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Network experiment designs for
inferring causal e�ects under
interference

Zahra Fatemi* and Elena Zheleva

Department of Computer Science, University of Illinois Chicago, Chicago, IL, United States

Current approaches to A/B testing in networks focus on limiting interference,

the concern that treatment e�ects can “spill over” from treatment nodes to

control nodes and lead to biased causal e�ect estimation. In the presence of

interference, twomain types of causal e�ects are direct treatment e�ects and total

treatment e�ects. In this paper, we propose two network experiment designs that

increase the accuracy of direct and total e�ect estimations in network experiments

through minimizing interference between treatment and control units. For direct

treatment e�ect estimation, we present a framework that takes advantage of

independent sets and assigns treatment and control only to a set of non-adjacent

nodes in a graph, in order to disentangle peer e�ects from direct treatment

e�ect estimation. For total treatment e�ect estimation, our framework combines

weighted graph clustering and cluster matching approaches to jointly minimize

interference and selection bias. Through a series of simulated experiments on

synthetic and real-world network datasets, we show that our designs significantly

increase the accuracy of direct and total treatment e�ect estimation in network

experiments.

KEYWORDS

causal inference, direct treatment e�ects, total treatment e�ects, interference, spillover,

selection bias

1. Introduction

Causal inference plays a central role in many disciplines, from economics (Varian, 2016;

Holtz et al., 2020) to health sciences (Antman et al., 1992; Loucks and Thuma, 2003) and

social sciences (Sobel, 2000; Gangl, 2010). The goal of causal inference is to estimate the effect

of an intervention on individuals’ outcomes. The gold standard for inferring causality is the

use of controlled experiments, also known as A/B tests and Randomized Controlled Trials

(RCTs), in which experimenters can assign treatment (e.g. a news feed ranking algorithm) to

a random subset of a population and compare their outcomes with the outcomes of a control

group, randomly selected from the same population (e.g., a group of users who used the old

news feed ranking algorithm). Through randomization, the experimenter can control for

confounding variables that can impact the treatment and outcome assignment but are not

present in the data and assess whether the treatment can cause the target variable to change.

While it is straightforward to randomly assign treatment and control to units that are

i.i.d., it is much harder to do that for units that interact with each other. The goal of

designing network experiments is to ensure reliable causal effect estimation in controlled

experiments for potentially interacting units. One of the challenges in network experiment

design is dealing with interference (or spillover), the problem of treatment “spilling over”

from a treated node to a control node. The presence of interference breaks the Stable

Unit Treatment Value Assumption (SUTVA), the assumption that one unit’s outcome is

unaffected by another unit’s treatment assignment, and challenges the validity of causal
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inference (Imbens and Rubin, 2015). Different types of causal

estimands are possible in the presence of interference: 1) the

difference between the average outcomes of treated and untreated

individuals due to the treatment alone (Direct Treatment Effects),

2) the influence of peers’ behavior on the unit’s response to

the treatment (Peer Effects), and 3) the combination of direct

treatment effects and peer effects (Total Treatment Effects).

Different estimands lead to different inference procedures—both

from a design and an analysis point of view. As a motivating

example, consider the problem of quantifying the effect of changing

the news feed ranking algorithm of an online social network website

on the time that users spend interacting with the site. Direct

treatment effects capture the effect of changing the news feed

ranking algorithm on the time that a user spends on the website,

regardless of the behavior of other users in the study. Peer effects

quantify the effect of friends time spent on the website on the time

that a user spends on the website. Total treatment effects show the

total effect of changing the news feed ranking algorithm on the time

all users spend on the website which is equal to the sum of peer

effects and direct treatment effects.

The focus of this paper is measuring direct and total treatment

effects in network data. The total treatment effect of applying

a treatment to all units compared with applying a different

(control) treatment to all units is a common causal estimand in

network experiments. Prominent methods for total treatment effect

estimation rely on two-stage or cluster-based randomization, in

which clusters are identified using graph clustering and cluster

randomization dictates the node assignment to treatment and

control (Ugander et al., 2013; Eckles et al., 2016; Saveski et al.,

2017; Pouget-Abadie et al., 2018; Fatemi and Zheleva, 2020). Graph

clustering aims to find densely connected clusters of nodes, such

that few edges exist across clusters (Schaeffer, 2007). The basic idea

of applying it to causal inference is that little interference can occur

between nodes in different clusters.

Clustering a connected graph component is guaranteed to leave

edges between clusters, therefore removing interference completely

is impossible. At the same time, some node pairs are more likely

to interact than others, and assigning such pairs to different

treatment groups is more likely to lead to undesired spillover (and

biased causal effect estimation) than separating pairs with a low

probability of interaction. We make the key observation that there

is an inherent tradeoff between interference and selection bias

in cluster-based randomization based on the chosen number of

clusters (as demonstrated in Figure 1). Due to the heterogeneity of

real-world graphs, discovered clusters can be very different from

each other, and the nodes in these clusters may not represent the

same underlying population (Fatemi and Zheleva, 2020). Therefore,

cluster randomization can lead to selection bias in the data with

causal effects that are confounded by the difference in node features

of each cluster.

Here, we propose two methods for network experiment design

in the presence of interference. First, we focus on quantifying

direct treatment effects by designing a network experiment that

disentangles peer effects from direct treatment effects and provides

an unbiased estimation of direct treatment effects. We develop

CauseIS, a framework that leverages independent algorithms on

network nodes to divide nodes into two sets: 1) independent set

nodes, and 2) graph nodes that are not in the independent set

FIGURE 1

The tradeo� between selection bias (distance) and undesired

spillover (RMSE) in cluster-based randomization; each data point is

annotated with the number of clusters.

referred to as bystander nodes. By assigning the independent set

nodes to treatment and control groups, we ensure that there are

no peer effects between nodes participating in the experiment,

regardless of whether they are in different treatment groups or the

same treatment group. Key to the proposed experiment design is

the idea that in expectation, the peer effects of bystander nodes on

the treatment group are the same as the peer effect of bystander

nodes on the control group, thus canceling each other in the total

treatment effect estimation.

The second method focuses on total treatment effect

estimation. We develop CMatch, a framework for network

experiment design that minimizes both interference and selection

bias through a novel objective function for matching clusters

and combining node matching with weighted graph clustering

to provide a more accurate estimation of total treatment effects

(Fatemi and Zheleva, 2020). We introduce the concept of “edge

spillover probability” as the probability of interaction between

entities and account for it in the design. In this work, incorporating

node matching and edge spillover probabilities into graph

clustering is novel.

2. Related works

By attracting attention toward network experiments, dependent

on the assumptions made in the study different causal estimands

for direct, peer, and total treatment effects have been proposed

(Halloran and Struchiner, 1995; Hudgens and Halloran, 2008;

Green et al., 2016; Taylor and Eckles, 2018; Pouget-Abadie et al.,

2019; Ugander and Yin, 2020; Aronow et al., 2021; Sävje et al., 2021).

In this section, we give an overview of relevant works to quantify

direct and total treatment effects in RCTs.

2.1. Direct treatment e�ect estimation

Estimating the effect of treatment alone has been studied in

the context of network experiment design. Jagadeesan et al. (2020)
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propose an approach to reduce the bias of the Neymanian estimator

of direct treatment effect estimation under interference and

homophily. In this approach, treatment assignment is considered

as a quasi-coloring on a graph and every treated node is tried

to be matched with a control node with an identical number of

treated and control neighbors to create a balanced interference in

network experiments. In networks where perfect quasi-coloring

is not possible, nodes are ordered by degree and then nodes

with a similar degree are paired and assigned to treatment or

control. The accuracy of causal effect estimation in this method

depends on the network structure, degree distribution of the

nodes, and approaching perfect quasi-coloring to perfect quasi-

coloring. Recently, Li and Wager (2022) explore the problem of

direct treatment effect estimation under random graph asymptotics

where an interference graph is a random draw from an (unknown)

graphon. Sussman and Airoldi (2017) propose an approach to

estimate direct treatment effects considering a fixed design for

potential outcomes. Similar to these approaches, we focus on

estimating direct treatment effects in the presence of peer effects,

but our approach can be applied in networks with different

structural properties.

2.2. Total treatment e�ect estimation

Recent work that addresses interference in graphs relies on

separating data samples through graph clustering (Backstrom and

Kleinberg, 2011; Ugander et al., 2013; Gui et al., 2015; Eckles

et al., 2016; Saveski et al., 2017; Pouget-Abadie et al., 2018),

relational d-separation (Maier et al., 2010, 2013; Rattigan et al.,

2011; Marazopoulou et al., 2015; Lee and Honavar, 2016), or

sequential randomization design (Toulis and Kao, 2013). Among

these approaches, cluster-based randomization methods attract

significant attention recently. Graph clustering aims to find

subgraph clusters with high intra-cluster and low inter-cluster edge

density (Zhou et al., 2009; Yang and Leskovec, 2015). A number

of algorithms exist for weighted graph clustering (Schaeffer,

2007). Node representation learning approaches range from graph

motifs (Milo et al., 2002) to embedding representations (Hamilton

et al., 2017) and statistical relational learning (SRL) (Rossi et al.,

2012). Eckles et al. (2016) evaluate different methods for designing

and analyzing randomized experiments and find substantial bias

reduction in cluster-based randomization approaches, especially

in networks with more clusters and stronger peer effects.

Saveski et al. propose a procedure to detect interference bias in

network experiments and propose a cluster-based randomization

approach to mitigate interference bias in such studies. By

comparing completely randomized and Cluster-based randomized

experiments (Saveski et al., 2017) on LinkedIn’s experimental

platform, they indicate the presence of network effects and bias

in standard RCTs in a real-world setting. However, cluster-based

randomized approaches have high variance, making them more

difficult to accurately estimate the treatment effect. Ugander et al.

(2013) define a restricted-growth condition on the growth rate of

node’s connections and show that the variance of estimators is

bounded by the linear function of the degrees.

In controlled experiments, the treatment assignment is

randomized by the experimenter, whereas in estimating causal

effects from observational data, the process by which the treatment

is assigned is not decided by the experimenter and is often

unknown. Matching is a prominent method for mimicking

randomization in observational data by pairing treated units

with similar untreated units. Then, the causal effect of interest

is estimated based on the matched pairs, rather than the full

set of units present in the data, thus reducing the selection

bias in observational data (Stuart, 2010). There are two main

approaches to matching, fully blocked and propensity score

matching (PSM) (Stuart, 2010). Fully blocked matching selects

pairs of units whose distance in covariate space is under a pre-

determined distance threshold. PSM models the treatment variable

based on the observed covariates and matches units that have the

same likelihood of treatment. The few research articles that look

at the problem of matching for relational domains (Oktay et al.,

2010; Arbour et al., 2014) consider SRL data representations. None

of them consider cluster matching for a two-stage design which is

one of our contributions.

3. Preliminaries

In this section, we formally define the data model, the potential

outcomes frameworks, and different types of causal estimands.

3.1. Data model

A graph G = (V,E) consists of a set of n nodes V and a set

of edges E = {eij} where eij denotes that there is an edge between

node vi ∈ V and node vj ∈ V. Let Ni denote the set of neighbors

for node vi, i.e. set of nodes that share an edge with vi. Let vi.X

denote the pre-treatment node feature variables (e.g., Twitter user

features) for unit vi. Let vi.Y denote the outcome variable of interest

for each node vi (e.g., voting), and vi.T ∈ {0, 1} denote whether

node vi (e.g., social media user) has been treated (e.g., shown a

post about the benefits of voting), vi.T = 1, or not, vi.T = 0. Let

Z ∈ {0, 1}N be the treatment assignment vector of all nodes. V1

and V0 indicate the sets of units in treatment and control groups,

respectively. For simplicity, we assume that both vi.T and vi.Y are

binary variables. The edge spillover probability eij.p refers to the

probability of interference occurring between two nodes.

3.2. Potential outcomes framework

The fundamental problem of causal inference is that we can

observe the outcome of a target variable for an individual vi
in either the treatment or control group but not in both. Let

vi.y(1) and vi.y(0) denote the potential outcomes of vi.y if unit

vi were assigned to the treatment or control group, respectively.

The treatment effect (or causal effect) is the difference g(i) =

vi.y(1) − vi.y(0). Since we can never observe the outcome of a unit

under both treatment and control simultaneously, the effect µ̂ of a

treatment on an outcome is typically calculated through averaging

outcomes over treatment and control groups via difference-in-

means: µ̂ = V1.Y −V0.Y (Stuart, 2010). For the treatment effect to

be estimable, the following identifiability assumptions have to hold:
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• Stable unit treatment value assumption (SUTVA) refers to

the assumption that the outcomes vi.y(1) and vi.y(0) are

independent of the treatment assignment of other units:

{vi.y(1), vi.y(0)}⊥vj.T, ∀vj 6= vi ∈ V .

• Ignorability (Imbens and Rubin, 2015)—also known as

conditional independence (Pearl, 2009) and absence of

unmeasured confoundness—is the assumption that all variables

vi.X that can influence both the treatment and outcome

vi.Y are observed in the data and there are no unmeasured

confounding variables that can cause changes in both the

treatment and the outcome: {vi.y(1), vi.y(0)}⊥vi.T | vi.X.

• Overlap is the assumption that each unit assigned to the

treatment or control group could have been assigned to the

other group. This is also known as positivity assumption:

P(vi.T|vi.X) > 0 for all units and all possible T and X.

3.3. Types of causal e�ects in networks

We follow Hudgens and Halloran (2008) to define causal

estimands for different types of effects possible in the presence of

interference. However, our setting is different in a way that all nodes

in the same group receive a similar treatment.

Total Treatment Effects (TTE) is defined as the outcome

difference between two alternative universes, one in which all nodes

are assigned to treatment (Z1 = {1}N) and one in which all nodes

are assigned to control (Z0 = {0}N) (Ugander et al., 2013; Saveski

et al., 2017):

TTE =
1

N

∑

vi∈V

(vi.Y(Z1)− vi.Y(Z0)).

TTE is estimated as averages over the treatment and control

group, and it accounts for two types of effects, Direct Treatment

Effects (DTE) and Peer Effects (PE):

ˆTTE = V1.Y − V0.Y = DTE(V)+ PE(V1)− PE(V0). (1)

Direct Treatment effects (DTE) reflects the difference between

the outcomes of treated and untreated subjects which can be

attributed to the treatment alone. They are estimated as:

DTE(V) = E
vi∈V

[vi.Y|vi.T = 1]− E
vi∈V

[vi.Y|vi.T = 0]. (2)

Peer effects (PE), known also as indirect effects in the prior

studies (Halloran and Struchiner, 1995; Hudgens and Halloran,

2008; Jagadeesan et al., 2020), reflect the difference in outcomes

that can be attributed to the influence of other subjects in the

experiment. LetNi.π denote the vector of treatment assignments to

node vi’s neighborsNi. Average PE is estimated as having neighbors

with a treatment vector:

PE(V) = E
vi∈V

[vi.Y|vi.T = t,Ni.π]− E
vi∈V

[vi.Y|vi.T = t,Ni = ∅].

(3)

Here, we distinguish between two types of peer effects,

allowable peer effects (APE) and unallowable peer effects (UPE).

Allowable peer effects are peer effects that occur within the same

treatment group, and they are a natural consequence of network

interactions. For example, if a social media company wants to

introduce a new feature (e.g., nudging users to vote), it would

introduce that feature to all users and the total effect of the

feature would include both individual and peer effects. Unallowable

peer effects are peer effects that occur across treatment groups

and contribute to undesired spillover and incorrect causal effect

estimation.

For each node vi in treatment group t, we have two types of

neighbors: 1) neighbors Nt
i in the same treatment class as node

vi with treatment assignment set Nt
i .π ; 2) set of neighbors in a

different treatment class Nt
i (t 6= t) with treatment assignment

denoted by Nt
i .π . The APE is defined as:

APE(V) = E
vi∈V

[vi.Y|vi.T = t,Nt
i .π]− E

vi∈V
[vi.Y|vi.T = t,Nt

i = ∅],

(4)

and the UPE is defined as:

UPE(V) = E
vi∈V

[vi.Y|vi.T = t,Nt
i .π]− E

vi∈V
[vi.Y|vi.T = t,Nt

i = ∅].

(5)

4. Problem statement

The goal of designing network experiments is to ensure reliable

causal effect estimation in controlled experiments by minimizing

both unallowable peer effects in node assignment to treatment and

control. In this work, we are interested to design two network

experiments for quantifying direct and total treatment effects.

4.1. Direct treatment e�ect estimation

The question we are interested to answer is: What is the causal

effect of the treatment alone? This question has many practical

applications for estimating the effectiveness of different policy

interventions. Some examples include: What is the individual

protection from a disease due to vaccination alone (and not herd

immunity)? What is the effect of advertisements on motivating

a person to buy a new phone? In network experiments, it is

challenging to disentangleDTE from PE and this is one of the main

goals of this paper. More formally:

Problem 1 (Network experiment design for direct treatment effect).

estimation. Given an undirected graph G = (V,E), and a set of

attributes V.X associated with each node. Find a treatment

assignment vector Z of a population with three different subsets of

nodes, the treatment nodes V1 ∈ V, the control nodes V0 ∈ V, and

nodes excluded from the experiment V2 ∈ V, such that:

a. V0 ∩ V1 ∩ V2 = ∅.

b. |V0| + |V1| is maximized.

c. PE(V1)− PE(V0) ≈ 0.

The first component aims to choose treatment, control, and

bystander nodes excluded from the experiments that do not

overlap. The second component ensures to choose of as many
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nodes as possible from V to be assigned to treatment and control

groups. The third component removes peer effects from causal

effect estimation.

4.2. Total treatment e�ect estimation

TTE is one of the most popular causal estimands in network

experiments, especially in cluster-based randomization approaches

(Eckles et al., 2016; Pouget-Abadie et al., 2018). There are two main

challenges with causal effect estimation in graphs.

4.2.1. Challenge no. 1: it is hard to separate a
graph into treatment and control nodes without
leaving edges across

The presence of interference breaks the SUTVA assumption

and leads to biased causal effect estimation in relational data. The

two-stage experimental design addresses this problem by finding

groups of units that are unlikely to interact with each other (stage 1)

and then randomly assigning each group to treatment and control

(stage 2). Clustering has been proposed as a way to discover such

groups that are strongly connected within but loosely connected

across, thus finding treatment and control subgraphs that have a

low probability of spillover from one to the other. However, due to

the density of real-world graphs, graph clustering techniques can

leave as many as 65% to 79% of edges as inter-cluster edges (Table

2 in Saveski et al., 2017). Leaving these edges across treatment

and control nodes would lead to a large amount of spillover.

Incorporating information about the edge probability of spillover

into the clustering helps alleviate this problem and is one of the

main contributions of our work.

4.2.2. Challenge no. 2: there is a tradeo� between
interference and selection bias in cluster-based
network experiments

While randomization of i.i.d. units in controlled experiments

can guarantee ignorability and overlap, the two-stage design does

not. One of the key observations in our work is that dependent

on the number of clusters, there is a tradeoff between interference

and selection bias in terms of the treatment and control group not

representing the same underlying distribution. Figure 1 illustrates

this tradeoff for Cora, one of the datasets in our experiments, using

reLDG as the clustering method. When a network is separated

into very few clusters, the Euclidean distance between nodes in

treatment and control clusters is larger than the Euclidean distance

when a lot of clusters are produced over the same network (e.g., 0.4

vs. 0.18 for 2 and 1, 000 clusters). This is intuitive because as the

clusters get smaller and smaller, their randomization gets closer to

mimicking full node randomization (shown as a star). At the same

time, a larger number of clusters translates to a higher likelihood of

edges between treatment and control nodes, which leads to higher

undesired spillover and causal effect estimation error (e.g., 0.015 vs.

0.059 for 2 and 1000 clusters).

Ideally, we would like to measure TTE = DTE(V) +

APE(V1) − APE(V0). Due to undesired spillover in a controlled

experiment, what we are able to measure instead is the overall

effect that comprises both allowable and unallowable peer effects

TTE = DTE(V) + APE(V1) − APE(V0) + UPE(V1) − UPE(V0).

Therefore, when we design an experiment for minimum

interference, we are interested in setting it up in a way that makes

UPE(V1) = 0 and UPE(V0) = 0. More formally:

Problem 2 (Network experiment design for total treatment

effect estimation). Given a graph G = (V,E), a set of attributes V.X

associated with each node and a set of spillover probabilities E.P

associated with the graph edges, we want to construct two sets of

nodes, the control nodes V0 ∈ V and the treatment nodes V1 ∈ V

such that:

a. V0 ∩ V1 = ∅.

b. |V0| + |V1| is maximized.

c. θ = UPE(V1)− UPE(V0) is minimized.

d. V0.X and V1.X are identically distributed.

This problem definition describes the desired qualities of the

experiment design at a high level. The first component ensures

that the treatment and control nodes do not overlap. The second

component aims to keep as many nodes as possible from V in the

final design. The third componentminimizes unallowable spillover.

The fourth component requires that there is no selection bias

between the treatment and control groups. The second and third

components are at odds with one another and require a tradeoff

because the lower θ , the lower the number of selected nodes for the

experiment |V0| + |V1|. As we showed in Figure 1, there is also a

tradeoff between the third and fourth components.

5. CauseIS: a network experiment
design framework for direct treatment
e�ect estimation

In this section, we define an objective function corresponding

to the problem of this paper and describe our proposed framework

which we refer to as CauseIS for estimating direct treatment effects

in network experiments.

Typically, total treatment effect estimation includes both APE

and UPE. In a randomized approach, TTE is estimated as:

ˆTTE(V) = DTE(V)+(APE(V1)−APE(V0))+(UPE(V1)−UPE(V0)).

(6)

In this work, we propose an approach that makes APE(V1)=0

and APE(V0)=0 and in expectation makes UPE(V1)-UPE(V0)=0,

thus making the estimated TTE correspond to DTE. We first

define an objective function that addresses the goals specified

in Problem 1.

5.1. Objective function

The goal of the objective function is to find a subset of V

with maximum cardinality (Problem 1.b) such that by randomizing

treatment assignment over the selected subset, the allowable peer

effects from the experiment are removed (Problem 1.c). We define
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s ∈ {0, 1} such that si = 1 if node vi is in the set of selected nodes,

else si = 0.

maximize

|V|
∑

i=1

si

subject to si + sj ≤ 1 ∀ei,j ∈ E

si ∈ {0, 1} ∀vi ∈ V

The two constraints together guarantee that adjacent nodes are

not included in our network experiment design. This optimization

can be solved by reducing our problem to the maximum

independent set problem in graph theory (Eisenbrand et al., 2003)

such that nodes in the independent set correspond to the nodes

selected for the network experiment.

Given a graph G = (V,E), IS ⊆ V is a subset of nodes

such that for each pair of nodes vi ∈ IS and vj ∈ IS

there is no shared edge between them (ei,j /∈ E). A maximal

independent set is an independent set that is not a subset of any

other independent sets of the graph. Using a greedy sequential

approach, a maximal independent set of a graph can be found

in O(|E|) (Blelloch et al., 2012) but there are parallel algorithms

that can solve this problem much faster in O(log(N)) (Luby,

1985; Yves et al., 2009). A maximal independent set with the

largest possible size for a given graph is known as a maximum

independent set. Finding maximum independent sets in graphs

is known to be NP-hard. There are exact algorithms that can

find maximum independent sets in O(1.1996nnO(1)) (Xiao and

Nagamochi, 2017) and also approximation algorithms that can find

it in O(n/(logn)2) (Boppana and Halldórsson, 1990).

5.2. CauseIS Framework

We propose CauseIS, a network experiment design for robust

estimation of Direct Treatment Effects by disentangling peer effects

from DTE. CauseIS has two main steps:

1. Finding a maximum independent set of the graph (Independent

set graph in Figure 2).

2. Assigning nodes of the maximum independent set to treatment

and control in a randomized fashion (CauseIS output graph in

Figure 2).

In this framework, we find the treatment assignment vector Z

of nodes by dividing the population into treatment, control, and

bystander nodes. Considering the proposed objective function, we

first use an algorithm to find the maximum independent set of the

given graph which partitions the graph into two sets of nodes: 1)

nodes in themaximum independent set denoted byMIS (MIS ⊆ V)

where by randomizing treatment assignment over these nodes, we

achieve treatment (V1) and control (V0) groups, and 2) bystander

nodes (V2) that are not in MIS where V2 ⊆ V, V2 ∩ MIS = ∅,

and V2 ∪ MIS = V. The main idea is to assign nodes of MIS to

treatment and control at random and ensure that there is no peer

effect across treatment and control nodes.

Figure 2 represents the pipeline of the CauseIS framework.

Input graph shows the graph of the network that the network

experiment is conducted on. After using an independent set

algorithm on the Input graph, independent set and bystander nodes

are selected from the graph that is shown in Independent set graph.

Finally, by randomizing treatment assignment over independent

set nodes, treatment, and control nodes are selected. CauseIS

output graph shows the assignment of Input graph nodes to three

treatment groups where APE is removed from the experiment.

We remove bystander nodes from the randomized treatment

assignment because of the interaction within these nodes which

leads to APE in treatment effect estimation. However, it is still

possible that information flows from peers in V2 to V0 and V1,

leading to undesired peer effects (nodes 1, 5, 7, 9, 10 in Figure 2). In

the running example, an infected person in V2 may infect his peers

in V0 and V1.

By removing APE from Equation (6), we have ˆTTE(V) =

DTE(V) + (UPE(V1) − UPE(V0)). By randomizing the treatment

assignment over MIS nodes, we aim to provide a chance for

treatment and control nodes to have the same number of peers

in bystander nodes V2. Let α1 be the set of bystander nodes that

are activated neighbors of treatment nodes, and α2 be the set of

bystander nodes that are activated neighbors of control nodes at

time t-1. Let V1,α and V0,α represent the set of treatment and

control nodes activated by α1 and α0 at time t, and let V1,−α and

V0,−α denote the set of treatment and control nodes not activated

by bystander nodes, respectively. Through randomization over set

MIS, we obtain |α1| ≈ |α0|. In this setup, TTE can be estimated as:

ˆTTE = (
1

|V1|

∑

vi∈V1,−α

vi.Y −
1

|V0|

∑

vi∈V0,−α

vi.Y)

+(
1

|V1|

∑

vi∈V1,α

vi.Y −
1

|V0|

∑

vi∈V0,α

vi.Y). (7)

If the probability of activating a treatment and a control node

by a bystander node is equal, then, in expectation, an equal number

of nodes in treatment and control nodes would get activated

by bystander nodes (|V1,α | ≈ |V0,α |) and UPE(V1) is equal to

UPE(V0), i.e., 1
|V1|

∑

vi∈V1,α
vi.Y ≈ 1

|V0|

∑

vi∈V0,α
vi.Y . As a result,

we have:

ˆTTE =
1

|V1|

∑

vi∈V1,−α

vi.Y −
1

|V0|

∑

vi∈V0,−α

vi.Y . (8)

Since by design there are no peer effects between the

treatment and control groups, Equation (8) estimates the DTE

(TTE ≈ DTE).

6. CMatch: a network experiment
design framework for total treatment
e�ect estimation

In this section, we describe our proposed CMatch framework

that increases the accuracy of TTE by combining clustering and

matching techniques.

6.1. CMatch framework

Our network experiment design framework CMatch, illustrated

in Figure 3, has two main goals: 1) spillover minimization which it
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FIGURE 2

Illustration of CauseIS frameworks in network experiments. Input graph: a graph of nodes and the connection between them. Independent set

graph: a graph of bystander and independent set nodes selected by the independent set algorithm. CauseIS output graph: the output graph that

represents randomized treatment assignment of independent set nodes and peer e�ects that exists in the experiment.

FIGURE 3

Illustration of CMatch framework for minimizing interference and selection bias in controlled experiments. Input: a graph of nodes and the

connection between them. CMatch: node and cluster matching; the dashed circles indicates the clusters. Matched nodes are represented with a

similar circle border. Output: assigning the matched cluster pairs to treatment and control randomly; circles with the same color represent matched

clusters.

achieves through weighted graph clustering, and 2) selection bias

minimization which it achieves through cluster matching. Clusters

in each matched pair are assigned to different treatments, thus

achieving covariate balance between treatment and control (Fatemi

and Zheleva, 2020). The first goal addresses part c of Problem 1

and the second goal addresses part d. While the first goal can be

achieved with existing graph mining algorithms, solving for the

second one requires developing novel approaches. To achieve the

second goal, we propose an objective function, which can be solved

with maximum weighted matching, and present the nuances of

operationalizing each step.

6.1.1. Step 1: interference minimization through
weighted graph clustering

Existing cluster-based techniques for network experiment

design assume unweighted graphs (Backstrom and Kleinberg,

2011; Ugander et al., 2013; Gui et al., 2015; Eckles et al., 2016;

Saveski et al., 2017) and do not consider that different edges can

have different likelihood of spillover. Incorporating information

about the edge probability of spillover into the clustering helps

alleviate this problem and is one of the main contributions

of our work. In order to minimize undesired spillover, we

operationalize minimizing θ as minimizing the edges, and more
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specifically the edge spillover probabilities, between treatment and

control nodes: θ̂ =
∑

∀vi∈V0 ,∀vj∈V1
eij.p. To achieve this, CMatch

creates graph clusters for two-stage design by employing two

functions, edge spillover probability estimation and weighted graph

clustering.

6.1.1.1. Edge spillover probability estimation

We consider edge strength, how strong the relationship

between two nodes is, as a proxy for edge spillover probability.

This reflects the notion that the probability of a person influencing

a close friend to do something is higher than the probability

of influencing an acquaintance. We can use common graph

mining techniques to calculate edge strength, including ones based

on topological proximity (Liben-Nowell and Kleinberg, 2007),

supervised classification (Gilbert and Karahalios, 2009), or latent

variable models (Li et al., 2010).

6.1.1.2. Weighted graph clustering

In order to incorporate edge strength into clustering, we can

use any existing weighted graph clustering algorithm (Enright

et al., 2002; Schaeffer, 2007; Yang and Leskovec, 2015). In our

experiments, we use a prominent non-parametric algorithm, the

Markov Clustering Algorithm (MCL) (Enright et al., 2002) which

applies the idea of random walk for clustering graphs and produces

non-overlapping clusters. We also compare this algorithm with

reLDG which was the basis of previous work (Saveski et al.,

2017). One of the advantages of MCL is that it automatically finds

the optimal number of clusters, rather than requiring it as input.

The main idea behind MCL is that nodes in the same cluster

are connected with higher-weighted shortest paths than nodes in

different clusters.

6.1.2. Step 2: selection bias minimization through
cluster matching

Randomizing treatment assignment over clusters in a two-

stage design does not guarantee that nodes within those clusters

would represent random samples of the population. We propose

to address this selection bias problem by cluster matching and

balancing covariates across treatment and control clusters. While

methods for matching nodes exist (Oktay et al., 2010; Stuart, 2010;

Arbour et al., 2014), this work is the first to propose methods for

matching clusters.

6.1.2.1. Objective function

The goal of cluster matching is to find pairs of clusters with

similar node covariate distributions and assign them to different

treatment groups. We propose to capture this through a maximum

weighted matching objective over a cluster graph in which each

discovered cluster from step 1 is a node and edges between clusters

represent their similarity. Suppose that graph G is partitioned into

C = {c1, c2, ..., cg} clusters. We define A ∈ {0, 1}, such that aij = 1 if

two clusters ci and cj are matched, else aij = 0. wi,j ∈ R represents

the similarity between two clusters ci and cj. Then the objective

function of CMatch is as follows:

argmax
A

g
∑

i=1

g
∑

j=i+1

(aij · wij)

subject to ∀ci ∈ C,

|ci|
∑

j=1

aij ≤ 1, aij ∈ {0, 1}.

(9)

This objective function maps to a maximum weighted

matching problem for which there is a linear-time approximation

algorithm (Duan and Pettie, 2014) and a polynomial-time exact

algorithm with O(N2.376) (Mucha and Sankowski, 2004; Harvey,

2009).

6.1.2.2. Solution

In order to operationalize the solution to this objective, the

main question that needs to be addressed is: what does it mean

for two clusters to be similar? We propose to capture this cluster

similarity throughmatched nodes. The more nodes can be matched

based on their covariates across two clusters, the more similar the

two clusters are. Thus, the operationalization comes down to the

following three questions which we address next:

1. What constitutes a node match?

2. How are node matches taken into consideration in computing

the pairwise cluster weights (cluster similarity)?

3. Given a cluster weight, what constitutes a potential cluster

match, and thus an edge in the cluster graph?

Once these three questions are addressed, the cluster graph can

be built and an existing maximum weighted matching algorithm

can be applied to it to find the final cluster matches.

6.1.2.2.1. Node Matching

The goal of node matching is to reduce the imbalance

between treatment and control groups due to their different

feature distributions. Given a node representation, fully blocked

matching would look for the most similar nodes based on

that representation (Stuart, 2010). It is important to note

that propensity score matching does not apply here because it

models the probability of treatment in observational data and

treatment is unknown at the time of designing a controlled

experiment. In its simplest form, a node can be represented as

a vector of attributes, including node-specific attributes, such

as demographic characteristics, and structural attributes, such

as node degree. For any two nodes, it is possible to apply an

appropriate similarity measure sim(vi, vj), in order to match two

nodes, including cosine similarity, Jaccard similarity, or Euclidean

distance.

We consider two different options to match a pair of nodes in

different clusters (and ignore matches within the same cluster):

• Threshold-based node matching (TNM): Node vk in cluster

ci is matched with node vl from a different cluster cj if the

pairwise similarity of nodes sim(vk, vl) > α. The threshold α

can vary from 0, which liberally matches all pairs of nodes, to

the maximum possible similarity which matches nodes only if

they are exactly the same. In our experiments, we set α based

on the covariate distribution of each dataset and consider
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different quartiles of pairwise similarity as thresholds. This

allows for each node to have multiple possible matches across

clusters.

• Best node matching (BNM): Node vk in cluster ci is matched

with only one node vl which is most similar to vk in the

whole graph; vl should be in a different cluster. This is a

very conservative matching approach in which each node is

uniquely matched but allows the matching to be asymmetric.

6.1.2.2.2. Cluster Weights

After the selection of a node matching mechanism, we are

ready to define the pairwise similarity of clusters which is the

basis of cluster matching. We consider three simple approaches

and three more expensive approaches which require maximum

weighted matching between nodes:

• Euclidean distance (E): This approach is the simplest of all

because it does not consider node matches and it simply

calculates the Euclidean distance between the node attribute

vector means of two clusters.

• Matched node count (C): The first approach counts the

number of matched nodes in each pair of clusters ci and cj
and considers the count as the clusters’ pairwise similarity:

wij =
∑|ci|

k=1

∑|cj|

l=1
r
ij

kl
. A node in cluster ci can have multiple

matched nodes in cj.

• Matched node average similarity (S): Instead of the count,

this approach considers the average similarity between

matched nodes across two clusters ci and cj:

wij =

∑|ci |

k=1

∑|cj |

l=1
r
ij

kl
·sim(vk ,vl)

∑|ci |

k=1

∑|cj |

l=1
r
ij

kl

.

These first two approaches allow a single node to be matched

with multiple nodes in another cluster and each of those matches

counts toward the cluster pair weight. In order to distinguish this

from a more desirable case in which multiple nodes in one cluster

are matched to multiple nodes in another cluster, we propose

approaches that allow each node to be considered only once in the

matches that count toward the weight. For each pair of clusters, we

build a node graph in which an edge is formed between nodes vi
and vj in the two clusters and the weight of this edge is sim(vi, vj).

Maximum weighted matching will find the best possible node

matches in the two clusters. We consider three different variants for

calculating the cluster pair weight based on the maximumweighted

matching of nodes:

• Maximum matched node count (MC): This method

calculates the cluster weight the same way as C except that the

matches (whether r
ij

kl
is 0 or 1) are based on the maximum

weighted matching result.

• Maximum matched node average similarity (MS): This

method calculates the cluster weight the same way as S except

that the node matches are based on the maximum weighted

matching result.

• Maximum matched node similarity sum (MSS): This

method calculates the cluster weight similarly to MS except

that it does not average the node similarity: wij =
∑|ci|

k=1

∑|cj|

l=1
r
ij

kl
· sim(vk, vl).

6.1.2.2.3. Cluster graph

Once the cluster similarities have been determined, we need to

decide what similarity constitutes a potential cluster match. Such

potential matches are added as edges in the cluster graph which is

considered for maximum weighted matching. We consider three

different options:

• Threshold-based cluster matching (TCM): Cluster ci is

considered as a potential match of cluster cj if their weight

wi,j > β . The threshold β can vary from 0, which allows

all pairs of clusters to be potential matches, to the maximum

possible similarity which allows matching between clusters

only if they are exactly the same. In our experiments, we set

β based on the distribution of pairwise similarities and their

quartiles as thresholds.

• Greedy cluster matching (GCM): For each cluster ci, a sorted

list of the similarities between ci and all other clusters is

defined. Cluster ci is considered a potential match only to the

cluster with the highest similarity value in the list.

The last step in CMatch runs maximum weighted matching on

the cluster graph. For every matched cluster pair, it assigns one

cluster to treatment and the other one to control at random. This

completes the network experiment design.

6.1.3. Analysis of the estimation bias
We follow Eckles et al. (2016) to analyze the estimation bias

of the proposed cluster-based approach. One of the common

approaches to measuring the causal effect µ of a treatment on

an outcome is averaging outcomes over treatment and control

groups via difference-in-means: µd = µd(V1.Y) − µd(V0.Y)

whereµd(V1.Y) andµd(V0.Y) are themean outcomes of treatment

and control nodes under experiment design d, respectively. In

the presence of interference, µd does not yield the true total

treatment effects (µd − µ 6= 0). The impact of each node on

the estimation bias is equal to the difference between the expected

outcome of a node due to the treatment alone and the observed

outcome under global treatment assignment where all nodes in the

network have a treatment assignment. The experimental design can

control the size of this bias by controlling the global treatment

assignment. Eckles et al. prove that this bias in the cluster-based

randomization approach is less than or equal to the absolute bias

under randomized assignment. Following this study, if we assume

that we have a linear outcome model for each node vi ∈ V as Eckles

et al. (2016):

E[vi.Y(Z)] = ai +
∑

vj∈V

Bijvj.T, (10)

Where B is the coefficient matrix, then true TTE µ is calculated

as Eckles et al. (2016):

µ = µ(Z1)− µ(Z0) =
1

n

∑

ij

Bij. (11)
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Under cluster-based randomization assignment, we have Eckles

et al. (2016):

µcbr =
1

n

∑

vi ,vj∈V

Bij1[C(vi) = C(vj)], (12)

Where C(vi) denotes the cluster assignment of vi. Under

randomized assignment, we have Eckles et al. (2016):

µrand =
1

n

∑

vi∈V

Bii. (13)

Equations (11)–(13) imply that µ − µcbr ≤ µ − µrand.

The effectiveness of cluster-based randomization in reducing bias

depends on the strength of interactions within clusters. The ability

of the clustering algorithm to capture the coefficient matrix B in

a consistent manner also affects the degree of bias reduction. By

incorporating the strength of connections between units into the

clustering process, the method can better capture the structure of

dependence between units, resulting in a smaller bias (µ − µcbr).

Considering Equations (11)–(12), the relative bias is measured as

Eckles et al. (2016):

µ

µcbr
− 1 =

∑

vi ,vj∈V
Bij1[C(vi) = C(vj)]
∑

vi ,vj∈V
Bij

− 1. (14)

If the clustering fails to capture the structural dependencies,

the numerator in Equation (14) will be much smaller than the

denominator. As a result, the method will underestimate the true

total treatment effects.

7. Experiments

In this section, we evaluate the performance of CauseIS and

CMatch in treatment effect estimation compared to the baselines.

We first describe datasets used in our experiments and then discuss

the experimental setup and results.

7.1. Data generation

Since existing network datasets do not have ground truth for

treatment and its causal effect on the outcome, we use synthetic

and real-world data structures and simulate the outcome and causal

effect in the experiments.

7.1.1. Synthetic data
For generating synthetic networks, we use two network

generation models:

• Barabási-Albert (BA) model: This model generates random

scale-free networks using the preferential attachment model.

In the beginning, the network is constructed from m0

connected nodes. Then, new nodes are connected tom existing

nodes with a probability that is proportional to the number

of edges that the existing nodes already have (Albert and

Barabási, 2002). We setm = 3 in all experiments.

• Forest Fire (FF) model: In this model, a new node vi attaches

to an existing node vj and then links to nodes connected to

vj with forward and backward burning probabilities denoted

by pf and pb, respectively. Leskovec et al. (2007) show that

the synthetic network generated by this model can mimic

most real-world structure characteristics. In the experiments,

we generate all the graphs with forward burning probability

pf = 0.3 and backward burning probability pb = 0.3.

After generating the network structure, we generate 10

attributes for each node with a uniform distribution where the

values vary in [−1, 1].

7.1.2. Real-world data
We use five real-world datasets in our experiments. The

50 Women dataset (Michell and Amos, 1997) includes sport,

smoking, drug, and alcohol habits of 50 students with 74 friendship

connections. Cora and Citeseer datasets (Sen et al., 2008)

incorporate the citation networks of 2, 708 and 3, 312 article with

binary bag-of-words attributes for each article and 4, 675 and 5278

edges, respectively. Hamsterster dataset (Zheleva et al., 2008)

includes the online friendship network of 2, 059 hamsters with

10, 943 edges.Hateful users dataset (Ribeiro et al., 2018) is a sample

of Twitter’s retweet graph containing 100, 386 users with 1, 024

attributes and more than two millions retweet edges. In hateful

users dataset, we remove singletons and nodes with degree 1 from

the graph.

7.1.3. Synthetic causal e�ect
We assume that the underlying probability of activating a node

(changing the outcome) due to treatment and allowable peer effects

in the treatment group is 0.4 and the underlying probability of

activating a control node due to treatment and allowable peer

effects is 0.2 which makes the true causal effect TTE = 0.2.

Based on these probabilities, we randomly assign each node as

activated or not. For each inactivated node, we simulate two types of

interference considering both fixed values (0.1 and 0.5) and values

based on the edge weights for e.p:

1. Direct interference: each treated neighbor of a control node

activates the node with an unallowable spillover probability of

e.p.

2. Contagion: inactive treated and untreated nodes get activated

with the unallowable spillover probability of e.p if they are

connected to at least one activated node in a different treatment

class.

7.2. Main algorithms and baselines

Our baselines differ corresponding to the causal effect of

interest. In the following, we describe the main baselines for direct

and total treatment effect estimation.
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7.2.1. Baselines for Direct Treatment E�ect
Estimation

We compare the performance of four different approaches in

our experiments.

• Randomized: This algorithm assigns nodes to treatment and

control randomly, ignoring the network.

• Match: This algorithm matches nodes using the maximum

weighted matching algorithm and then randomly assigns

nodes in each matched pair to treatment and control at

random without considering clustering.

• CauseIS: In our proposed framework, we use an algorithm to

find the maximum independent setMIS and then assign nodes

of the set to treatment or control at random.

• CauseIS_match: This method uses the CauseIS framework,

but it matches nodes ofMIS and then assigns nodes ofmatched

pairs to treatment or control at random.

The goal of comparing our method withMatch and CauseIS_Match

is to show whether our method has selection bias. Using matching

for RCT is unusual, but in small datasets altering the randomization

process by posing structural constraints on the graph may lead to

worse randomization and matching can mitigate this problem.

7.2.2. Baselines for total treatment e�ect
estimation

For TTE, all our baseline and main algorithm variants take an

attributed graph as an input and produce a set of clusters, each

assigned to treatment, control, or none. For graph clustering, we

considered two main algorithms, Restreaming Linear Deterministic

Greedy (reLDG) (Nishimura and Ugander, 2013) and Markov

Clustering Algorithm (MCL) (Enright et al., 2002). reLDG takes as

input an unweighted graph and desired the number of clusters

and produces a graph clustering. reLDG was reported to perform

very well in state-of-the-art methods for network experiment

design (Saveski et al., 2017). MCL is a non-parametric algorithm

that takes as input a weighted graph and produces a graph

clustering. The edge weights which correspond to the probabilities

of spillover are estimated based on node pair similarity using one

minus the normalized L2 norm: 1− L2(vi.x, vj.x).

The main algorithms and baselines are:

• CR (Saveski et al., 2017): The Completely Randomized (CR)

algorithm was used as a baseline in Saveski et al. (2017).

The algorithm clusters the unweighted graph using reLDG

algorithm, assigns similar clusters to the same strata, and

assigns nodes in strata to treatment and control in a

randomized fashion.

• CBRreLDG (Saveski et al., 2017): Cluster-based Randomized

assignment (CBR) is the main algorithm proposed by Saveski

et al. (2017). The algorithm clusters the unweighted graph

using reLDG, assigns similar clusters to the same strata, and

randomly picks clusters within the same strata as treatment or

control.

• CBRMCL: A variant of CBR that we introduce for the sake of

fairness which usesMCL for weighted-graph clustering.

• CMatchreLDG: This method uses our CMatch framework but

works on an unweighted graph. It uses reLDG for graph

clustering.

• CMatchMCL: This is our proposed technique which usesMCL

for weighted graph clustering.

We consider Randomized and Match techniques described in

Section 7.2.1 as two more baselines for total treatment effect

estimation. CMatch uses the maximum_weight_matching function

from the NetworkX Python library.

7.3. Experimental setup

We run a number of experiments varying the underlying

spillover assumptions, clustering algorithms, number of clusters,

and node matching algorithms. Our experimental setup measures

the desired properties for network experiment design, as described

in Problem 2 and follows the experimental setups in existing

work (Stuart, 2010; Maier et al., 2013; Arbour et al., 2014; Eckles

et al., 2016; Saveski et al., 2017).

To measure the strength of interference bias in different

estimators, we report on two metrics:

1. Root Mean Squared Error (RMSE) of the treatment effect

calculated as:

RMSE =

√

√

√

√

1

S

S
∑

s=1

((τ̂s − τs)2)

where S is the number of runs and τs and τ̂s are the true and

estimated causal effect in run s, respectively. We set S = 10 in all

experiments. The error can be attributed to undesired spillover

only.

2. The number of edges and the sum of edge weights between

treatment and control nodes are assigned by each algorithm.

To show the selection bias, we want to assess how different

treatment vs. control nodes are. We compute the Euclidean

distance between the attribute vector mean of treated and untreated

nodes. We show the average and standard deviation over 10 runs.

To show the strength of UPE imposed by bystander nodes in

the CauseIS framework, we calculate the difference between the

percentage of edges from bystander nodes to treatment and control

nodes as:

1

|E|
(
∑

ei,j∈E
vi∈T
vj∈B

di,j −
∑

ei,j∈E
vi∈C
vj∈B

di,j)× 100 (15)

Where di,j = 1 if there is an edge between node vi and vj. T and

C show the vector of treatment and control nodes.

in our experiments, we use the maximal_independent_set

function from the NetworkX Python library to find a maximal

independent set of each graph which implements the approach by

Blelloch et al. (2012).

We run all 115 possible combinations of CMatch options for

node matching, cluster weights, and cluster graphs for each dataset.

We consider four different values for the threshold α in TNM:
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FIGURE 4

RMSE of direct treatment e�ects in real-world datasets considering di�erent unallowable peer e�ect probabilities.

FIGURE 5

RMSE of direct treatment e�ect in synthetic data with a di�erent number of nodes and edges. Numbers in the first row of the x-axis show the

number of nodes in graphs, and the second row represents the size of MIS. (A) Forest Fire model. (B) Barab’asi-Albert model.

0 (TNM0), first (TNM1), second (TNM2) and third (TNM3)

quantile of pairwise nodes’ similarity distribution where sim(vi, vj)=

(1- the normalized L2 norm). For TCM, we consider four different

β values: 0 (TCM0), first (TCM1), second (TCM2) and third

(TCM3) quantile of the pairwise clusters’ similarity distribution for

each dataset. We use TNM2 + C + TCM2 in all the experiments of

CMatchreLDG.

Unless otherwise specified, the number of clusters is the

same for all CBR and CMatch versions based on the optimal

determination by MCL as optimal for each respective dataset.

The number of clusters determined by MCL is 2, 497 for

Citeseer, 1, 885 for Cora, 1, 056 for Hamsterster and 20 in 50

Women dataset.

7.4. Results

Here, we present the experimental results for the proposed

framework. We first describe the performance of the CauseIS

approach in estimating direct treatment effects. Then, we show the

effectiveness of the CMatch framework in mitigating interference

and selection bias.

7.4.1. Performance of CauseIS framework
7.4.1.1. Evaluation of direct treatment e�ect estimation

To assess the accuracy of CauseIS in estimating DTE compared

to the baselines, we measure causal effect estimation error for

different unallowable peer effect probabilities. Figure 4 shows

the RMSE of DTE in real-world data sets. In all five datasets,

CauseIS and CauseIS_Match get lower estimation error, compared

to Randomized and Match, especially in Hamsterster with 72.1%

and 76.6% estimated error reduction for e.p = edge_weight and

e.p = 0.5 and Hateful Users with 69.4% estimated error reduction

for e.p = 0.1. By increasing the spillover probability from 0.1 to 0.5,

we get higher estimation errors because the probability of changing

treatment and control outcomes through peer effects increases.

Synthetic data experiments depict a similar picture. Figure 5

shows the stronger performance of CauseIS and CauseIS_Match

over Randomized and Match methods in reducing causal effect

estimation error. For example, CauseIS’s error is more than half

of the error of Randomized approach (0.04 vs. 0.12 for graphs

with 10, 000 nodes, 0.13 vs. 0.035 for graphs with 20, 000 nodes in

Forest Fire model). In graphs with 50, 000 nodes, CauseIS obtains

63.4% and 69.9% estimation error reduction in Forest Fire and

Barabási-Albert models respectively, compared to other graphs.
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FIGURE 6

RMSE of direct treatment e�ects in synthetic data with 10, 000 nodes and di�erent densities. Numbers in the first row of the x-axis show the number

of edges in graphs, and the second row represents the size of MIS. (A) Forest Fire model. (B) Barab’asi-Albert model.

FIGURE 7

Euclidean distance between the attribute vector means of treatment and control nodes in real-world and synthetic datasets. In synthetic dataset

plots, numbers in the first row of the x-axis show the number of nodes in graphs, and in the second row show the size of MIS. (A) Real-world data, (B)

Forest Fire model, and (C) Barab’asi-Albert model.

In both synthetic and real-world datasets, Randomized and

Match on one hand and CauseIS and CauseIS_Match on the other

hand show similar performances. This is intuitive because they use

similar randomization techniques. While MIS size is approximately

half of the population size in all datasets, by increasing the size of

MIS the estimation error of CauseIS is still significantly lower than

Randomizedmethods with smaller population size.

7.4.1.2. Sensitivity to the density of networks

To assess the impact of network density on the estimation error

of variousmodels, we computed the average estimation error across

10 randomly generated graphs containing 10,000 nodes for each

density value. We adjusted the density of graphs in the Barabási-

Albert model by altering the value of m within the range of 1–9,

while for the Forest Fire model, we set pf = pb and varied pf
between 0.01 and 0.35. Figure 6 illustrates that as the density of the

graphs increases, the estimation error for all methods also increases.

This observation is expected since an increase in the number

of edges between treatment and control raises the possibility of

unallowable peer effects in the experiment. However, the CauseIS

and CauseIS_Match methods consistently outperform the other

two baseline methods in all graphs. Moreover, an increase in the

density of the graph leads to a decrease in the size of the MIS. A

higher MIS rate (meaning fewer bystander nodes) implies fewer

spillover effects from bystander nodes to treatment and control,

resulting in smaller estimation errors.

7.4.1.3. Selection bias evaluation

In this experiment, we evaluate the selection bias of different

methods by comparing the Euclidean distance between treatment

and control nodes’ attributes in real-world and synthetic datasets

with different population sizes. Figure 7 shows this comparison of

real-world and synthetic data. It is not surprising that the Match

method gets the lowest selection bias in all datasets because it

matches most similar treatment and control nodes based on the

similarity of attributes. CauseIS_Match has a higher selection bias
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FIGURE 8

Di�erence between the percentage of edges to treatment and control nodes in real-world and synthetic datasets with a di�erent number of nodes

and edges. In synthetic dataset plots, numbers in the first row of the x-axis show the number of nodes in graphs, and in the second row show the

size of MIS. (A) Real-world data, (B) Forest Fire model, and (C) Barab’asi-Albert model.

FIGURE 9

Degree distribution of treatment and control nodes selected by CauseIS (first row) and Randomized (second row).

thanMatch because the number of nodes matched in this approach

is less than the Match method. Although CauseIS has a high

selection bias,CauseIS_Match reduces selection bias to some extent.

Next, we look at how sample size impacts selection bias. We

expect that asymptotically, there would be no selection bias with

randomization for any design. Figure 7 shows that independent

from the network generating model, by increasing the population

size the similarity between treatment and control nodes’ attributes

reduces, and the value of matching decreases and disappears. For

example, in graphs with 500 nodes generated by the Forest Fire

model, the difference between Euclidean distance of treatment and

control nodes in CauseIS is 0.24, while in graphs with 50, 000

nodes, this difference decreases to 0.024. These results confirm the

advantage of the matching technique in small datasets.

7.4.1.4. Peer e�ect evaluation

To measure the extent to which UPE(V0) and UPE(V1) can

cancel each other out, we consider the percentage of edges from

bystander nodes to treatment and control nodes. Figure 8 shows

this quantity in real-world and synthetic datasets usingCauseIS and

CauseIS_Matchmethods. As expected, results show that for graphs

with fewer number of nodes, the difference between the number

of edges to treatment and control nodes is higher compared to

larger graphs, 2.5 vs. 0.04 in 50 Women vs. Hateful Users dataset.

In synthetic data with higher population sizes (40, 000 and 50, 000),

the difference between the percentages of edges to treatment and

control is close to zero.

In both synthetic and real-world datasets, we observe that

by increasing the sample size, the causal effect estimation error

decreases because by increasing the density of the graph edges the

percentage of edges from bystander nodes to treatment and control

nodes becomes more similar and UPE(V1) - UPE(V0) goes to zero.

7.4.1.5. Degree distribution evaluation

To assess the extent to which the maximal independent set

chosen by CauseIS biases the degree distribution of selected

treatment and control nodes, we compare the degree distributions

of treatment and control nodes selected by CauseIS and
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TABLE 1 The tradeo� between selection bias (distance) and undesirable spillover (RMSE) in CMatch variants in the Cora dataset.

TCM0 TCM1 TCM2 TCM3 GCM

RMSE ED RMSE ED RMSE ED RMSE ED RMSE ED

C

TNM0 0.052 0.184 0.007 0.267 0.017 0.263 0.014 0.26 0.048 0.789

TNM1 0.055 0.176 0.051 0.177 0.008 0.258 0.012 0.26 0.031 0.6

TNM2 0.054 0.171 0.042 0.171 0.01 0.253 0.017 0.251 0.036 0.591

TNM3 0.043 0.175 0.043 0.175 0.0173 0.046 0.018 0.231 0.034 0.592

BNM 0.012 0.262 0.037 0.481 0.049 0.485 0.059 0.479 0.025 0.274

S

TNM0 0.056 0.16 0.058 0.159 0.048 0.16 0.056 0.162 0.035 0.34

TNM1 0.055 0.16 0.053 0.162 0.057 0.165 0.054 0.166 0.026 0.31

TNM2 0.056 0.162 0.054 0.168 0.048 0.165 0.033 0.183 0.039 0.292

TNM3 0.057 0.169 0.041 0.174 0.024 0.198 0.015 0.211 0.021 0.275

BNM 0.014 0.253 0.017 0.264 0.02 0.27 0.027 0.303 0.014 0.277

MC

TNM0 0.049 0.177 0.015 0.261 0.01 0.262 0.008 0.263 0.042 0.189

TNM1 0.055 0.173 0.052 0.174 0.01 0.257 0.012 0.253 0.040 0.191

TNM2 0.047 0.171 0.051 0.177 0.013 0.261 0.007 0.263 0.024 0.211

TNM3 0.047 0.173 0.049 0.178 0.051 0.176 0.011 0.249 0.012 0.244

BNM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS

TNM0 0.048 0.155 0.051 0.156 0.052 0.156 0.058 0.157 0.018 0.271

TNM1 0.051 0.156 0.057 0.157 0.048 0.156 0.052 0.16 0.022 0.264

TNM2 0.059 0.156 0.057 0.157 0.054 0.158 0.056 0.157 0.021 0.258

TNM3 0.053 0.157 0.05 0.159 0.056 0.155 0.051 0.156 0.028 0.27

BNM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MSS

TNM0 0.059 0.162 0.048 0.162 0.061 0.159 0.036 0.184 0.026 0.271

TNM1 0.056 0.16 0.054 0.161 0.047 0.161 0.03 0.194 0.029 0.275

TNM2 0.052 0.161 0.057 0.161 0.045 0.172 0.028 0.195 0.021 0.281

TNM3 0.049 0.168 0.035 0.186 0.023 0.199 0.022 0.212 0.033 0.278

BNM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

E N/A 0.051 0.178 0.05 0.18 0.031 0.203 0.012 0.242 0.042 0.718

CMatchMCL variants used in Figure 10 are in bold.

Randomized. Figure 9 shows that CauseIS selects treatment and

control groups with roughly similar degree distribution in all

datasets, except in 50 Women dataset where the assignment looks

more biased, likely due to its small size. CauseIS removes high-

degree nodes from the experiment which results in incorporating

treatment and control groups with a more balanced degree

distribution in the experiments.

7.4.2. Performance of CMatch framework
7.4.2.1. Tradeo� between interference and selection bias

in CMatch variants and baselines

Given the large number of CMatch option combinations (115),

we first find which ones of these combinations have a good tradeoff

between RMSE and Euclidean distance (between treatment and

control) with e.p = edge-weight. Depending on the node matching

and cluster matching thresholds, which are specified by the user, the

performance ofCMatch options varies. Based on these experiments,

we notice that 1) methods with stricter cluster thresholds (TCM2

and TCM3) tend to have a lower error, 2) stricter node match

thresholds (TNM2 and TNM3) have lower error than others for

S and MSS and 3) MS has high error across thresholds. We show

the detailed results for Cora in Table 1.

Figure 10 shows the results for the CMatch variants with the

best tradeoffs and their better performance when compared to the

baselines for Cora. Full CMatch results can be found in Table 1.

The figure clearly shows that the selection bias decreases at the

expense of interference bias. For example, while the Euclidean

distance for TNM0+MS+TCM0 is low (0.155) when compared to

TNM2+C+TCM2 (0.253), its RMSE is higher, 0.048 vs. 0.01. The

comparison between CBRreLDG with different possible number of

clusters is consistent with the tradeoff shown in Figure 1. CBRreLDG
with the highest error (annotated with 1885) and CMatchMCL have

the same number of clusters. It is intuitive that the Match method
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has the least selection bias because all nodes have their best matches.

However, similar to the Randomized method, it suffers from high

interference bias (RMSE) because of the high density of edges

between treatment and control nodes.

7.4.2.2. Interference evaluation for contagion

We choose two CMatch variants with low estimation errors:

TNM2 + MSS + TCM3 and TNM2 + C + TCM2, denoted by

CMatchMCLMSS and CMatchMCLC respectively, and compare their

causal effect estimation error with the baselines. The first method

uses a simpler cluster weight assignment while the second one uses

the expensive maximum weighted matching of nodes. Figure 11

shows that both variants of CMatchMCL get significantly lower

error than other methods, especially in Citeseer and Cora with

75.5% and 81.8% estimated error reduction in comparison to

CBRreLDG for e.p = edge-weight. CMatchMCLMSS has higher error

than CMatchMCLC in most of the experiments which are expected

as shown in Figure 10. Randomized and Match approaches have

similar performance in all datasets because of their similarity in the

node randomization approach. We also notice that CBRreLDG has

the highest estimation error in Hamsterster data which confirms

that clustering has a significant effect on the unallowable spillover.

Meanwhile, CMatchreLDG outperforms other baselines in some

FIGURE 10

The tradeo� between selection bias (distance) and undesirable

spillover (RMSE) in CMatchMCL variants (labeled with methods

applied in) and baselines in the Cora dataset for e.p = edge-weight;

CBRreLDG is annotated with the number of clusters.

datasets (Citeseer) but not in others (Hamsterster and 50 Women).

In Citeseer, the CRmethod gets the largest estimation error.

Figure 11 also shows that the higher the unallowable spillover

probability, the larger the estimation error but also the better

our method becomes relative to the baselines. For example, by

increasing the unallowable spillover probability from 0.1 to 0.5

in Citeseer, the estimation error increases from 0.005 to 0.02 for

CMatchMCLC and from 0.023 to 0.086 for CBRreLDG.

7.4.2.3. Interference evaluation for direct interference

Figure 12 shows the difference between the RMSE of different

estimators over the presence of direct interference for e.p = edge-

weight. In four datasets, both variants of CMatchMCL get the lowest

estimation error in comparison to baseline methods. For example,

CMatchMCLC ’s error is approximately half of the error of CBRreLDG
(0.06 vs. 0.13 for Citeseer, 0.1 vs. 0.22 for Cora, 0.31 vs. 0.54 for

Hamsterster, 0.15 vs. 0.36 for 50 Women). Similar to contagion,

Match, and Randomizedmethods have similar estimation errors.

7.4.2.4. Potential spillover evaluation

Table 2 shows the potential spillover between treatment and

control nodes assigned by different methods. This applies to both

contagion and direct interference. CMatch has the lowest sum of

FIGURE 12

RMSE of total e�ect in the presence of direct interference (e.p =

edge-weight). CMatchMCLC and CMatchMCLMSS
obtain the lowest

RMSE for all datasets.

FIGURE 11

RMSE of total e�ect in the presence of contagion considering di�erent unallowable spillover probabilities in all datasets; CMatchMCLC achieves the

lowest error in all datasets.
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TABLE 2 Percentage of edges (and edge weights) between treatment and control nodes.

Dataset Randomized CR CBRreLDG CBRMCL Match CMatchreLDG CMatchMCLC

Citeseer 49.9% (50%) 35.9% (36.3%) 39.8% (38.4%) 38.9% (38.4%) 53.9% (56.6%) 35.8% (34.4%) 7.5% (7.2%)

Cora 49.7% (49.7%) 37.6% (37.6%) 43.4% (42.8%) 38.9% (33.6%) 51.8% (53.3%) 38.7% (38.2%) 8.6% (9.1%)

Hamsterster 50.2% (50.1%) 31.7% (30.4%) 48.3% (48.3%) 35.1% (34.7%) 50% (50.1%) 43.3% (44.4%) 34.8% (34.4%)

50 Women 48.5% (48.1%) 31.8% (30.5%) 36.6% (34.3%) 18.3% (11.4%) 52.5% (52.7%) 16% (18.6%) 12.8% (9.7%)

The lower the number, the lower probability of undesired spillover. The smallest percentages are shown in bold.

FIGURE 13

Euclidean distance between the attribute vector means of treatment and control nodes for a di�erent number of clusters. The higher the number of

clusters, the lower the selection bias.

edges and edge weights between treatment and control nodes across

all datasets. The difference between CMatchMCLC and the baselines

in Cora and Citeseer is substantial: CMatchMCLC has between 13.5

and 34.8% lower number of edges between treatment and control

across datasets.

7.4.2.5. Selection bias evaluation for contagion

In this experiment, we look at the relationship between the

number of clusters and the difference between treatment and

control nodes with and without cluster matching. Figure 13 shows

the Euclidean distance between the average of treatment and

control nodes’ attributes in CMatchreLDG, CBRreLDG and reLDG

for three different numbers of clusters and unallowable spillover

probability e.p = edge-weight. Since CMatchreLDG optimizes for

selection bias directly, it is not surprising that it results in treatment

and control nodes that have more similar feature distributions than

the other two methods. In Citeseer the differences are more subtle

than in the other datasets. Error bars show the variance of averages

over 10 runs which confirm the low variance of estimations in all

datasets except in 50 Women, which is a small dataset.

FIGURE 14

RMSE of total e�ect in the presence of contagion using three

di�erent similarity methods to calculate spillover probability: Cosine

(co), Jaccard (ja) and L2 similarity.

7.4.2.6. Sensitivity to spillover probability metrics

Our last experiment compares metrics for calculating the

spillover probability, Cosine similarity, Jaccard similarity, and the

L2-based similarity used in all other experiments. We report
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on RMSE of total effect using CMatchMCLC and CMatchMCLMSS

methods under contagion. Figure 14 shows that CMatchMCLC with

L2-based similarity obtains the least error in all datasets except

for Citeseer where Cosine similarity has a slightly lower error.

For CMatchMCLMSS , Cosine similarity has the lowest RMSE in

Citeseer and 50 Women dataset, while Euclidean similarity has the

lowest error in the other datasets. Jaccard similarity has the highest

estimation error in all almost all cases.

8. Conclusion

In this paper, we proposed two different frameworks for

network experiment designs that provide a more accurate

estimation of two common causal estimands under interference:

direct treatment effects and total treatment effects. For direct

treatment effect estimation, we presented CauseIS, a framework

that uses an independent set explicitly to disentangle peer

effects from direct treatment effect estimation and increase the

accuracy of direct treatment effect estimation. For total treatment

effect estimation, we introduced CMatch, the first optimization

framework that minimizes both interference and selection bias

in cluster-based network experiment design. Our experiments

on synthetic and real-world datasets confirm that this approach

decreases direct and total treatment effect estimation error

significantly. Some possible extensions of our frameworks include

understanding the impact of network structural properties on

estimation, jointly optimizing for interference and selection bias,

and developing frameworks that are able to mitigate multiple-hop

diffusions.
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