
TYPE Methods

PUBLISHED 03 March 2023

DOI 10.3389/fdata.2023.1134946

OPEN ACCESS

EDITED BY

Minh Son Dao,

National Institute of Information and

Communications Technology, Japan

REVIEWED BY

Muhamad Hilmil Muchtar Aditya Pradana,

National Institute of Information and

Communications Technology, Japan

Vo Hoang Trong,

Chonnam National University, Republic

of Korea

Viet Ngo Quoc,

Ho Chi Minh City Pedagogical

University, Vietnam

*CORRESPONDENCE

Pham The Bao

ptbao@sgu.edu.vn

SPECIALTY SECTION

This article was submitted to

Data Mining and Management,

a section of the journal

Frontiers in Big Data

RECEIVED 31 December 2022

ACCEPTED 13 February 2023

PUBLISHED 03 March 2023

CITATION

Tran NY, Hieu HT and Bao PT (2023) A proposed

scenario to improve the Ncut algorithm in

segmentation. Front. Big Data 6:1134946.

doi: 10.3389/fdata.2023.1134946

COPYRIGHT

© 2023 Tran, Hieu and Bao. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A proposed scenario to improve
the Ncut algorithm in
segmentation

Nhu Y. Tran1,2, Huynh Trung Hieu1 and Pham The Bao3*

1Faculty of Information Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam,
2Information Technology Faculty, Ho Chi Minh City University of Food Industry, Ho Chi Minh City,

Vietnam, 3Information Science Faculty, Sai Gon University, Ho Chi Minh City, Vietnam

In image segmentation, there are many methods to accomplish the result of

segmenting an image into k clusters. However, the number of clusters k is

always defined before running the process. It is defined by some observation or

knowledge based on the application. In this paper, we propose a new scenario in

order to define the value k clusters automatically using histogram information.

This scenario is applied to Ncut algorithm and speeds up the running time by

using CUDA language to parallel computing in GPU. The Ncut is improved in

four steps: determination of number of clusters in segmentation, computing the

similarity matrix W, computing the similarity matrix’s eigenvalues, and grouping

on the Fuzzy C-Means (FCM) clustering algorithm. Some experimental results are

shown to prove that our scenario is 20 times faster than the Ncut algorithm while

keeping the same accuracy.

KEYWORDS

GPU, CPU, parallel computing, Ncut, FCM

1. Introduction

Image segmentation is a key step for grouping objects which have the same

characteristics or properties such as color, intensity, or texture. In an image, each object

is called the domain—Region and its outlines are called the boundary. Feature vectors

of regions are created based on their properties and are used to distinguish them. Image

segmentation describes details of the various components in image to classify and recognize

objects easier (Nock and Nielsen, 2004; Starck et al., 2005; Yu et al., 2009; Belahcene et al.,

2014; Dhanachandra et al., 2015; Minaee and Wang, 2019). For instance, based on image

segmentation, face detection contributes to better face recognition and user identification.

In the segmentation process of image with high-resolution data, the parallel computation

on the image data is divided into two approaches. Approach to parallel programming model

with hybrid model on CPU - GPU (Agulleiro et al., 2012) is a powerful co-processor system

because the CPU and GPU have the combined properties of using both types of additional

processors allowing for the execution of many large applications for optimal performance.

Specifically, OpenMP, CUDA, and MPI libraries are used on CPUs and GPUs (Sirotković

et al., 2012; Baker and Balhaf, 2017; Fakhi et al., 2017; Dalvand et al., 2020; Wang N.

et al., 2020). Clustering in a multi-core architecture starts with dividing the image data into

regions in a grid pattern, and then parallelizes the segmentation over the regions. Parallel file

system approach with Hadoop, MarReduce, and Spark (Augustine and Raj, 2016; Li et al.,

2016; Cao et al., 2018; Liu et al., 2019; Wang X. et al., 2020) is built for high resolution

image segmentation. All of the above approaches allow increasing the performance of

the algorithm.

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1134946
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1134946&domain=pdf&date_stamp=2023-03-03
mailto:ptbao@sgu.edu.vn
https://doi.org/10.3389/fdata.2023.1134946
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1134946/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tran et al. 10.3389/fdata.2023.1134946

Among the several segmentation algorithms, Ncut algorithm

(Shi and Malik, 2000) is one of the efficient algorithms for image

segmentation, which is based on graph theory. It detects the

boundary between two regions by partitioning and grouping based

on not only local features of image but also global features of

image. In this algorithm, a distinct parameter for dividing the

input image into different regions was calculated. However, in

graph theory, dividing graph problem is an NP-complete problem

meaning that it cannot be solved in polynomial time. Besides,

the complexity of the Ncut algorithm is affected by the size of

the input image. On that basis, for the purpose of improving the

processing time of image segments, several parallelization methods

have been applied. Shiloach and Vishkin (1982) developed the

first parallel algorithm based on the breadth-first search algorithm.

Anderson and Setubal (1992) use parallel in the numbering

algorithm on workstations for better computation. Wassenberg

et al. (2009) used the Minimum Spanning Tree with optimal

function calculation and parallel execution on machines sharing

memory. XianLou and ShuangYuan implemented Ncut algorithm

in parallel on GPUs. Therefore, the performance of these methods

depends on the size of each small area. The right number

of divisions and the proper size is a problem (XianLou and

ShuangYuan, 2013). However, these methods mostly implement

parallel algorithms on each small partition of the image. That

means the image is initially divided into many small regions

and then applying the segmentation algorithm on small areas

in parallel.

The execution time of Ncut algorithm is O(MxN) in which

N is the number of pixels that is equivalent to the number

of nodes of the graph created by image. Besides, M is the

number of steps that Lanczos algorithm (Cullum and Willoughby,

2002) takes to find the eigenvalues in the process. Since every

node of input image only relates with some neighbors, W

matrix can be stored as a sparse matrix which is efficient usage

memory. Moreover, because computing the similarity matrix

W and its eigenvalues take too much time, we propose a

parallel computing method using CUDA on GPU for solving

Ncut problem.

Our paper is organized into three main sections, the first

section is the introduction of our approach, which is discussed

in this paper. The second section describes our proposed method

in detail. This section consists of three subsections: determination

of number of clusters in segmentation, computing the similarity

matrix W, computing the similarity matrix’s eigenvalues, and

grouping on the FCM. The last section is about some experimental

results in comparing the speed time between our approach

and some conventional approaches and comparison of accuracy

in segmentation.

2. Proposed method

Ncut method proposed by the group author Shi and Malik is

as follow:

+ Given an image, set up a weighted graph G = (V ,E),

where the vertex set V of graph are the point in the feature

space, every edge in the edge set E is formed between every

pair of nodes, and set the weight on the edge connecting

two nodes to be a measure of the similarity between the

two nodes.

+ Solve (D−W) x = λDx for eigenvector with the smallest

eigenvalues. Where, D is an N×N diagonal matrix, W is

an N×N symmetrical matrix, x is an eigenvector, and λ is

an eigenvalue.

+ Use the eigenvector with the second smallest eigenvalue to

bipartition the graph by finding the splitting point such that

Ncut is minimized.

+ Decide if the current partition should be subdivided and

recursively repartition the segment parts if necessary.

+ Recursively repartition the segment part if necessary.

The Ncut algorithm should be improved in the image

segmentation problem for computational performance. Firstly,

automatic k cluster prediction method is needed to choose the

number of k partitions in image segmentation applications, we

propose to predict the number k clusters based on the characteristic

histogram of the image. Secondly, in one step of the algorithm, the

K-means grouping method is used to group on the eigenvector set

found. Since the eigenvector set is a real data set, there will be errors

during the clustering calculation due to the computer’s structure

and numerical representation. We propose to use FCM algorithm

with the expectation that it can fuzzify the data so that errors

can be accepted for better data clustering prediction. Furthermore,

the process of finding the similarity matrix and eigenvalues

of the sequential execution problem takes up a considerable

amount of execution time in the whole algorithm. We propose

to apply parallel computation on GPU for this calculation step

with the expectation of better computing performance on large

image data.

2.1. Determination of number of clusters in
segmentation

In most of segmentation problems, the issue of deciding

the number of objects in order for segmentation is crucial

and indispensable. Generally, this number of groups will

FIGURE 1

The histogram of image depicts the distance and di�erences.

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2023.1134946
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tran et al. 10.3389/fdata.2023.1134946

be intuitively inputted based on user estimation. The

estimation comes from viewing an arbitrary image and giving

a number k.

We propose an automatic approach to deciding the number

k of clusters based on histogram. The gray-level histogram

provides many extreme points (minimum and maximum points).

The exploration of number of maximum points is the key of

deciding the number of clusters in which the following formula is

satisfied (1).

Let δi ∈ R and define f : R2 × R2 → R2 × R2 by

f (P1, P2) = {(P1, P2) | (P1 (x) − P2 (x)) > δ1 &
(

P1
(

y
)

−P2
(

y
))

> δ2} (1)

Where (P1 (x) − P2 (x)) > δ1 is the height deviation or the

deviation of the total pixels in a gray-level between two peaks. And

the
(

P1
(

y
)

− P2
(

y
))

> δ2 is the distance between two extreme

points. The value of δ1 and δ2 is estimated by statistics from a

pre-selected set of images.

The Figure 1 of gray-level histogram shows us the number of

clusters based on distance and deviation.

Algorithm 1 is present to determine the number of segments in

an image.

Input: Array is gray-level histogram, δ1, δ2

Output: K image segments

K:=0

Step 1: Find the largest of local element P1

Step 2: Find the smallest of local element P2 such

that P2
(

y
)

< P1
(

y
)

and satisfy formula (1)

Step 3: K increases by 1 unit

Step 4: Repeat step 1

Algorithm 1. K-segment_Histogram.

2.2. Computing the similarity matrix W

The similarity matrix W or the matrix affinity is the matrix

representation of the relationship between the nodes in the original

image. For example, the original image is converted to graph and

Wmatrix as shown in Figure 2.

We apply the Malik and Shi grouping algorithm to image

segmentation based on brightness. We construct the graph G =

(V ,E) by taking each pixel as a node and define the edge weight wij

between node i and j as the product of a feature similarity term and

spatial proximity term using formula (2).

wij = e
−
‖I(i)−I(j)‖22

σI ×







e
−
‖X(i)−X(j)‖22

σX
if ‖X(i)−X(j)‖2<r

0 otherwise
(2)

Where X(i) is the spatial location of node i and I(i) is the

intensity value of the brightness. We have the weight wij = 0 for

any pair of nodes i and j that are more than r pixel apart.

As we see, r is often small than size of matrix image (Shi and

Malik, 2000). Therefore, the numbers of zeros elements are more

than other elements in the similarity matrix. In other words, matrix

affinity W is a sparse matrix. To save memory usage, we stored

W in form coordinate (COO) (Bell and Garland, 2008) which

consist of element’s indexes having nonzero elements. Specifically,

the input matrix A contained into three arrays row, col and val

corresponding with row index, column index and value of nonzero

elements as shown in Figure 3.

For each pixel i, there is corresponding connected pixels j.

In other words, there will be wij for two connected pixels i and

j according to the given connection distance r. Thus, with the

input image I(row×col), it will take a long time to consider

the vertices sequentially (Shi and Malik, 2000). Therefore, we

propose Algorithm 2 to parallelize each vertex iǫ(row×col) to find

connected vertices j and calculate the weight wij using formula (2).

FIGURE 3

The COO form of input matrix: (A) Input matrix. (B) The COO format

of input matrix.

FIGURE 2

The graph and the similarity of original image: (A) Original image. (B) Grap G. (C) Matrix a�nity W.

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2023.1134946
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tran et al. 10.3389/fdata.2023.1134946

Input:Original image I; r is the radius; nrow,

ncol are sizes of the input image; dMaskx, dMasky,

dnMask are abscissa, ordinate and number of

elements in the mask by Appendix A

Output:COO form of the W matrix (dVal, dRow, dCol)

Step 1: Copy image I, dMaskx, dMasky, and dnMask

from host (CPU memory) to device (GPU memory)

Step 2: Determine the total number of non-zero

elements of the weight matrix W corresponding to

the input matrix I by Algorithm 6

Step 3: Allocate the memory for variables

dRow, dCol, dVal are n × sizeof (int), n × sizeof (int),

n× sizeof (double)

Step 4: Build a grid of execution threads

(gridDim = (floor(((nrow×ncol)/r)2), 1, 1),

blockDim = (r, r, 1))

Step 5: Call kernel function, execute parallelly

threads to calculate dVal, dCol, dRow:

Step 5.1: Determine the index of the threads

under execution

idx = blockidx.x∗blockDim.x + threadIdx.x

Step 5.2: Calculate the pixel position under

consideration: tx = idx
ncol

; ty = idx% ncol

Step 5.3: Calculate the neighboring points at

the pixel under consideration that will have

positions x = tx + dMaskx [i] , y = ty + dMasky [i]withi ∈

[0, .., dnMask] respectively

Step 5.4: Calculate the wij values by formula (2)

and store in the variables dVal, dRow, dCol

Algorithm 2. Sparse matrix_Ncut_GPU.

2.3. Computing the similarity matrix’s
eigenvalues

The Ncut problem to find eigenvalues of weight matrix W

means finding k smallest eigenvectors of Laplace matrix based

on weight matrix W. Since weight matrix W is a symmetric

sparse matrix of relatively large size, it takes a lot of time to

compute the eigenvector in the whole image segmentation process.

Especially with the larger image size, the matrix size also increases

exponentially, so it takes more time to find the eigenvalues in

this case. We propose a method to parallelize the eigenvalues of

the W matrix on the GPU and the Lanczos method (Cullum

and Willoughby, 2002) as an effective algorithm for finding the k

smallest eigenvalues. We compute Lanczos by paralleling in GPU.

Each j, we compute parallel the multiplication between matrix and

vector, the multiplication between vector and vector according to

Algorithm 3.

2.4. Applying FCM algorithm to eigenvector
matrix

The FCM algorithm (Nayak et al., 2014) allows a point

to belong to one or more groups depending on the degree

Input:The symmetric matrix An×n, k

Output:The k smallest eigenvalue and eigenvector

Step 1: Random vector v1 ∈ Rn and ‖v1‖2 = 1

Step 2: j = 1, β1 = 0, v0 = 0

Step 3: We compute:

wj = Avj by Algorithm 8

αj = wjvj by Algorithm 7

wj = wj − αjvj − βjvj−1 by Algorithm 9

βj+1 =
∥

∥wj

∥

∥

vj+1 = wj/βj+ 1

T
[

j, j
]

= αj

T
[

j− 1, j
]

= βj+1

T
[

j, j− 1
]

= βj+ 1

j = j+ 1

Step 4: If j < k− 1 back to Step 4, else continue

Step 5: Calculate the k smallest eigenvalue and

eigenvector based on diagonal matrix T

Algorithm 3. Lanczos_Ncut_GPU.

of membership function of each point corresponding to the

centers of the groups (using fuzzy logic). Therefore, FCM has

more flexibility with data sets with overlapping data clusters

(high similarity with images). The algorithm is mainly based

on the optimization of the objective function according to

the formula (3).

Jfcm (Z,U,V) =

C
∑

i=1

N
∑

j=1

umij
∥

∥xj − ci
∥

∥

2
(3)

In which, the matrix belonging to U=[uij] ǫ Mfcm is the fuzzy

partition of the data set Z, uij ǫ [0,1] indicates the dependence

of point xi on the jth cluster, with
∑C

j=1 uij = 1, ∀i; V = [c1, c2,

. . . , cc] is the sample vector or cluster center of the C groups,

calculated according to the distance standard Dij =

∥

∥

∥
xij − c

∥

∥

∥

2
;

m ∈ [1;∞] is the exponent that determines the fuzziness of

the clustering.

Instead of using k-mean in Ncut algorithm, we propose

the FCM algorithm to group the image from second smallest

eigenvalue by fuzzy original data to optimal cluster according to

Algorithm 4. The FCM are fuzzy-graph structures for representing

data in a fuzzy way. It accepted a computation noise for clustering,

and it is more optimal on the real data, and eigenvector set from the

Ncut problem.

3. Experimental result

We setup the algorithm in the personal computer which

had the Intel core i5 CPU (2.3 GHz), 8 GB RAM, GeForce

GT 1050Ti, window 10 professional 64. We coded parallel

in CUDA (CUDA Toolkit v9.0 and visual studio 10.0) and

then implemented in MATLAB (R2016b). Our data (http://

decsai.ugr.es/cvg/dbimagenes) included 15 images 128 × 128,

37 images 256 × 256, 64 images 512 × 512, and 3

images 1,024× 1,024.

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2023.1134946
http://decsai.ugr.es/cvg/dbimagenes
http://decsai.ugr.es/cvg/dbimagenes
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tran et al. 10.3389/fdata.2023.1134946

3.1. Determination of number of clusters in
segmentation

We conduct an experiment of determination of number of

clusters in segmentation on four datasets. The comparison is

processed on the resultant number of clusters from intuition and

our method on histogram. The Table 1 is the demonstration

of our experiment on 4 datasets with the threshold of

Input:k eigenvector matrix

Output:Clustered k eigenvector matrix

Step 1: Let the matrix U ǫ Rnxk be the matrix

with k eigenvectors v1, ..., vk in column form

Step 2: For i = 1, ..., n, let yi ǫ Rk be

the vector corresponding to the ith row of the

matrix U

Step 3: Group the points (yi)i=1,...,n ǫ Rk using FCM

into clusters C1, ..., Ck

Step 4: We have the result as clusters A1, ...,

Ak with Ai = {j/ yj ǫ Ci}

Algorithm 4. FCM_Ncut.

TABLE 1 The number of clusters from an image by intuition and

K-segment_Histogram algorithm on using histogram.

Data set Number
of correct
images

Number
of false
images

Average number
of di�erent
clusters

1 11 4 1.5

2 31 6 1.3

3 57 7 1.5

4 3 0 0

height deviation and peak distance of δ1 and δ2 as 50 and

100 respectively.

From Table 1, it can be seen that the difference between the

two ways of visual determination and that using histogram is not

significant. Therefore, the prediction of cluster number is feasible

in dynamic image processing applications.

TABLE 2 The demonstration of speed time to calculate matrix W between

Shi/Malik and sparse matrix_Ncut_GPU algorithm.

Size Runtime(s)

Shi/Malik Sparse matrix_Ncut_GPU

128 x 128 0.57 0.16

140 x 140 0.66 0.03

200 x 200 1.41 0.04

256 x 256 5.13 0.05

512 x 512 42.13 0.13

1,024 x 1,024 NA 0.43

TABLE 3 The demonstration of speed time to calculate eigenvalues

between Shi/Malik method and Lanczos_Ncut_GPU method.

Size Runtime(s)

Calculating
eigenvalues in the
Shi/Malik algorithm

Calculating
eigenvalues in the
Lanczos_Ncut_GPU

algorithm

128 x 128 1.63 0.69

140 x 140 2.36 0.85

200 x 200 6.21 0.94

256 x 256 17.34 0.97

512 x 512 NA 1.28

1,024 x 1,024 NA 2.84

FIGURE 4

The speed time between Shi/Malik algorithm and sparse matrix_Ncut_GPU algorithm.

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1134946
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tran et al. 10.3389/fdata.2023.1134946

FIGURE 5

Calculating eigenvalues in the Shi/Malik method and Lanczos_Ncut_GPU method with size of image (3 segment).

FIGURE 6

Grouping on the eigenvalue by k-mean to k classes.

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2023.1134946
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tran et al. 10.3389/fdata.2023.1134946

FIGURE 7

Grouping on the eigenvalue by FCM to k classes.

3.2. Computing the similarity matrix W

As Figure 4, we have the graph illustrates the speed time to

calculate W matrix between Shi and Malik algorithm and sparse

matrix_Ncut_GPU algorithm.

The vertical axis is the speed(s) and the horizontal axis is the

size of image which is demonstrated in Table 2.

In the graph, when image is 1024 × 1024, the Shi and Malik

method is being out of memory. The sparse matrix_Ncut_GPU

algorithm executes for a small increase when the image

size increases.

3.3. Computing the matrix’s eigenvalues

In this section, the experiment is conducted on the increasing

image size in Table 3 on the three clusters (k = 3). This

corresponds to exploring three eigenvalue and eigenvector of

the W matrix. The Table 3 represents us that the GPU time

(time to find eigenvalue in parallel way) is quicker than

Shi/Malik method.

The graph below illustrate the Shi/Malik method and

Lanczos_Ncut_GPU method with size of image, the number of

segment as shown in Figure 5.

The result of calculating eigenvalues by Lanczos_Ncut_GPU

algorithm is 17 times faster than that by Shi/Malik algorithm when

the image size increases.

3.4. Grouping on the eigenvalue by
k–mean and FCM

After determination of a set of eigenvalues, the Ncut algorithm

makes use of these eigenvalues to cluster them into k clusters. It

corresponds to the k regions of an image. Figures 6, 7 demonstrate

the clustering results by K-means and FCM. There are no

differences between the two approaches to image segmentation.

Figure 8 and Table 4 depict the computational time in image

segmentation between Shi/Malik’s algorithm and the one we

improved by GPU. It is found that the execution time of the

algorithm we improved by GPU is 20 times faster than that of the

Shi/Malik algorithm while keeping the same accuracy.

4. Conclusion

In this paper, we analyze the Ncut algorithm to cluster an image

into regions. Because in the Ncut algorithm, we have to input

the number of clusters k, it is not automated process. For that

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2023.1134946
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tran et al. 10.3389/fdata.2023.1134946

FIGURE 8

The speed time to calculate image segmentations between

Shi/Malik algorithm and Our algorithm.

TABLE 4 The demonstration of speed time to calculate image

segmentations between Shi/Malik method and our method by GPU.

Size Runtime(s)

Shi/Malik Sparse
matrix_Ncut_GPU

128 x 128 2.22 0.88

140 x 140 3.04 0.92

200 x 200 7.67 1.04

256 x 256 22.51 1.09

512 x 512 NA 1.56

1,024 x 1,024 NA 3.58

reason, we predict k group depending on histogramwill give a good

result. Moreover, we improve the speed performance by parallel

computing on GPU. Specifically, it is to parallelize the calculation

of the W matrix and finding of the eigenvector matrix in the Ncut

algorithm. Finally, we used the FCM algorithm to cluster the data in

the above eigenvector matrix. Some experimental results on image

data sets are conducted to prove that our approach is 20 times

quicker than Shi and Malik approach in computing eigenvalue and

computing similarity matrix.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://ccia.ugr.es/cvg/dbimagenes.

Author contributions

PB, HH, and NT have designed methods. NT implemented it

and tested performance. All authors contributed to the article and

approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.

1134946/full#supplementary-material

References

Agulleiro, J. I., Vázquez, F., Garzón, E. M., and Fernández, J. J. (2012).
Hybrid computing: CPU+GPU co-processing and its application to tomographic
reconstruction. Ultramicroscopy. 115, 109–114. doi: 10.1016/j.ultramic.2012.02.003

Anderson, R. J., and Setubal, J. (1992). “On the parallel implementation of goldbergs
maximum flow aglrotithm,” in Proceedings of the 4th ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA) (Brazil), 168–177.

Augustine, D. P., and Raj, P. (2016). Performance evaluation of parallel genetic
algorithm for brain MRI segmentation in hadoop and spark. Indian J. Sci. Technol.
9, 1373. doi: 10.17485/ijst/2016/v9i48/91373

Baker, Q. B., and Balhaf, K. (2017). “Exploiting GPUs to accelerate white
blood cells segmentation in microscopic blood images,” in Proceedings of the 8th
International Conference on Information and Communication Systems (ICICS) (Irbid.
Jordan), 136–140.

Belahcene, M., Chouchane, A., Benatia, M. A., and Halitim, M. (2014). “3D and 2D
face recognition based on image segmentation,” in Proceedings of the 2014 International
Workshop on Computational Intelligence for Multimedia Understanding (IWCIM)
(Paris, France).

Bell, E., and Garland, M. (2008). Efficient sparse matrix-vector multiplication on
CUDA. NVIDIA Technical Report NVR-2008–R-2004.

Cao, J., Chen, L., Wang, M., and Tian, Y. (2018). Implementing a parallel image
edge detection algorithm based on the otsu-canny operator on the hadoop platform.
Comput. Intell. Neurosci. 20, 8284. doi: 10.1155/2018/3598284

Cullum, J. K., andWilloughby, R. A. (2002). Lanczos Algorithms for Large Symmetric
Eigenvalue Computations. SIAM: Society for Industrial and Applied Mathematics,
Birkhäuser, Boston, United States.

Dalvand, M., Fathi, A., and Kamran, A. (2020). Flooding region growing: a new
parallel image segmentationmodel based onmembrane computing. J. Real-Time Image
Process. 18, 37–55. doi: 10.1007/s11554-020-00949-0

Dhanachandra, N., Manglem, K., and Chanu, Y. J. (2015). Image segmentation
using k-means clustering algorithm and subtractive clustering algorithm. Procedia
Comput. Sci. 54, 764–771. doi: 10.1016/j.procs.2015.06.090

Fakhi, H., Bouattane, O., Youssfi, M., and Hassan, O. (2017). “New optimized GPU
version of the k-means algorithm for large-sized image segmentation,” in Proceedings
of the 2017 Intelligent Systems and Computer Vision (ISCV) (Fez, Morocc).

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2023.1134946
https://ccia.ugr.es/cvg/dbimagenes
https://www.frontiersin.org/articles/10.3389/fdata.2023.1134946/full#supplementary-material
https://doi.org/10.1016/j.ultramic.2012.02.003
https://doi.org/10.17485/ijst/2016/v9i48/91373
https://doi.org/10.1155/2018/3598284
https://doi.org/10.1007/s11554-020-00949-0
https://doi.org/10.1016/j.procs.2015.06.090
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tran et al. 10.3389/fdata.2023.1134946

Li, X., Song, J., Zhang, F., Ouyang, X., and Khan, S. U. (2016). Mapreduce-based
fast fuzzy C-means algorithm for large-scale underwater image segmentation. Fut. Gen.
Comp. Sys. 65, 90–101. doi: 10.1016/j.future.2016.03.004

Liu, B., He, S., He, D., Zhang, Y., and Guizani, M. (2019). A spark-based parallel
fuzzy C-means segmentation algorithm for agricultural image big data. IEEE access. 7,
42169–42180. doi: 10.1109/ACCESS.2019.2907573

Minaee, S., and Wang, Y. (2019). An admm approach to masked signal
decomposition using subspace representation. IEEE Transact. Image Process. 28,
3192–3204. doi: 10.1109/TIP.2019.2894966

Nayak, J., Naik, B., and Behera, H. S. (2014). “Fuzzy C-Means (FCM) Clustering
algorithm: a decade review from 2000 to 2014,” in Proceedings of the Computational
Intelligence in Data Mining. Smart Innovation, Systems and Technologie (Springer, New
Delhi), 2 133–149. doi: 10.1007/978-81-322-2208-8_14

Nock, R., and Nielsen, F. (2004). Statistical region merging. IEEE Trans. Pattern
Anal. Mach. Intell. 26, 1452–1458. doi: 10.1109/TPAMI.2004.110

Shi, J., and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 22, 888–905. doi: 10.1109/34.868688

Shiloach, Y., and Vishkin, U. (1982). An o(n2log n) parallel max-flow algorithm. J.
Algor. 3, 128–146. doi: 10.1016/0196-6774(82)90013-X

Sirotković, J., Dujmić, H., and Papić, V. (2012). “K-means image
segmentation on massively parallel GPU architecture,” in Proceedings

of the 35th International Convention MIPRO (Opatija. Croatia),
489–494.

Starck, J.-L., Elad, M., and Donoho, D. L. (2005). Image decomposition via the
combination of sparse representations and a variational approach. IEEE Transactions
on Image Processing. 14, 1570–1582. doi: 10.1109/TIP.2005.852206

Wang, N., Chen, F., Yu, B., and Qin, Y. (2020). Segmentation of large-scale
remotely sensed images on a Spark platform: a strategy for handling massive image
tiles with the MapReduce model. ISPRS J. Photogram. emote Sens. 162, 137–147.
doi: 10.1016/j.isprsjprs.2020.02.012

Wang, X., Pan, J. S., and Chu, S. C. (2020). A parallel multi-verse optimizer
for application in multilevel image segmentation. IEEE Access. 8, 32018–32030.
doi: 10.1109/ACCESS.2020.2973411

Wassenberg, J., Middelmann, W., and Sanders, P. (2009). “An Efficient parallel
Algorithm for Graph-based Image segmentaion,” in Proceedings of the 2009 Computer
Analysis of Images and Patterns (Springer, Berlin. Heidelberg), 1003–1010.

XianLou, H., and ShuangYuan, Y. (2013). “Image segmentation based on
Normalized Cut and CUDA parallel implementation,” in Proceedings of the 5th IET
International Conference on Wireless, Mobile and Multimedia Networks (ICWMMN
2013) (Beijing China) 209–214.

Yu, T., Lim, S. N., Patwardhan, K., and Krahnstoever, N. (2009). “Monitoring,
recognizing and discovering social networks,” in Proceedings of the 2009 IEEE
Conference on Computer Vision and Pattern Recognition (Miami, FL), 1462–1469.

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2023.1134946
https://doi.org/10.1016/j.future.2016.03.004
https://doi.org/10.1109/ACCESS.2019.2907573
https://doi.org/10.1109/TIP.2019.2894966
https://doi.org/10.1007/978-81-322-2208-8_14
https://doi.org/10.1109/TPAMI.2004.110
https://doi.org/10.1109/34.868688
https://doi.org/10.1016/0196-6774(82)90013-X
https://doi.org/10.1109/TIP.2005.852206
https://doi.org/10.1016/j.isprsjprs.2020.02.012
https://doi.org/10.1109/ACCESS.2020.2973411
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	A proposed scenario to improve the Ncut algorithm in segmentation
	1. Introduction
	2. Proposed method
	2.1. Determination of number of clusters in segmentation
	2.2. Computing the similarity matrix W
	2.3. Computing the similarity matrix's eigenvalues
	2.4. Applying FCM algorithm to eigenvector matrix

	3. Experimental result
	3.1. Determination of number of clusters in segmentation
	3.2. Computing the similarity matrix W
	3.3. Computing the matrix's eigenvalues
	3.4. Grouping on the eigenvalue by k–mean and FCM

	4. Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	Supplementary material
	References


