect of different existing adversarial attacks on the performance

of the deep model for COVID-19 detection from CXRs. Hirano

et al. (2021) studied the universal adversarial perturbations (UAP)

effect on the deep model-based pneumonia detection and reported

performance degradation in the classification of CXRs. Ma et al.

(2021) studied the effect of altering the textural information present

in the CXRs, which can lead to misdiagnosis. Seyyed-Kalantari

et al. (2021) studied the fairness gaps in existing deep models and

datasets for CXR classifications. Li et al. (2022) studied the gender

bias affecting the performance of different deep models on existing

datasets. Rajpurkar et al. (2017) used Class Activation Maps (CAMs)

to interpret the model decisions for detecting different findings in

CXRs. Pasa et al. (2019) used a 5-layered CNN-based architecture for

detecting TB in CXRs from two publicly available datasets, Shenzhen

and Montgomery. The authors used Grad-CAM visualization for

model interpretability.

2.6.1. Discussion
Work done so far on model interpretability for CXR-based

disease detection is based on post-hoc approaches such as saliency

map or CAM analysis. Explainability in AI-based decisions is a

must to rely on machine intelligence. Healthcare is a challenging

domain, and the life of humans is at risk based on a false positive

or false negative. There is a need to incorporate the inbuilt model

explainability to handle noisy or adversarial samples, thus improving

model robustness for CXR-based systems. Further, challenges occur

due to the data imbalance and less model interoperability, as

models are usually trained on data from a single hospital. This

results in unfair decisions by learning sensitive information from

the data. The existing work should encourage more pathways for

robust and fair CXR-based systems, which will further increase

the chances of deployment of such systems in places with poor

healthcare settings.

3. Disease detection based literature

In this section, we present the literature review of commonly

addressed lung diseases. Several CXR datasets are made publicly

available, allowing to development of novel approaches for different

disease-related tasks. Figure 7 showcases the samples of CXRs

affected with different lung diseases.

3.1. Tuberculosis

TB is caused byMycobacterium tuberculosis. It is one of the most

common reasons for mortality in lung disease worldwide. About 10

million people were affected by TB in 2019 (WHO, 2021). In the year

2013, it took 1.5 million lives (WHO, 2013). TB is curable; however,

hospital patient rush delays the diagnostic process and its treatment.

CXR are the common radiological modality used to diagnose TB.

Computer-aided diagnosis and CAD-based TB detection for CXR

images will ease the detection process.

3.1.1. Pre-deep learning based approaches
Govindarajan and Swaminathan (2021) used reaction-diffusion

set method for lung segmentation followed by local feature

descriptors such as Median Robust Extended Local Binary Patterns

(Liu et al., 2016), local binary pattern (Liu et al., 2017) and

Gradient Local Ternary Patterns (Ahmed and Hossain, 2013) with

Extreme Learning Machine (ELM) and Online Sequential ELM

(OSELM) (Liang et al., 2006) classifiers for detecting TB in CXR

images using Montgomery dataset. Alfadhli et al. (2017) used

speed-up robust features (SURF) (Bay et al., 2008) for feature

detection and performed classification using SVM for TB diagnosis.

Jaeger et al. (2014) collected different handcrafted features such

as histogram of gradients (HOG) (Dalal and Triggs, 2005), the

histogram of intensity, magnitude, shape and curvature descriptors,

LBP Ojala et al., 1996) as set A for detection. They further

used edge, color (fuzzy-color and color layout) based features

as Set B for image retrieval. Chandra et al. (2020) used two-

level hierarchical features (shape and texture) with SVM for TB

classification. Santosh et al. (2016) used thoracic edge map encoding

using PHOG (Opelt et al., 2006) for feature extraction followed by

multilayer perceptron-based (MLP) based classification of CXR into

TB or normal.

3.1.2. Deep learning based approaches
Duong et al. (2021) created a dataset of 28,672 images

by merging different publicly available datasets (Jaeger et al.,

2014; Wang et al., 2017; Chowdhury et al., 2020; Cohen et al.,

2020) for three class classification; TB, pneumonia and normal.

Authors performed a deep learning-based classification using a

pretrained EfficientNet (Tan and Le, 2019) trained on ImageNet

(Deng et al., 2009) dataset, pretrained Vision Transformer (ViT)

(Dosovitskiy et al., 2020) and finally developed a hybrid between

EfficientNet and Vision Transformer. For the proposed hybrid

model, the CXR is given input to the pretrained EfficientNet to

generate features which are later fed to the ViT and finally, the

classification results are obtained. Ayaz et al. (2021) proposed a

feature ensemble-based approach for TB detection using Shenzen

and Montgomery datasets. The authors used Gabor filter-based

handcrafted features and seven different deep learning architectures

to generate the deep features. Dasanayaka and Dissanayake (2021)

proposed a deep learning-algorithm comprising of data generation

using DCGAN (Radford et al., 2015), lung segmentation using

UNet (Ronneberger et al., 2015) and transfer learning approach

based feature ensemble and classification. The authors used genetic

algorithm-based hyperparameter tuning. Msonda et al. (2020) used

the deep model-based approach with spatial pyramid pooling and

analyzed its effect on TB detection using CXR allowing robustness to

the combination of features, thus improving the performance. Sahlol

et al. (2020) proposed an Artificial Ecosystem-based Optimization

(AEO) (Zhao et al., 2020) on top of the features extracted from

a pre-trained network, MobileNet, trained on ImageNet dataset as
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FIGURE 7

Showcasing the chest-X rays a�ected with di�erent lung disorders. (A) Normal, (B) Pneumoconoisis, (C) TB, (D) Pneumonia, (E) Bronchitis, (F) COPD, (G)

Fibrosis, and (H) COVID-19.

feature selector. The authors used two publicly available datasets,

Shenzen and Pediatric Pneumonia CXR dataset (Kermany et al.,

2018b). Rahman et al. (2020b) used a deep learning approach for CXR

segmentation and classification into TB or normal. For segmentation,

the authors used two deep models, UNet and modified UNet (Azad

et al., 2019). Authors also used different existing visualizations

techniques such as SmoothGrad (Smilkov et al., 2017), Grad-CAM

(Selvaraju et al., 2017), Grad-CAM++ (Chattopadhay et al., 2018),

and Score-CAM (Wang H. et al., 2020) for interpreting deep model

for making classification decisions. The authors used nine different

deep models for CNN-based classification of CXR into TB or normal.

Rajaraman and Antani (2020) created three different models for

three different lung diseases. First model was trained and tested on

RSNA pneumonia (Stein et al., 2018), pediatric pneumonia (Kermany

et al., 2018b), and Indiana (McDonald et al., 2005) datasets for

pneumonia detection. The second model is trained and tested for

TB detection using the Shenzhen dataset. Finally, the first model is

finetuned for TB detection to improve model adaption for a new task

and reported majority voting results for TB classification. Rajpurkar

et al. (2020) collected CXRs from HIV-infected patients from two

hospitals in South Africa and developed CheXaid, a deep learning

algorithm for the detection of TB to assist clinicians with web-based

diagnosis. The proposed model consists of DenseNet121 trained

on CheXpert (Irvin et al., 2019) dataset, and outputs six findings

(micronodular, nodularity, pleural effusion, cavitation, and ground-

glass) with the presence or absence of TB in a given CXR. Zhang

et al. (2020) proposed an attention-based CNN model, CBAM, and

used channel and spatial attention to generate more focus on the

manifestation present in the TB CXR. The authors used different

deep models and analyzed the effect of the attention network on

detecting TB. Table 3 summarizes the above work for TB detection

using CXRs.

3.1.3. Patent review
Kaijin (2019) proposed a deep learning-based approach

for segmentation and pulmonary TB detection in CXR

images. Venkata Hari (2022) proposed a deep learning model

for detecting TB in chest X-ray images. Chang-soo (2021)

proposed an automatic chest X-ray image reader which

involves reading data from the imaging device, segments

the lung part, followed by gray level co-occurrence matrix-

based feature extraction and finally discriminates it as normal,

abnormal or TB. Minhwa et al. (2017) proposed a CAD-based

system for diagnosing and predicting TB in CXR using deep

learning.

3.1.4. Discussion
In most handcrafted approaches, the texture of CXR is used to

define features, followed by any ML classifier. From the above, it is

highlighted that the major focus for TB detection is on two datasets;

Shenzhen and Montgomery. However, the two datasets contain

below 1000 samples even when combined together. This results

in poor generalization and needs a pretrained backbone network

which is finetuned later. This is why pretrained models trained on

the ImageNet dataset are widely used for TB classification from

CXRs. Thus, there is a need for large-scale datasets for TB detection

with segmentation masks and disease annotations to achieve model

generalizability and interpretability.

3.2. Pneumoconoisis

Pneumoconoisis is a broad term that describes lung diseases

among industry workers due to overexposure to silica, coal, asbestos,
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TABLE 3 Review of the literature for TB detection using CXRs based on di�erent feature extraction methods.

References Highlights Pretraining Dataset

Govindarajan and Swaminathan

(2021)

Texture-based feature descriptors with ML classifier No Montgomery

Alfadhli et al. (2017) Used SURF as feature extractor and SVM as classifier No Montgomery

Jaeger et al. (2014) Used texture-based features (LBP, HOG) and statistical feature with

ML Classifier

No Shenzhen, Montgomery

Chandra et al. (2020) Used shape and textural features with SVM No Shenzhen, Montgomery

Santosh et al. (2016) Used PHOG as features with MLP as classifier No Shenzhen, Montgomery

Duong et al. (2021) Used Pretrained EfficientNet and ViT, and developed a hybrid of two Yes Shenzhen, Montgomery, Chestxray14,

COVID-CXR (Chowdhury et al., 2020)

Ayaz et al. (2021) Used Feature ensemble of handcrafted and deep features Yes Shenzen, Montgomery

Dasanayaka and Dissanayake (2021) Generated synthetic images, performed segmentation and used

feature ensemble for classification

Yes Shenzhen, Montgomery

Msonda et al. (2020) Used spatial pyramid pooling for deep feature extraction Yes Shenzhen, Montgomery, private

Sahlol et al. (2020) Used Meta-heuristic approach for Deep feature selection Yes Shenzen, Montgomery, PedPneumonia

Rahman et al. (2020b) Performed segmentation and used different visualization techniques Yes Shenzhen, Montgomery, NIAID TB, RSNA

Rajaraman and Antani (2020) Performed tri-level classification and studied task adaptation Yes RSNA pneumonia, PedPneumonia, Indiana,

Shenzhen

Rajpurkar et al. (2020) Developed a web-based system for TB affected HIV patients Yes CheXpert private dataset

Zhang et al. (2020) Used deep model with Attention based CNN (CBAM) module Yes Shenzhen, Montgomery

Rahman M. et al. (2021) Merged publicly available CXR dataset with XGBoost as classifier Yes Shenzhen, Montgomery

Owais et al. (2020) Used a feature ensemble by combining low and high level features Yes Shenzhen, Montgomery

Das et al. (2021) Modified a pre-trained InceptionV3 for TB classification Yes Shenzhen, Montgomery

Munadi et al. (2020) Used enhancement techniques to improve deep classification Yes Shenzhen, Montgomery

Oloko-Oba and Viriri (2020) Used deep learning-based pipeline for classification Yes Montgomery

Ul Abideen et al. (2020) Proposed the Bayesian CNN to deal with uncertain TB and non-TB

cases that have low discernibility.

Yes Shenzhen, Montgomery

Hwang et al. (2016) Proposed a modified AlexNet-based model for end-to-end training.

Also performed cross-database evaluations.

Yes Shenzhen, Montgomery

Gozes and Greenspan (2019) Proposed MetaChexNet, trained on CXRs and metadata of gender,

age and patient positioning. Later, finetuned the model for TB

classification

Yes ChestXray14, Shenzhen, Montgomery

Pretraining (yes/no) refers to the use of weights of a deep model trained on ImageNet dataset. Private refers that the data used being in-house and is not released publicly.

and mixed dust. It is an irreversible and progressive occupational

disorder prevalent worldwide and is becoming a major cause of

death among workers. It is further categorized based on elements

inhaled by the workers, such as silicosis (silica), brown lung (cotton

and other fiber), pneumonoultramicroscopicsilicovolcanoconiosis

(ash and dust), coal worker Pneumoconiosis (CWP) or black lung

(asbestos), and popcorn lung (Diacetyl). People exposed to these

substances are at a high risk of developing other lung diseases such

as lung cancer, lung collapse, and TB.

3.2.1. Pre-deep learning based approaches
Okumura et al. (2011) proposed a rule-based model for detecting

the region of interests (ROIs) for nodule patterns based on the

Fourier transform and anANN-based approach for other ROIs which

were not covered using the power spectrum analysis. The dataset is

based on 11 normal and 12 abnormal cases of Pneumoconiosis, where

normal cases were selected from an image database of the Japanese

Society of Radiological Technology. Abnormal cases were selected

randomly from the digital image database. Ledley et al. (1975)

demonstrated the significance of textural information present in the

CXR to detect the presence of coal work Pneumoconiosis (CWP).

Hall et al. (1975) used the textural information present in CXRs

and generated features based on spatial and histogram moments

for six regions of a given segmented image. Authors performed

classification based on maximum likelihood estimation and linear

discriminant analysis (LDA). The authors further performed 4

class profusion classification for a given CXR in CWP workers.

Yu et al. (2011) used the active shape modeling to segment out

the lung from the CXR. The segmented image is divided into six

non-overlapping zones as per the ILO guidance. On top of this,

six separate SVM classifiers are built on the histogram and co-

occurrence-based features generated from each zone. The authors

also generated a chest-level classification by integrating the prediction

results of the six regions. The experiments are carried out on a

dataset of 850 PA CXRs with 600 normal and 250 abnormal cases
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collected from Shanghai Pulmonary Hospital, China. Murray et al.

(2009) proposed based on an amplitude-modulation frequency-

modulation (AM-FM) approach to extract the features and used

partial least squares for classification. The authors extracted AM-

FM features for multiple scales and used a classifier for each scale,

later combining results from the individual classifiers. The authors

performed the experiments on the CXRs collected from the Miners’

Colfax Medical Center and the Grant’s UraniumMiners, Raton, New

Mexico, for CWP detection. Xu et al. (2010) collected a private

dataset of 427 CXR images, consisting of 252 and 175 images for

normal and Pneumoconiosis, respectively. The authors performed

segmentation using an active shape model followed by dividing the

image into six sub-regions. For each subregion, five co-occurrence-

based features are extracted. A separate SVM is trained for each

subregion, followed by the staging of Pneumoconiosis using a

separate SVM.

3.2.2. Deep learning based approach
Yang et al. (2021) proposed a deep learning-based approach for

Pneumoconiosis detection. The proposed approach consists of a two-

stage pipeline, UNet (Ronneberger et al., 2015) for lung segmentation

and pre-trained ResNet34 for feature extraction on the segmented

image. The dataset is collected in-house and includes 1,760 CXR

images for two classes; normal and Pneumoconiosis. Zhang L.

et al. (2021) proposed a deep model for screening and staging

Pneumoconiosis by dividing the given CXR into six subregions. This

was followed by a CNN-based approach to detect the level of opacity

in each subregion, and finally, a 4-class classification was performed

to determine normal I, II, and III stages of Pneumoconiosis for

a UNet-based segmented image. The results are obtained on the

in-house data of 805 and 411 subjects for training and testing,

respectively. Devnath et al. (2021) applied a deep transfer learning

CheXNet (Rajpurkar et al., 2017) model on a private dataset. The

approach is based on the multilevel features extracted from the

CheXNet and fed to a different configuration of SVMs. Wang

X. et al. (2020) collected a dataset of 1881, including the 923

and 958 samples for Pneumoconiosis and normal, respectively.

They used InceptionV3, a deep learning architecture to detect

Pneumoconiosis in the given CXR to determine the potential of

deep learning for assessing Pneumoconiosis. Wang D. et al. (2020)

generated synthetic data for both normal and Pneumoconiosis using

CycleGAN (Zhu et al., 2017), followed by a CNN-based classifier.

The author proposed a cascaded framework of pixel classifier for

lung segmentation, CycleGAN, for generating training images and

a CNN-based classifier. Wang et al. (2021) collected a set of in-

house 5,424 CXRs, including normal and Pneumoconiosis cases,

belonging to 4 different stages (0–3). Authors used ResNet101 (He

et al., 2016) for detecting Pneumoconiosis on segmented images

from the UNet segmentation model and showed improved results

compared to radiologists. Sydney, and Wesley Medical Imaging,

Queensland, Australia. Hao et al. (2021) collected data consisting

of 706 images from Chongqing CDC, China, with 142 images

positive for Pneumoconiosis. Authors trained two deep learning

architectures, ResNet34 and DenseNet53 (Huang et al., 2017)

for the classification of CXRs into normal or Pneumoconiosis.

Table 4 summarizes the above work based on the method of

feature extraction.

3.2.3. Patent review
Sahadevan (2002) proposed an approach to use high-resolution

digital CXR images to detect early-stage lung cancer, Pneumoconiosis

and pulmonary diseases. Wanli et al. (2021) proposed a deep

learning-based approach for Pneumoconoisis detection using lung

CXR image.

3.2.4. Discussion
From the above-cited work, it is clear that there is no publicly

available dataset. The current work is done on the in-house datasets

with fewer samples. This draws our attention to the fact that the

automatic detection of Pneumoconiosis from CXRs requires publicly

available datasets for developing robust, generalizable and efficient

algorithms.

3.3. Pneumonia

It is a viral or bacterial infection affecting the lungs and humans

of all ages, including children. CXRs are widely used to examine the

manifestation caused due to pneumonia infection.

Sousa et al. (2014) compared different machine learning models

for the classification of pediatric CXRs into normal or pneumonia.

Zhao et al. (2019) merged four different CXR datasets for pneumonia

classification and performed lung and thoracic cavity segmentation

using DeepLabv2 (Chen et al., 2017a) and ResNet50 for pneumonia

classification from CXRs on top of the segmented images. Tang et al.

(2019a) used CycleGAN to generate synthetic data and proposed

TUNA-Net to adapt adult to pediatric pneumonia classification from

CXRs. Narayanan et al. (2020) used UNet for lung segmentation

followed by a two-level classification viz; level 1 classifies given

CXR into pneumonia or normal, and level 2 further classifies

pneumonia CXR into either bacterial or viral class. Rajaraman et al.

(2019) highlighted different visualization techniques for interpreting

CNN-based pneumonia detection using CXRs. Ferreira et al. (2020)

used VGG16 for classifying pediatric CXR into normal pneumonia

and further classifying them as bacterial or viral. Zhang J. et al.

(2021) proposed an EfficientNet-based confidence-aware anomaly

detection model to differentiate viral pneumonia as a one-class

classification from non-viral and normal classes (Elshennawy and

Ibrahim, 2020; Longjiang et al., 2020; Yue et al., 2020) used different

deep learning models using a transfer learning approach to perform

classification using CXRs for pneumonia. Mittal et al. (2020) used an

ensemble of CNN and CapsuleNet (Sabour et al., 2017) for detecting

pneumonia from CXRs images using publicly available pediatric

dataset (Stein et al., 2018). Rajpurkar et al. (2017) proposed a pre-

trained DenseNet121 model for classifying 14 findings present in

CXRs in Chestxray14 dataset. The authors further performed a binary

classification to detect pneumonia. Table 5 summarizes the above

based on the feature extraction methods.

3.3.1. Patent review
Shaoliang et al. (2020) proposed a system for pneumonia

detection from CXR using deep learning based on transfer learning.

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2023.1120989
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Akhter et al. 10.3389/fdata.2023.1120989

TABLE 4 Review of the literature for Pneumoconiosis detection using CXRs.

References Highlights Pretraining Dataset

Okumura et al. (2011) Used Fourier Transform to demonstrate the nodule pattern with Neural Nets for detection & No JSRT, Private

Hall et al. (1975) Used textural for six regions to determine profusion level No Private

Yu et al. (2011) Used active shape model to segment lung, divided each lung into six regions. Features

generated from each region are used to train SVM

No Private

Xu et al. (2010) Used textural features generated from six lung regions with SVM for classification and staging No Private

Yang et al. (2021) Two stage pipeline with segmentation followed by classification Yes Private

Zhang L. et al. (2021) Used Deep learning for screening and staging based on six lung regions Yes Private

Devnath et al. (2021) Used Feature ensemble of multiple level deep features generated from pretrained model on

CXR data

Yes ChestXray14, private

Wang X. et al. (2020) Used InceptionNet for end-to-end classification No Private

Wang D. et al. (2020) Generated synthetic CXR samples and trained CNN with real and synthetic Yes Chestxray14, Private

Wang et al. (2021) Performing Pneumoconioisis staging on segmented CXR images Yes Private

Hao et al. (2021) Used two different deep models with different depths for feature generation, followed by

classification

Yes Private

Pretraining (yes/no) refers to the use of weights of deep models trained on the ImageNet dataset. Private refers that the data used being in-house and is not released publicly.

3.3.2. Discussion
Most of the work is done around (Stein et al., 2018) dataset in

multi-class settings. However, there are challenges which need to

be addressed other than the dataset challenge, which includes lung

segmentation and model interpretability. Transfer learning is widely

used to improve generalization for Pneumonia detection on CXRs.

Pneumonia is a common manifestation of many lung disorders and

is thus required to be detected in multilabel settings.

3.4. COVID-19

COVID-19 is caused due to SARS-CoV-2 Coronavirus prevalent

worldwide and is responsible for the ongoing pandemic. It

is responsible for the death of more than 6 million people

worldwide. Rt-PCR is an available test to detect the presence

of COVID-19; however, using CXR is a rapid method for

diagnosis and detecting the presence of pneumonia-like symptoms

in the lungs.

3.4.1. Pre-deep learning based approaches
Rajagopal (2021) used both transfer learning (pre-trained

VGG16) and ML (SVM, XGBoost) trained on a deep features-based

approach for three-class classification for COVID-19 detection. Jin

et al. (2021) used a pre-trained AlexNet to generate the features

on CXR images followed by feature selection and classification

using SVM.

3.4.2. Deep learning based approaches
Chowdhury et al. (2020) proposed a dataset by merging publicly

available datasets (Wang et al., 2017; Mooney, 2018; Cohen et al.,

2020; ISMIR, 2020; Rahman et al., 2020a; Wang L. et al., 2020) for

COVID-19 and used eight pretrained CNN models [MobileNetv2,

SqueezeNet, ResNet18, ResNet101, DenseNet201, Inceptionv3,

ResNet101, CheXNet (Rajpurkar et al., 2017), and VGG19] for the

three class classification; normal, viral pneumonia, and COVID-19

pneumonia. Khan et al. (2020) proposed CoroNet, a transfer

learning-based approach using XceptionNet-based approach,

trained end-to-end for classification of CXR images into normal,

bacterial pneumonia, viral pneumonia, COVID-19 using publicly

available datasets. Islam et al. (2020) proposed a CNN-LSTM based

architecture for detecting COVID-19 from CXRs for a dataset of

4,575 images. Pham (2021) compared the fine-tuning approach with

the recently developed deep architectures for 2-class and 3-class

classification problems for COVID-19 detection in CXRs on three

publicly available datasets. Al-Rakhami et al. (2021) extracted deep

features from pre-trained models and performed classification

using RNN. Duran-Lopez et al. (2020) proposed COVID-XNET,

for detecting COVID-19 from CXR images based on CNN for

binary classification. Gupta et al. (2021) proposed InstaCovNet-19,

by stacking different fine-tuned deep models with variable depth

as to increase model robustness for COVID-19 classification on

CXRs. Punn and Agarwal (2021), Wang N. et al. (2020), Khasawneh

et al. (2021), Jain et al. (2021), El Gannour et al. (2020), Panwar

et al. (2020b), and Panwar et al. (2020a) used transfer learning

based approach for differentiating COVID-19 from viral pneumonia

and normal CXRs. Abbas (2021) proposed a CNN-based class

decomposition approach, DeTraC, which aims to decompose

classes into subclasses and assign new labels independent of each

other within the datasets by adding a class decomposition layer

and later adding back these subsets to generate final predictions.

The authors used the COVID-19 Classification from CXR images

on publicly available datasets. Gour and Jain (2020) proposed a

stacked CNN-based approach using five different submodules from

two different deep models; first fine-tuned VGG16 and second a

30-layered CNN, and the output is combined by logistic regression

for three classifications for COVID-19 using CXRs. Malhotra et al.

(2022) proposed COMiT-Net, a deep learning-based multitasking

approach for COVID-19 detection from CXR, simultaneously

performs semantic lung segmentation, and disease localization

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2023.1120989
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Akhter et al. 10.3389/fdata.2023.1120989

TABLE 5 Summarizes the literature for Pneumonia detection using CXR.

References Highlights Pretraining Dataset

Sousa et al. (2014) Compared different ML classifiers for Pediatric Pneumonia No PedPneumonia

Zhao et al. (2019) Used Multiple datasets and performed semantic lung segmentation No PedPneumonia,

RSNA-Pneumonia, Private

Tang et al. (2019a) Generated synthetic data and trained model for adult pneumonia, and later adapted that for

pediatric pneumonia

No RSNA, PedPneumonia

Narayanan et al. (2020) Lung segmentation followed by two level of classification Yes PedPneumonia

Rajaraman et al. (2019) Comparison of different visualization techniques for deep model explaination Yes PedPneumonia

Ferreira et al. (2020) A multistage CXR classification viz; healthy or pneumonia and viral or bacterial pneumonia Yes PedPneumonia

Zhang J. et al. (2021) EfficientNet-based confidence-aware anomaly detection model No PedPneumonia

Mittal et al. (2020) Used an ensemble of deep model (CNN) and CapsuleNet Yes PedPneumonia

Rajpurkar et al. (2017) Performed multilabel classification with CAM analysis Yes Chestxray14

Pretraining (yes/no) refers to the use of weights of a deep model trained on the ImageNet dataset. Private refers that the data used is in-house and is not released publicly.

to improve model interpretability. Pereira et al. (2020) combined

both handcrafted and deep learning-based features and performed

two-level classification for COVID-19 detection. Rahman T. et al.

(2021) compared the effect of different enhancement techniques

and lung segmentation on classification tasks based on transfer

learning for differentiating CXRs as COVID-19, normal, and

Non-COVID. Li et al. (2020) developed COVID-MobileXpert, a

knowledge distillation-based approach consisting of three models,

one large teacher model, trained on a large CXR dataset and

two student models; one finetuned on COVID-19 dataset to

discriminate COVID-19 pneumonia from normal CXRs and another

a small lightweight model to perform on-device screening for CXR

snapshots. Ucar and Korkmaz (2020) proposed Bayes-Squeeznet,

based on pretrained SqueezeNet and Bayesian optimization

for COVID-19 detection in CXRs. Shi et al. (2021) proposed a

knowledge distillation-based attention method with transfer learning

for COVID-19 detection from CT and CXRs. Saha et al. (2021)

proposed EMCNet, based on extracting deep features from CXRs

and training different machine learning classifiers. Mahmud et al.

(2020) proposed a CovXNet, based on training a deep model on

different resolution CXR data, Stacked CovXNet, and later finetune it

on COVID-19 and non-COVID-19 CXR data as a target task. Table 6

summarizes the above work for COVID-19 detection using CXRs.

3.4.3. Patent review
Shankar et al. (2022) proposed a deep learning-based SVM

approach for classifying chest X-rays affected with COVID-19

or normal.

3.4.4. Discussion
The research is very recent, and papers produced on different

datasets are generated either with fewer samples or combining more

than one dataset. The CXR data released post-pandemic is collected

from multiple centers across the globe. Further, only a fewer works

have incorporated inherent model interpretability. To the best of our

knowledge, no work has been established for segmentation, report

generation, or disease localization and the primary focus is on the

classification task.

4. Datasets

Several chest X-ray datasets have been released over the past.

These datasets are either made available in DICOM, PNG or JPEG

format. The labeling is either done with the help of experts in

this domain or label extraction methods using the natural language

processing techniques from the reports associated with each image.

Moreover, a few datasets also include the local labels as disease

annotations for a given sample. Authors have also included lung field

masks available as ground truth for performing segmentation and

associated tasks. In this section, we include the publicly available

datasets used in the literature. The statistics are also summarized

in Table 7. Figure 8 illustrates the samples from the different CXR

datasets mentioned below.

• JSRT: Shiraishi et al. (2000) introduced the dataset in the year

2000, consisting of 247 images for two classes; malignant and

benign. The resolution of each image is 2048 X 2048. The dataset

can be downloaded from http://db.jsrt.or.jp/eng.php.

• Open-i (O) : Demner-Fushman et al. (2012) proposed the

chest X-ray dataset consisting of 3955 samples for 3955

subjects. Images are available in DICOM format. The findings

are available in the form of reports made available by the

radiologists. The dataset is collected from Indiana Network

for Patient care (McDonald et al., 2005). The dataset can be

downloaded from https://openi.nlm.nih.gov/.

• NLST : The dataset available collected from the NLST screening

trails (Team, 2011). The dataset consists of 26,732 subjects for

CXRs, and a subset of the dataset is available on request from

https://biometry.nci.nih.gov/cdas/learn/nlst/images/.

• Shenzhen: Jaeger et al. (2014) introduced the dataset in the year

2014, consisting of 662 CXRs belonging to two classes; Normal

and TB. The dataset was collected from Shenzhen No.3 Hospital

in Shenzhen, Guangdong providence, China, in September 2012.

The samples are shared publicly with original full resolution

and include lung segmentation masks. The dataset can be

downloaded from https://openi.nlm.nih.gov/imgs/collections/

ChinaSet_AllFiles.zip.

• Montgomery: Jaeger et al. (2014) introduced the dataset in the

year 2014, consisting of 138 CXRs belonging to two classes;
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TABLE 6 Review of the literature for COVID19 detection using CXRs.

References Highlights Pretraining Dataset

Rajagopal (2021) Combined deep learning and ML classifier Yes PedPneumonia, COVID-CXR,

https://github.com/agchung

Jin et al. (2021) Used deep feature followed by feature selection with SVM Yes PedPneumonia, COVID-CXR

Chowdhury et al. (2020) Used deep ensemble feature generation Yes Mutiple datasets with different disorders

Khan et al. (2020) XceptionNet based end-to-end training Yes PedPneumonia, COVID-CXR, COVIDDGR

Islam et al. (2020) Used a combination of LSTM-CNN-based architecture Yes Combination of

publicly available data Pham

(2021)

Used a multi-level classification approach for two and three disease

classes

Yes COVID-CXR, PedPneumonia, COVID-19

(kaggle), ActualMed (github)

Al-Rakhami et al. (2021) Approach combines CNNs with sequential deep model Yes Data collected from various available sources

Duran-Lopez et al. (2020) Proposed COVID-XNet, a custom deep learning model for binary

classification

Yes BIMVC, COVID-CXR

Gupta et al. (2021) Proposed InstaCovNet-19, with ensemble generated from deep

features

Yes Chowdhury et al. (2020), COVID-CXR

Abbas (2021) Class decomposition into sub-classes with pre-trained models Yes JSRT, COVID-CXR

Gour and Jain (2020) Submodule stacking from pretrained and customized deep models Yes COVID-CXR, ActualMed, PedPneumonia

Malhotra et al. (2022) Multi-task approach with segmentation, disease classification and Yes CheXpert, Chestxray14, BIMVC-COVID19,

Various online sources

Pereira et al. (2020) Feature ensemble of handcrafted and deep features Yes COVID-CXR, Chestxray14, Radiopedia

Encyclopedia

Rahman T. et al. (2021) Employed and compared different enhancement technique for

performance improvement

Yes PedPneumonia, BIMCV+COVID19

Li et al. (2020) On-device detection approach for CXR snapshots Yes PedPneumonia, COVID-CXR

Ucar and Korkmaz (2020) Used Bayesian optimization with deep models for differentiating

Pneumonia

Yes PedPneumonia, COVID-CXR

Shi et al. (2021) Knowledge transfer in the form of attention from teacher to student

network

No COVID-CXR, SIRM

Saha et al. (2021) Used deep features with different ML classifiers Yes COVID-CXR, SIRM, PedPneumonia,

Chestxray14,

Mahmud et al. (2020) Used feature stacking generated from different resolutions Yes PedPneumonia, private

Pretraining (yes/no) refers to use of weights of deep model trained on ImageNet dataset. Private refers that the data used is in-house and is not released publicly.

Normal and TB. The dataset is collected from the tuberculosis

control program of the Department of Health and Human

Services ofMontgomery County, MD, USA. It also includes lung

segmentation masks, which are shared as original full-resolution

images. The dataset can be downloaded from https://openi.nlm.

nih.gov/imgs/collections/NLM-MontgomeryCXRSet.zip.

• KIT: Ryoo and Kim (2014) proposed the dataset in year 2014. It

consists of 10,848 DICOMCXRs with 7020 for normal and 3828

for TB. The dataset is collected from the Korean Institute of TB.

• Indiana: Demner-Fushman et al. (2016) introduced the dataset

in year 2015. The dataset is collected from the IndianaUniversity

hospital network. The dataset includes 3996 radiology reports

and 8121 associated images. The dataset can be downloaded

from https://openi.nlm.nih.gov/.

• Chestxray8: Wang et al. (2017) released the dataset in year 2017.

It includes 108,948 frontal-view CXRs of 32,717 unique patients

with eight different findings. The dataset is labeled report

parsing (NLP) associated with each sample. The dataset can

be downloaded from https://nihcc.app.box.com/v/ChestXray-

NIHCC.

• Chestxray14: Wang et al. (2017) published the dataset in 2017

consisting of 112,120 CXR samples from 30,805 subjects. Dataset

consists of 1, 024×1, 024 image resolution images collected from

the National Institute of Health (NIH), US. It contains labels for

the 14 findings, automatically generated from the reports using

NLP. The dataset is publicly available and can be downloaded

from https://www.kaggle.com/nih-chest-xrays/data.

• RSNA-Pneumonia: It’s the dataset generated from the samples

ChestXray14 dataset for pneumonia detection. It contains

a total of 30,000 CXRs with pneumonia annotations with

a 1, 024 × 1, 024 resolution. The annotations include lung

opacities, resulting in samples with three classes normal, lung

opacity, and not normal (Stein et al., 2018). The dataset can be

downloaded from https://www.kaggle.com/c/rsna-pneumonia-

detection-challenge/data.

• Ped-Pneumonia: Kermany et al. (2018a) published the dataset

in 2018, consisting of 5856 pediatric CXRs. The data is collected

from Guangzhou Women and Children’s Medical Center,

Guangzhou, China. The dataset is labeled as viral and bacterial

pneumonia. It also contains samples as normal. The dataset
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FIGURE 8

Showcases the sample examples of the CXRs from di�erent datasets. The samples belong to Shenzhen (A, B), Montgomery (C, D), JSRT (E, F),

Chestxray14 (G, H), VinDr-CXR (I, J), CheXpert (K, L), RSNA Pneumonia (M, N), Covid-CXR (O, P), PedPneumonia (Q, R), and MIMIC-CXR (S, T). The

samples across di�erent datasets highlight a wide variety in terms of quality, contrast, brightness and original image size.

can be downloaded from https://data.mendeley.com/datasets/

rscbjbr9sj/2.

• CheXpert: Irvin et al. (2019) published one of the largest chest

X-ray datasets consisting of 224,316 images with a total of

65,240 subjects in the year 2017. It took the authors almost 15

years to collect the dataset from Stanford Hospital, US. The

dataset contains labels as presence, absence, uncertainty, and

no mention of 12 abnormalities, no findings, and the existence

of support devices. All these labels are generated automatically

from radiology reports using a rule-based labeler (NLP).

The dataset can be downloaded from https://stanfordmlgroup.

github.io/competitions/chexpert/.

• CXR14-Rad-Labels: This (2020) introduced the dataset as the

subset of the ChestXray14, consisting of 4 labels for 4,374 studies

and 1,709 subjects. The annotations are provided by the cohort

of radiologists and are made available along with agreement

labels.

• MIMIC-CXR: Johnson et al. (2019) published the dataset in

the year 2019 with 371,920 CXRs collected from 64588 subjects

admitted to the emergency department of Beth Israel Deaconess
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Medical Center. It took authors almost 5 years to collect the

dataset, and it is made available in two versions; V1 and

V2. V1 contains images with 8-bit grayscale images in full

resolution, and V2 contains DICOM images with anonymized

radiology reports. The labels are automatically generated by

report parsing. The dataset can be downloaded from https://

physionet.org/content/mimic-cxr/.

• SIIM-ACR: Anuar (2019) is Kaggle challenge dataset for

pneumothorax detection and segmentation. It is believed by

some researchers that the data samples are taken from the

ChestXray14 dataset; however, no official confirmation is made

about this. CXRs are available as DICOM images with 1, 024 ×

1, 024 resolution.

• Padchest: Bustos et al. (2020) published the collected dataset

in year 2020, consisting of 160,868 CXRs, 109,931 studies and

67,000 subjects. It took the authors almost 8 years to collect the

dataset from the San Juan Hospital, Spain. The dataset is labeled

using domain experts for a set of 27,593 images, and for the

rest of the data, an RNN was trained to generate the labels from

reports.

• BIMCV: Vayá et al. (2020) introduced the dataset for COVID-19

in year 2020. It includes of CXRs, CT scans and laboratory test

results. The dataset is collected from Valencian Region Medical

ImageBank (BIMCV). It consists of 3,293 CXRs from 1,305

COVID-19-positive subjects.

• COVID abnormality annotation for X-Rays (CAAXR): Mittal

et al. (2022) proposed the dataset with annotations on

the existing BIMCV-COVID-19+ dataset performed by the

radiologists. The dataset contains annotations for different

findings such as atelectasis, consolidation, pleural effusion,

edema and others. CAAXR contains a total of 1,749 images with

3,943 annotations. The dataset can be downloaded from https://

osf.io/b35xu/ and http://covbase4all.igib.res.in/.

• COVIDDSL: The dataset was released in 2020 for COVID-19

detection (Hospitales, 2020). The dataset is collected from the

HM Hospitales group in Spain and includes CXRs from 1725

subjects along with detailed results from laboratory testing, vital

signs etc.

• COVIDGR: Tabik et al. (2020) released the dataset, collected

from Hospital Universitario Clínico San Cecilio, Granada,

Spain. It consists of 852 PA CXRs, with labels for positive and

negative COVID-19. The dataset also includes the severity of

COVID-19 in positive cases.

• COVID-CXR: Cohen et al. (2020) released the dataset for

COVID-19 with a total of 930 CXRs. The dataset includes

samples from a large variety of places. It includes data collected

from different methods, including screenshots from the research

papers. The dataset is labeled as the label mentioned in the

source and is available in PNG or JPEG format. The dataset

can be downloaded from https://github.com/ieee8023/covid-

chestxray-dataset.

• VinDr-CXR: Nguyen et al. (2020) proposed the dataset collected

from the two major hospitals of Vietnam from 2018 to 2020.

The dataset includes 18,000 CXRs, 15,000 samples for training

and 3,000 for testing. The annotations are made manually by

17 expert radiologists for 22 local labels and six global labels.

The samples for the training set are labeled by three radiologists,

while the testing set is labeled independently by five radiologists.

Images in the dataset are available in DICOM format and can be

downloaded from https://vindr.ai/datasets/cxr after signing the

license agreement.

• Brax: Reis (2022) introduced the dataset which includes 40,967

CXRs, 24,959 imaging studies for 19,351 subjects, collected from

the Hospital Israelita Albert Einstein, Brazil. The dataset is

labeled for 14 radiological findings using report parsing (NLP).

Dataset is made available in both DICOM and PNG format. The

dataset can be downloaded from https://physionet.org/content/

brax/1.0.0/.

• Belarus: is used in many papers and consists of 300 CXR images.

However, the download link is not available and also further

details about the dataset are missing as well.

4.1. Discussion

Generating large datasets in the medical domain is always

a challenging process due to data privacy concerns and the

need for expert annotators. While several existing datasets have

enabled different research threads for CXR-based image analysis for

disorders such as TB and pneumonia, the number of annotated

samples in these datasets is less for modern deep learning based

algorithm development. Further, local ground truth labeling plays an

important role in disease classification and detection, and improves

explainability. Existing datasets, in general, lack variability in terms

of sensors and demographics. For many thoracic disorders, such as

Pneumoconiosis, COPD, and lung cancer, there is a lack of publicly

available datasets. On the other hand, datasets for the recent COVID-

19 pandemic are collected from different hospitals across the globe

with fewer samples and limited labels. Only a few datasets have

associated local labels; for instance, Chestxray14 andCheXpert. These

labels are generated using the report parsing method and results in

high label noise. This may increase higher chances of missing labels

due to the absence of findings in radiology reports on which the

report parser (NLP algorithm) is designed. This draws the attention

to carefully handling the labeling process while releasing the datasets

to avoid any errors during deep model training.

5. Evaluation metrics

This section covers different metrics used to evaluate the

proposed approach in the existing literature. Table 8 summarizes the

various metrics that are used to evaluate different tasks in CXR-based

image analysis.

5.1. Image enhancement task

To assess the quality of images for different enhancement

techniques, the difference between the original and enhanced image

is calculated using the following metrics.

• Peak signal to noise ratio (PSNR): It is a quality assessment

metric and is expressed as the ratio of the maximum possible

power of the original signal to the power of the noisy signal.
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TABLE 7 Illustrates the available CXR datasets in the literature.

Name Number of Images
(I)/Patients (P)

View position Global
labels

Local
labels

Image
format

Labeling method

JSRT (Shiraishi et al., 2000) I: 247 PA: 247 3 N/A DICOM Radiologist

Open-i (O) (Demner-Fushman et al.,

2012)

I: 7910 PA: 3955, LL: 3955 N/A N/A DICOM Radiologist

NLST (Team, 2011) I: 5493 No public information is available. The dataset was reported by Lu et al. (2019)

Shenzhen (Jaeger et al., 2014) I: 340 PA: 340 2 N/A PNG Radiologist

Montgomery (Jaeger et al., 2014) I: 138 PA: 138 2 N/A PNG Radiologist

Indiana (Demner-Fushman et al.,

2016)

I: 7466 PA: 3807, LL: 3659 N/A N/A N/A Radiology reports

Chestxray8 (Wang et al., 2017) I: 108K+, P: 32,717 N/A N/A 8 PNG Report parsing

Chestxray14 (Wang et al., 2017) I: 112K, P: 31K PA: 67K, AP: 45K No 14 PNG Report parsing

RSNA-Pneumonia (Stein et al., 2018) I: 30K PA: 16K, AP: 14K 1 N/A DICOM Radiologist

Ped-Pneumonia (Kermany et al.,

2018a)

I: 5856 N/A 2 N/A JPEG Radiologist

CheXpert (Irvin et al., 2019) P: 65K, I: 224K PA: 29K, AP: 16K,

LL: 32K

N/A 14 JPEG Report parsing Cohort of

Radiologists

CXR14-Rad-Labels (This, 2020) P: 1709, I: 4374 AP: 3244, PA: 1132 4 N/A PNG Radiologist

MIMIC-CXR (Johnson et al., 2019) P: 65K, I: 372K PA+AP: 250K, LL:

122K

N/A 14 JPEG(V1)

DICOM(V2)

Report Parsing

SIIM-ACR (Anuar, 2019) I: 16K, P: 16K PA: 11K, AP: 4799 1 N/A DICOM Radiologist

Padchest (Bustos et al., 2020) P: 67K, I: 160K PA: 96K, AP: 20K,

LL: 51K

N/A 193 DICOM Report parsing

Radiologist Interpretation

of reports

BIMCV (Vayá et al., 2020) P: 9129, I: 25,554 PA: 8,748, AP:

10,469, LL: 6,337

1 N/A PNG Laboratory Reports

CAAXR (Mittal et al., 2022) P: 1749, I: 1749 Not mentioned 1 N/A PNG Cohort of radiologists

COVIDSSL (Hospitales, 2020) P: 1,725 Mostly AP 1 N/A DICOM Laboratory Reports

COVIDGR (Tabik et al., 2020) I: 852 PA: 852 2 N/A JPEG Radiologist

COVID-CXR (Cohen et al., 2020) I: 866, P: 449 PA: 344, AP: 438, LL:

84

4 N/A JPEG Radiologist

VinDr-CXR (Nguyen et al., 2020) I: 18K PA: 18K 6 22 DICOM Radiologist

Brax (Reis, 2022) P: 19,351, I: 40,967 Numbers are not

mentioned

N/A 14 DICOM +

PNG

Report parsing

Belarus (Rosenthal et al., 2017) I: 306, P:169 No other information is available

The table presents the description of each dataset with the number of images, patients, the available format of images, view position and labeling (annotation) method. The global label refers to the

label single label assigned to the image for multiclass settings while local labels refer to multiple labels assigned to a single image for different findings present in multilabel settings. PA stands for

Posterior to anterior, AP stands for Anterior to posterior and LL stands for lateral view. K refers to 1,000. N/A stands for not available.

• Structural Similarity Index (SSIM): It is a quality

measure used to compare the similarity between

two images.

• Mean squared error (MSE): It is a quality assessment measure

and is defined as the accumulative sum of square error between

enhanced and original images.

• MAXERR: It is the maximum absolute squared error of the

specified enhanced image with a size equal to that of the original

image (Huynh-Thu and Ghanbari, 2008).

• L2rat: It is defined as the squared norm of the enhanced

image to the original image (Huynh-Thu and Ghanbari,

2008).

5.2. Segmentation task

Segmentation approaches aim to find the ROI in a given image.

In order to evaluate the segmentation algorithms for generating the

prediction mask, and compare that with the ground truth mask, the

following performance metrics are used :

• Intersection over Union (IOU): It is also called as Jaccard Index.

It is defined as the ratio of intersection over the union of

area for the predicted mask to the area of the ground truth

mask. The IOU value lies between 0 for poor overlap and 1 for

complete overlap. Values above 0.5 are considered decent for the
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algorithm. It is defined as;

IOU =
predicted mask area ∩ groundtruth mask area

predicted mask area ∪ groundtruth mask area

• Dice Coefficient: It is also defined as an F1 score. It is defined as

the ratio of twice the area of overlap between the predicted mask

and ground truth mask to the total number of pixels for both

masks. It is similar to the IOU. Mathematically, it is defined as

DiceCoefficient =
(2 ∗ Area of overlap)

sum of pixels combined

• Pixel accuracy: It is another metric for evaluating semantic
segmentation. It is defined as the percentage of pixels that are
correctly classified. It can give misleading results for the minor
class. Mathematically, it is defined as the ratio of correctly
classified pixels to the sum of all the pixels. For a binary image,
it is defined as;

PixelAccuracy =

True Positive+ True Negative

True Positive+ True Negative+ False Positive+ False Negative

5.3. Classification task

To evaluate theMLmodel for the classification task, the following

metrics are widely used in the literature.

• Sensitivity: aka recall, is the proportion of the actual positive

samples that are correctly identified as positive. It indicates what

percent of actual disease affected patients were detected by the

model. Mathematically, it is defined as:

Sensitivity(Recall) =
True Positives

True Positives+ False Negatives

• Specificity: aka true negative rate, refers to the fraction of the

samples’ actual negative cases from all the predicted negative

cases. It indicates what percent of the disease-negative patients

are detected as positive (False positive) Mathematically, It can

be defined as:

Specificity(True Negative Rate) =

True Negatives

True Negatives+ False Positives

• Accuracy: It is defined as the number of correctly classified

samples from the total number of samples. It shows often the

model predicts the class labels accurately. However, it can be

misleading sometimes, and class wise accuracy is preferred over

overall accuracy.

Accuracy =

True Positives+ True Negative

True Positives+ False Negatives+ True Negative+ False Positive

• Precision: Also known as a positive predictive value, is the

ratio of positive samples that are accurately predicted. It

emphasizes how many correctly predicted samples are actually

TB positive. It is majorly used in cases where false positive are

of more importance than false negatives. Mathematically it is

defined as:

Precision =
True Positive

True Positive+ False Positive

• F1-score: It is defined as the harmonic mean of precision and

recall. It reaches the maximum value when both precision

and recall are equal. It is of high use in cases where

both false positives and true negatives are of equal concern.

Mathematically, it is defined as

F1− score = 2 ∗
Precision ∗ recall

Precision + Recall

• AUC-ROC Curve: It tells the probability of separating samples

of negative class from positive class samples based on different

thresholds. For different thresholds, a plot is obtained for

different values of True Positive Rate (TPR) and their

corresponding False Positive Rate (FPR) values. For example, it

is not always necessary to have a particular threshold such as 0.5

and classify a patient as a positive for disease if value is >0.5

and negative if value is <0.5. A set of different thresholds is used

to find an optimal threshold, where both positive and negative

patients are classified best by the model.

TPR = Sensitivity =
True Positive

True Positive+ False Negative

FPR = 1− Specificity =
False Positive

False Positive+ True Negative

5.4. Fairness metrics

DL models are black boxes and act differently across protected

attributes such as age, gender, race, or socio-economic status. Fair

or bias-free decisions show zero affinity of the model toward any

individual or subgroup in the population set based on any inherent

characteristics. To evaluate a deep model for exhibiting disparities

across subgroups, fairness metrics demonstrate whether the decisions

are fair or not for the protected attributes. These allow us to avoid any

ill-treatment toward any subgroup after the deployment of the model

in real-world settings.

To assess the model performance for different protected

attributes in the population, the following are a few fairness metrics

used in the literature for measuring bias or assessing the fairness of

AI Systems.

• Demographic parity: It is defined as the probability of being

classified with the favorable label and is independent of group

membership (protected and unprotected). It is also known as

Statistical Parity (Zafar et al., 2017). For a disease classification

problem, demographic parity is witnessed if the samples are not

equally classified independent of the membership of being male

or female.
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• Equalized odds: It is defined as both false-positive and true-

positive rates for protected and unprotected groups being the

same. It is also known as Separation, Positive Rate Parity (Zafar

et al., 2017). For a For a disease classification problem, if

training data patients and are males only and all females as

normal samples and equalized odds is satisfied if the model

equally classifies ormisclassifies the positive samples irrespective

of whether that’s male or female at the test time.

• Degree of bias: It is defined as the standard deviation

of classification accuracy across different subgroups of a

demographic group.

• Disparate impact: It is defined as the ratio of probabilities of

being classified with the favorable label between protected and

unprotected groups close to one. For instance, for a disease

classification problem, if the model is favoring males over

females and thus showing disparate impact.

• Predictive rate parity: It is defined as the fraction of correct

positive predictions that is the same for protected and

unprotected groups (Chouldechova, 2017). For example, the

predictive parity rate for the disease classification is achieved if

the precision for both subgroups (e.g., male and female) is the

same. Predictive rate parity is also known as predictive parity.

• Equal opportunity: It is defined as the true positive rate being

the same between protected and unprotected groups (Hardt

et al., 2016). For example, for a disease classification problem,

if disease-positive patients are only males and all females as

normal samples. Equal opportunity is achieved if the model still

predicts samples equally irrespective of whether they are male or

female (protected attributes)

• Treatment equality: It is defined if both protected and

unprotected groups have an equal ratio of false negatives, and

false positives (Berk et al., 2021).

• Individual fairness: It is defined as the metric which treats

similar individuals similarly (Dwork et al., 2012). For instance,

Individual fairness is satisfied if samples from two different

individuals with the same severity for a disease are equally

treated by the model for disease classification.

• Counterfactual fairness: It considers a model to be fair for

a particular individual or group if its prediction in the real

world is the same as that in the counterfactual world where the

individual(s) had belonged to a different demographic group.

It provides a way to check the possible way to interpret the

causes of bias and the impact of replacing only the sensitive

attributes (Russell et al., 2017).

5.5. Report generation

To evaluate the report/caption generation for images, the

following are the widely used evaluation metrics. All these

metrics find the similarity (n-gram matching) solely between the

ground truth and predicted captions without taking the image

into consideration.

• BLEU: Bilingual Evaluation Understudy measures the quality of

the translated sentences with reference to the similarity between

predicted and labels caption, based on the n-grammatching rule. T
A
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Its value lies between 0 and 1 (Papineni et al., 2002). It is based

on the n-gram co-occurrence frequency between the reference

and predicted captions.

• METEOR: Metric for Evaluating Translation with Explicit

Ordering calculates the precision and recall and then takes a

harmonic mean for the query image caption (Banerjee and

Lavie, 2005). Unlike BLEU, it measures the word-to-word

matching and calculates recall for accurate word matching.

• ROGUE-L: Recall-oriented Understudy for Gisting Evaluation

is used to evaluate the co-occurrence of n-tuples in the abstracts.

It is the evaluation method to calculate the machine’s fluency of

translation (Lin and Hovy, 2003). It uses the concept of dynamic

programming to find the longest common subsequence between

the reference and predicted caption and to uses it to calculate

the recall to determine the similarity between the two captions.

Higher the value of ROGU-L, better the model, however, it

doesn’t consider the grammatical accuracy or the semantic level

of description.

• CIDEr: Consensus-based Image Description Evaluation

calculates the similarity between the reference and predicted

caption by considering each sentence as a document. The Cosine

angle of the word frequency-inverse document frequency (TF-

IDF) vector is calculated. The final result is obtained by

averaging the similarity of tuples of different lengths (Vedantam

et al., 2015).

• SPICE: Semantic Propositional Image Caption Evaluation

uses the graph-based semantic representation to encode the

objects, attributes, and relationships in the description sentence

and evaluate the description sentence at the semantic level

(Anderson et al., 2016). It faces challenges with repetitive

sentences, however, generates captions with a high correlation

with human judgement.

6. Open problems

Based on the literature review, here we present the open

challenges in AI-based CXR analysis that require attention from the

research community.

• Unavailability of data: Due to the inaccessibility of publicly

available datasets for many lung diseases such as the detection

of Pneumoconoisis from CXRs, it is challenging to create large-

scale models for different lung diseases. In addition, a number of

datasets are from a few specific countries like the USA. In order

to build generalizablemodels, it is important to create large-scale

datasets with diversity.

• Small sample size problem and interoperability: Existing work

is done on fewer in-house collected chest X-ray samples.

Developing a robust and generalizable deep learning-based

model requires a huge amount of training data. The datasets are

very small in size compared to general object detection problems

(for instance, the ImageNet dataset). Since the scanners might

vary according to locations, deep models need to be aware and

invariant of the dependency of learning a specific portion of the

dataset, specifically for the datasets where data is collected from

different hospitals.

• Multilabel and limited label problem: A given chest X-ray of the

patient suffering from Pneumoconoisis or TB develops multiple

manifestations such as nodules, emphysema, tissue scarring, and

fibrosis, which results in multilabel problems. On top of the

limited accessible data, data labeling is also a challenge and

requires detailed inputs from domain experts. Chest diseases

are mainly focused on the lung fields; however, ground mask to

segment the CXRs is scanty in the literature. Domain experts

such as chest radiologists and pulmonologists must be consulted

for data annotation and labeling, and encourage collaboration

with more hospitals, radiologists and pulmonologists.

• Low-quality images: The data collected may not always be of

high quality. Samples also suffer alignment problems, which

sometimes need to be fixed. Handling noisy data contributes

to another challenge for algorithm design. A robust AI-based

pipeline is needed to handle noise and image registration for

lung disease detection.

• Lung disease correlation and co-occurrence: The presence

of Pneumoconoisis and its related diseases, such as TB,

share similar pathology, often resulting in misdiagnosis. Two

diseases can be associated with the same patient, for instance,

Silicotuberculosis (silicosis and TB). A similar problem is faced

with pneumonia with its three variants; viral, bacterial and

COVID-19.

• Trusted AI: Building trust in machine intelligence, especially

for medical diagnoses, is crucial. Data bias among different

demographics and sensors can result in inaccurate diagnostic

decisions. Moreover, data privacy for accessing any patient data

is of utmost priority. In addition, incorporating algorithmic

explainability is a significant task to handle. Explainability in

models can play an essential role in developing automated

disease detection solutions to ease the workload in hospitals,

decrease the chances of misdiagnoses, and encourage building

trust in the diagnostic assistants. In particular, deep models

face data bias and adversarial attacks in machine intelligence-

based prediction. To harness the efficacy of deep models

for automatic disease detection using CXRs, there is a need

to build trustable systems with high fairness, interpretability

and robustness.

7. Conclusion

CXR based image analysis is being used for detecting the

presence of diseases such as TB, Pneumonia, Pneumoconiosis and

COVID-19. This paper presents a detailed literature survey of

AI-based CXR analysis tasks such as enhancement, segmentation,

detection, classification, image and report generation along with

different models for detecting associated diseases. We also present

the summary of datasets and metrics used in the literature as well

as the open problems in this domain. It is our assertion that there

is a vast scope for improving automatic and efficient algorithm

development for CXR-based image analysis. The advent of AI/ML

techniques, particularly deep learning models, provides a scope

of responsible, interpretable, privacy friendly digital assistance for

thoracic disorders and addresses several open problems/challenges.

Furthermore, novel CXR datasets must be prepared and
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released to encourage development of novel approaches for

various disorders.
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