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Accurately modeling information di�usion within and across social media

platforms has many practical applications, such as estimating the size of the

audience exposed to a particular narrative or testing intervention techniques for

addressing misinformation. However, it turns out that real data reveal phenomena

that pose significant challenges to modeling: events in the physical world a�ect

in varying ways conversations on di�erent social media platforms; coordinated

influence campaignsmay swing discussions in unexpected directions; a platform’s

algorithms direct who sees which message, which a�ects in opaque ways how

information spreads. This article describes our research e�orts in the SocialSim

program of the Defense Advanced Research Projects Agency. As formulated by

DARPA, the intent of the SocialSim research program was “to develop innovative

technologies for high-fidelity computational simulation of online social behavior

... [focused] specifically on information spread and evolution.” In this article we

document lessons we learned over the 4+ years of the recently concluded project.

Our hope is that an accounting of our experience may prove useful to other

researchers should they attempt a related project.
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1. Introduction

The last decade has seen the development and wide-spread adoption of social media

platforms leading to a multitude of social, political, and economic implications, such as

protest organization (Jost et al., 2018), spreading of socio-cultural movements (Mundt

et al., 2018), adoption of risky behavior (Jaffar et al., 2020; Papadamou et al., 2021),

disinformation (Gottlieb and Dyer, 2020), and content monetization (Goanta et al., 2022),

to name only a few. Understanding how information spreads on such platforms is

paramount not only for platforms, who are increasingly required tomaintain an information

environment free of malicious content (be it representations of violence, false information,

scams, etc.), but for the society at large that saw its younger population threatened by

bullying, screen addiction, and risky “challenges.”

Scientists have analyzed the spread of information in various contexts, such as political

manipulation and disinformation (Starbird et al., 2019; Ferrara et al., 2020; Francois et al.,

2021). Such studies focused on datasets of user interactions with online information and

thus focused on a particular context defined by specific information topics, social media

platform(s), and time period. But how would the same information spread if it was injected

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1135191
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1135191&domain=pdf&date_stamp=2023-05-17
mailto:a.iamnitchi@maastrichtuniversity.nl
https://doi.org/10.3389/fdata.2023.1135191
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1135191/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Iamnitchi et al. 10.3389/fdata.2023.1135191

in the system at a different time, or on a different platform, or by

a different user? Answering such questions can lead to stronger

understanding of information spread on social media platforms,

and could also open the way to designing efficient intervention

techniques to limit potential damage. Modeling information spread

is one way to reach such objectives. However, the challenges

to develop an accurate, data-driven such model come from two

main sources.

One such source is the differences in social media platforms

that raise various challenges. First, social media platforms facilitate

interaction with different types of content, from text-based micro-

blogging messages (as in Twitter1) to pictures (Instagram2) to

short or long videos (TikTok3, YouTube4). User engagement with

content is different for a platform such as GitHub5, where users

share code and raise issues related to software bugs, compared

to a platform such as YouTube, where watching videos is the

main activity. Second, platform features control user engagement

with information. For example, YouTube acknowledged this fact

recently and disabled the viewing of the number of dislikes6;

Facebook never allowed a dislike (thumb down) button7; Twitter

facilitates the spreading of messages via retweeting, while Reddit

facilitates user engagement in a conversation via replies to posts.

Third, platforms attract different types of audiences with different

affinities for and habits of engaging with information and spreading

it. For example, TikTok is more popular among younger audiences,

especially teens, while Facebook is used by a wider range of age

groups.8 This leads to different interests in online topics, and

thus different topics to engage with and thus spread. Moreover,

platforms are represented geographically in different ways: for

example, Twitter along with other platforms is blocked in China9;

local platforms such as Jamii are popular only in Africa.10 Fourth,

platforms deploy their opaque content promotion algorithms that

selects what information is presented to which user (Reviglio and

Agosti, 2020). The contribution of these algorithms to information

spread is difficult to isolate accurately in a changing technological

and legislative environment. And finally, information spread is

affected by customized attempts to exploit platform affordabilities

and manipulate content promotion algorithms, as seen in various

characterization of coordinated information operations (Varol

et al., 2017; Choudhury et al., 2020; Ng et al., 2021b; Pacheco et al.,

2021).

A second source of challenges in accurately modeling

information diffusion online is the tight coupling of online and

1 https://twitter.com

2 https://instagram.com

3 https://tiktok.com

4 https://youtube.com

5 https://github.com

6 https://www.forbes.com/sites/petersuciu/2021/11/24/youtube-

removed-dislikes-button--it-could-impact-how-to-and-crafts-videos/

7 https://www.businessinsider.com/why-facebook-didnt-make-dislike-

button-2016-2

8 https://www.pewresearch.org/internet/fact-sheet/social-media/

9 https://www.nytimes.com/2018/08/06/technology/china-generation-

blocked-internet.html

10 https://afritechnews.com/jamiiforums/

off line activities. Events in real life are visible online both in

information spread and in attempt of manipulation. The recent

COVID-19 pandemic led to increased activity on social media, and

with it viral spread of (mis/dis)information related to vaccines,

cures, and causes of the disease (Shahsavari et al., 2020; Islam et al.,

2021; Muric et al., 2021).

This article describes our research efforts over about 5

years in developing data-driven social media simulations that

accurately reflect the real user activities on different platforms and

different socio-politico-geographical and informational contexts.

Our project was part of the SocialSim program of the Defense

Advanced Research Projects Agency. As formulated11 by DARPA,

the intent of the SocialSim program, formally, Computational

Simulation of Online Social Behavior, was “to develop innovative

technologies for high-fidelity computational simulation of online

social behavior ... [focused] specifically on information spread

and evolution.” Over the course of the project, we designed

and refined a series of machine learning-based models that

accurately forecast engagement (as measured by number of

users, posts, comments, etc.) with specific topics of discussion

on different social media platforms. Our machine learning

models (Ng et al., 2021a; Mubang and Hall, 2022) were trained

per platform and per topic, thus implicitly learning intricacies

of content promotion algorithms specific to each platform while

simultaneously considering exogenous influences (e.g., real-word

events) for predictions. In this article we document our lessons

from developingmachine learning-based simulators that accurately

reflect information spread measured by various metrics on five

platforms, six datasets, and accumulating more than 5 years of data.

Our hope is that an accounting of our experience may prove useful

to other researchers should they attempt a similar project.

The main conclusions of our effort can be summarized as

follows: First, aggregate activity, such as the number of retweets

on a particular topic within a particular hour, can be predicted

with high accuracy over a future horizon of one or 2 weeks.

However, we discovered that it is challenging—if at all possible—

to make highly accurate predictions at finer granularity, such as

user U will take action X at time t, using the limited information

available through the social media platform APIs. In other words,

a user’s previous actions on the platform (that are typically sparse

and occur in bursts) do not provide sufficient information to

accurately predict future actions and their timing. On the other

hand, the aggregated actions of multiple users in a particular topic

can provide enough signal and historical information for machine

learning algorithms to learn and make accurate predictions.

Second, exogenous information, such as events in the physical

world as captured in news, is required for accurate predictions as it

often influences social media activity. For example, in geopolitical

datasets, such as the Venezuelan political crisis of 2019, on-the-

ground events (e.g., call for protests or armed confrontations)

often drive a surge in engagement and online discussions in

social media platforms. Third, performance metrics need to be

matched to the prediction goals to get the most useful indication

of utility. For example, average percentage error captures only part

11 https://www.darpa.mil/program/computational-simulation-of-

online-social-behavior
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of the story. Depending on the practical use of the simulations,

solutions with close to perfect average percentage error may show

totally unrealistic patterns of social media activity. And finally,

end-to-end machine-learning solutions yield limited performance

due to the inherent compromises of satisfying multiple objectives;

instead, decomposing the problem into specialized subproblems

allows for easier reaching individual objectives and also for

correcting anomalies.

The remainder of this paper is organized as follows. Section 2

describes the problem we address and overviews the existing

literature that covers different aspects of the problem. Section 3

presents the scenarios and related data that we use to support

our observations. The rest of the paper summarizes our lessons

on designing social media simulators (Section 4), on how

well-accepted performance measurements can be misleading

(Section 5), on how much data is useful for training (Section 6),

and on what features of social media can be realistically predicted

(Section 7). We summarize the paper in Section 8.

2. Background

Our task was to develop a simulator that accurately models

information diffusion within and across various online messaging

platforms. Such a simulator should capture realistic online user

activities at fine granularity—who responds to whom on which

topic, and when—over a long time interval spanning weeks or even

months. One way to test the veracity of such a simulator is as

a forecaster: use a training dataset to parameterize the simulator,

obtain the output of the simulator for the (testing) period following

the training period, and compare that output with the ground

truth data.

2.1. Problem definition and setup

Formally stated, our task was to forecast a series of events

of the form < user,message, action, time > where user is the

(anonymized) identifier of a user in the dataset previously seen for

training, message corresponds to either a topic or a token such as a

specific URL, action represents the specific messaging actions on a

particular platform, such as tweet/retweet/quote/reply on Twitter

or post/comment on Reddit, and time is the timestamp of the

predicted event. When action is in response to a previous message

(for example, a retweet), that previous message should also be

specified by its message identifier.

We had access to anonymized datasets for training with a

similar format as the one desired for output. We used multiple

datasets collected using public APIs from platforms such as Twitter,

YouTube, and Reddit, augmented with information resulting

from topic and sentiment analysis. In addition, we used various

other publicly available datasets such as GDELT and ACLED as

records of events in the physical world that might catalyze online

discussions. As typical to DARPA-funded projects, our solutions

were tested twice a year during the famous DARPA challenges on

real, previously unseen data. It is this rigorous evaluation coupled

with access to rich collections of data from multiple social media

platforms that led to the lessons described in this paper.

2.2. Related work

Recent studies have proposed end-to-end solutions attempting

to capture various macro and microscopic characteristics of

information diffusion processes (Section 2.2.1). Other researchers

focused on specialized, smaller tasks: timeseries forecasting

for predicting the number of messages on or users engaged

with particular topics over time (Section 2.2.2), prediction

of information cascades (Section 2.2.3), and prediction of

user interactions (Section 2.2.4). We discuss each of these

topics below.

2.2.1. End-to-end simulators
Most of the recent attempts in modeling fine grained social

media activity come from the DARPA SocialSim program.

Simulation approaches in this context have particularly focused on

two design choices: bottom-up and top-down.

Bottom-up solutions simulate social behavior in online

environments by modeling individual users’ actions and their

interactions within a diverse population. Agent-based-modeling

(ABM) approaches are popular in this space, where hand-crafted

rule sets are built to model agents’ behavior and their interactions.

Bhattacharya et al. (2019) proposed an ABM that incorporates

social and cognitive agents that model online human-decision

making. Garibay et al. (2020) proposed DeepAgent that can

simulate social dynamics in a multi-resolution setting at the user,

community, population, and content levels. Murić et al. (2022)

developed an ABM that provides support for simulations of

cognitive behavior and shared state across multiple compute nodes.

They augmented the agents’ decision-making process by employing

machine learning models that predict the probability of interaction

between an agent and a particular resource. They showed their

models can outperform simple probabilistic models, in which

agents decisions are based on frequencies in the training data. Yao

et al. (2018) proposed SocialCube, an agent-based approach with

self-configurations based on past social media traces, which allows

for recomputing the probabilities of individual action types. While

ABM approaches can provide valuable insights of information

spread such as detailed interplay between individual behaviors and

network structure, they do not scale well with large populations.

Modeling the behavior of new users is yet another challenge

for most ABM techniques as agents often rely on historical

records/interactions to make decisions.

In contrast, top-down simulation approaches focus on

modeling the dynamics of a population or community as a whole

based purely on data-driven decisions. The idea is to divide

the problem into sub-components, where microscopic (i.e., user

interactions) and meso-level properties (i.e., cascades predictions)

can be guided by macroscopic predictions that capture volume,

audience and timing of events (Liu et al., 2019; Horawalavithana

et al., 2022; Mubang and Hall, 2022). Despite limiting the

microscopic predictability of the simulations due to accumulation

of errors, these methods can easily scale to simulate massive

populations and do not rely on complex sets of rules. In this article,

we describe our experience with developing top-down approaches

for social media simulations of information diffusion.
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2.2.2. Timeseries forecasting
Traditional approaches used for forecasting-related tasks in

social media contexts include the Autoregressive Integrated

Moving Average model (ARIMA) (McClellan et al., 2017;

Abdelzaher et al., 2020), Exponential Smoothing (ES) (Odlum and

Yoon, 2015; Hong et al., 2017), and Hawkes Processes (Pinto et al.,

2015; Zhao et al., 2015; Rizoiu et al., 2017). These approaches

typically suffer from limitations when presented with complex and

irregular temporal trends, which is usually the case with social

media timeseries (Zhang et al., 1998; Bacry et al., 2020). Despite

their limitations, these models are commonly used as baselines

in social media temporal-based problems (Shrestha et al., 2019;

Tommasel et al., 2021; Mubang and Hall, 2022; Ng et al., 2022).

Machine learning techniques are often preferred over

traditional approaches, in social media forecasting, due to their

ability to model non-linear behavior. Several deep learning

methods such as Convolutional Neural Networks (CNN) and

Recurrent Neural Networks (RNN), as well as machine learning

algorithms like gradient-boosted decision trees, have been

proposed for timeseries forecasting in literature. Hernandez et al.

(2020) applied graph convolutional networks for forecasting

user activity timeseries. Abdelzaher et al. (2020) proposed a

deep learning technique that combines both CNN and RNN to

forecast individual user activity streams. Both studies showed the

challenges of forecasting at the level of individual user accounts

due to the heterogeneity and often sparsity of their activities.

However, both highlighted that forecasting the activity streams of

groups of users results in a more feasible and tractable task. Many

studies in the social media domain attempt to forecast the activity

of content entities such as topics, hashtags (Kong et al., 2014), or

keywords (Saleiro and Soares, 2016) shared on online messages.

Liu et al. (2019) explored several machine learning methods to

predict whether and when a topic will become prevalent. The

authors highlight the challenges faced in forecasting the frequency

of topics discussed by users due to irregular patterns. Shrestha

et al. (2019) used a deep learning recurrent model to forecast the

number of retweets and mentions of specific news sources on

Twitter using the network structure observed in the day before the

predictions. They found that small but dense network structures

are helpful in predictions.

Most studies in social media timeseries forecasting have been

applied to short-term settings (i.e., predicting only the next day

of activity). Yet a more challenging task is that of forecasting for

longer periods of time, where immediate historical activity from

social media platforms is not available during inference. For this

task, considering both endogenous (i.e., internal activities in the

platform) and exogenous (e.g., real-word events, or activities from

other online sites) signals is paramount for accurate predictions.

For example, Dutta et al. (2020) predicted the volume of Reddit

discussions in a future horizon leveraging the text from news

and an initial set of comments using a recurrent neural network

architecture. The study corroborated the superiority of models that

consider exogenous signals through a series of ablation studies.

Horawalavithana et al. (2019) and Liu et al. (2020) showed that

the volume of activities on Twitter and Reddit carry important

predictive power to forecast the activity on GitHub related to

common vulnerabilities and exposures security issues.

2.2.3. Cascade prediction
The goal of cascade prediction is to model conversation trees

and their evolution over time. Most of the previous work has

been focused on modeling and predicting properties of individual

cascades (Gao et al., 2019). To predict the size of a cascade, several

solutions have been proposed using statistical approaches (Liben-

Nowell and Kleinberg, 2008), while others used machine-learning

methods with domain-specific features (Cheng et al., 2014; Yu et al.,

2015). Previous work has shown that predicting the popularity of a

cascade is not trivial (Gao et al., 2019). However, when given some

initial conditions about the initial state of the cascade, multiple

dimensions of message popularity can be accurately predicted

(e.g., the final cascade size, shape, virality, etc.). Based on this

understanding, several deep learning methods have been proposed

for this problem. Embedded-IC (Bourigault et al., 2016) embeds

cascade nodes in a latent diffusion space to predict the temporal

activation of a node. DeepCas (Li et al., 2017) proposed a diffusion-

embedding framework to predict the incremental growth of a

cascade. DeepDiffuse (Islam et al., 2018) and DeepInf (Qiu et al.,

2018) utilized the underlying cascade structure to predict the future

node activation in a cascade using the recurrent neural network.

Specifically, DeepDiffuse predicts the user and the timing of the

next infection, but does not predict the evolving cascade structure.

They also assume any node can be infected once during a cascade.

Most of these previously mentioned studies focused on

classifying viral cascades, or predicting the future activation of a

node over discrete time intervals, but do not focus on modeling

the evolving cascade structure. More relevant to our task is the

work of Zayats and Ostendorf (2018), who proposed a graph-

structured LSTM model to capture the temporal structure of

a conversation. They show the effectiveness of the model on

predicting the popularity of Reddit comments. Other proposed

techniques that predict the popularity of conversations are mostly

based on statistical approaches that have focused on predicting an

individual tree structure (Wang et al., 2012; Aragón et al., 2017;

Medvedev et al., 2017; Ling et al., 2020). These data-driven models

attempt to capture and interpret some interesting phenomena of

a given dataset, by estimating statistical significance of different

features related to human behavior, in contrast to the fully data-

driven models. The predictive performance of these parsimonious

models may deteriorate due to the dependence on the chosen

parameters and optimization of the likelihood function. Further,

these models lack the capability of mapping users and exact timing

information to the internal nodes.

While significant work has focused on predicting individual

cascades, less attention has been invested in predicting the

popularity of a group of cascades. For example, several works

predict the aggregate volume of user activities on Twitter via

Hawkes processes that model the events around a group of

cascades (Valera and Gomez-Rodriguez, 2015; Zarezade et al.,

2017). Theoretical models that capture the spread of social-

influence when a group of competitive cascades evolve over a

network have also been proposed (He et al., 2012; Lu et al.,

2015). Other works havemade similar observations when exploring

inter-related cascades in multiplex networks (Xiao et al., 2019).

These studies stress the importance of focusing on a group

of cascades instead of an individual cascade for improving the
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prediction results of user-level diffusion behavior. Horawalavithana

et al. (2022) proposed a data-driven machine learning model to

predict conversation trees with author identities and continuous

timing information mapped onto the nodes in the tree. Their

solution captures the relationship between different microscopic

conversation properties such as structure, propagation speed, and

users who participate in a set of simultaneous cascades.

2.2.4. User interaction prediction
User interaction prediction refers to the task of mapping user

identities or categories of users (e.g., old users vs. new users) to

predicted links of a given interaction network or cascades. In other

words, the goal is to predict which user or type of user responds

to whom. There have been several previous works proposed for

this task. Some utilize embedding techniques, in which neural

networks, typically graph neural networks (GNN), are used to

embed each node in a given network into a low dimensional

space (Perozzi et al., 2014; Grover and Leskovec, 2016; Goyal et al.,

2020). These embeddings can then be used for node classification

or prediction tasks as they encode useful information about a given

node and its neighborhood. Despite the recent success of GNN

for link prediction tasks, they have limitations. Xu et al. (2018)

showed that GNN methods are not significantly more powerful

than simple neighborhood aggregation graph kernels such as

Weisfeiler-Lehman. Huang et al. (2020) found that combining label

propagation and feature augmentation techniques can outperform

GNN performance on a variety of datasets. Another concern is due

to the quality and lack of diversity of the benchmark graph datasets

that are typically used to evaluate these methods.

Other non-neural network approaches such as matrix

factorization (Dunlavy et al., 2011; Ma et al., 2017) or probabilistic

methods (Sarkar et al., 2014; Ahmed and Chen, 2016) have

also been proposed for this task. However, these methods often

suffer from computational complexity in terms of space and

time. Perhaps, the major limitation of many of these traditional

predictive models is that they are built only for nodes who are

already seen in the training data (transductive capability), but

not for new nodes (inductive capability), which are important in

social networks where activities are strongly driven by new users.

While recent deep learning methods attempt to overcome this

issue (Hamilton et al., 2017), it still remains a very challenging

problem, especially in online social networks.With these challenges

in mind, we attempt to combine both discriminative (machine

learning) and generative approaches to model user interactions

that (1) consider the appearance of new users and (2) attempt to

capture important structural properties of message cascades.

3. Datasets

As a data-driven project, we had access to a rich collection

of curated online data on a variety of contexts ranging from

cyber-security vulnerabilities and crypto-currency schemes to

disinformation campaigns and geo-political events. We briefly

describe below the datasets used in this article to support

our observations.

Venezuelan Political Crisis of 2019 (Vz19): In 2019, a

humanitarian, economic and political crisis engulfed Venezuela

as the presidency was disputed between Juan Guaidó and Nicolás

Maduro, each claiming to be the country’s rightful president.12 The

political turmoil had its roots in the controversial re-election of

Nicolás Maduro as the head of the state on January 10th, which

was boycotted by opposition politicians and condemned by the

international community as fraudulent. This event contributed

to unprecedented conflicts and high political tension which

resulted in nationwide protests, militarized responses, international

humanitarian aid intervention attempts, and incidents of mass

violence and arrests. The dataset consists of records from two

online platforms, Twitter and YouTube. The Twitter dataset

includes 16,624,066 activities done by 1,140,865 users. The

YouTube dataset includes 146,337 activities done by 85,049 users.

The evaluation scenario consisted of training data from December

24, 2018 to February 21, 2019 (1 month and 28 days) and testing

data from February 22 to April 1, 2019 (1 month and 7 days).

Chinese-Pakistan Economic Corridor (CPEC): CPEC is a

strategic economic project under the Belt and Road Initiative (BRI)

launched by China aimed at strengthening and modernizing road,

port and energy transportation systems in Pakistan. While China’s

investment in Pakistan has largely taken the form of infrastructure

development, the project has been heavily criticized with claims of

lack of transparency, self-benefit and imposing unsustainable debt

on the Southeast Asian country.13 Conflict around this project plays

out in discussions on social media, where state actors strategically

promote Chinese interests to facilitate building projects and garner

further investment. The dataset consists of records from three

online platforms, Twitter, YouTube, and Reddit. The Twitter

data consists of 5,248,311 activities done by 1,216,100 users. The

YouTube dataset consists of 296,625 activities done by 146,705

users. The Reddit data consists of 645,394 done by 184,836. The

evaluation scenario consisted of training data fromMarch 1 to May

28, 2020 (2 months and 27 days) and testing data from May 29 to

August 1, 2020 (2 months and 3 days).

Belt and Road Initiative in East Africa (BRIA): As part of

the same BRI flagship project, China has committed a substantial

amount of resources and investment across Africa, especially in the

east African nations. Similar to the CPEC scenario, several concerns

have arisen over China’s strategic intentions in Africa. The dataset

consists of records from three different online platforms, Twitter,

YouTube, and Jamii.14 The Twitter data consists of 1,832,156

activities done by 705,042 users. The YouTube data consists of

20,289 done by 14,429. The Jamii data consists of 18,058 activities

done by 3,221 users. The evaluation scenario consisted of training

data from February 1 toMarch 31, 2020 (2months) and testing data

from April 1 to May 1, 2020 (1 month).

Data Augmentation: One of the objectives of the SocialSim

program was to investigate and simulate how social media activity

diffuses for particular pieces of information, which throughout

this paper we refer to as topics. Over the course of the project,

these topics were represented in various ways, from simple terms

12 https://www.nytimes.com/2019/04/30/world/americas/venezuela-

crisis.html

13 https://www.cfr.org/blog/china-pakistan-economic-corridor-hard-

reality-greets-bris-signature-initiative

14 Jamii forums is a social networking site popular in East and Central

African countries.
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or keywords to more complex and manually crafted narratives.

For example, in the cybersecurity-related datasets, the topics

were simply identifiers for security vulnerabilities. Similarly, the

crypto-currency datasets were tracking keywords naming crypto-

currencies, such as beancash, agrello, electroneum, indorse, etc.

The White Helmets dataset used the notion of narratives, which

were defined as a set of keywords that can coherently describe a

particular event. These narratives were created using a combination

of topic modeling algorithms, such as Latent Dirichlet Allocation

(LDA) and Non-negative Matrix Factorization (NMF), and event

extraction methods. More details on this narrative extraction

framework can be found in Blackburn et al. (2020). For the

Vz19, CPEC, and BRIA datasets, the topic assignment strategy was

identical. Specifically, subject matter experts (SME) were employed

to identify relevant sets of keywords relating to each context. SMEs

created an initial annotated set of data comprised of a small subset

of social media posts, which were labeled with their corresponding

topics. For each challenge, a BERT language model was fine-tuned

on the manually annotated corpus for the topic annotation task,

and eventually applied to the set of non-labeled posts. More details

about the annotation process and accuracy of the trained BERT

models for these datasets can be found in Ng et al. (2023).

Due to the limitations of the Twitter API, information

regarding direct retweets between users cannot be inferred at

collection time. Thus, the complete cascade of retweet interactions

(i.e., retweets of retweets) is not available. However, using Twitter’s

follower graph, it is possible to infer the correct retweet path of

a tweet. The code to reconstruct the retweet cascades given a set

of original tweets is publicly available in GitHub.15 This code is a

re-implementation of a retweet reconstruction algorithm proposed

in Vosoughi et al. (2017). The Twitter follower API was used to get

the list of followers for all users who appeared in each of the Twitter

datasets we worked with.

4. Lessons on the design of social
media simulators

During the duration of project, the design of our online social

media simulators (OSMS) drastically changed from attempting to

capture all aspects of the problem with a single end-to-end solution

to breaking down the problem into smaller, modular components

that more accurately capture dimensions of the problem. These

choices were driven by our successes and failures during the

challenges and by data-driven observations, which are summarized

by the following lessons learned.

4.1. From end-to-end solutions to a
decompositional approach

In early stages we experimented with various frameworks for

simulating social media behavior in an end-to-end manner, where

the main objective was to capture micro-level user interactions

15 https://github.com/socsim-ta2/socialsim_package/blob/master/

socialsim/twitter_cascade_reconstruction.py

at the finest time granularity. Specifically, we wanted to predict

which user will act on what information at which hour. One

of our solutions used sequence-to-sequence LSTM models to

directly predict the number of activities a user would perform in

future timesteps (Liu et al., 2020). Another approach consisted on

leveraging more complex ML-architectures, specifically diffusion

convolutional recurrent neural networks, which aimed to combine

both social network information and historical time series to

predict the future activities of users (Hernandez et al., 2020). While

these approaches seem to work well compared to several baselines,

there were still a number of limitations and challenges in predicting

user activity, some of which are related to dataset characteristics

specific to social media behavior.

One challenge was the significant sparsity present in user

activities. As shown in previous studies (Barabasi, 2005; Qiu et al.,

2018), users on social platforms often operate in a heterogeneous

and bursty fashion, where active periods are followed by very long

periods of inactivity. Based on data-driven analyses, we observed

that more than 75% of users in both Vz19 ad CPEC datasets

have an average weekly activity rate of zero. This highlights that

for most users, our models need to deal with really sparse time

series data. The sparsity of user historical data poses a major

problem for many forecasting approaches as it encourages models

to severely under-predict the actual number of activities. Another

limitation is that our end-to-end solutions do not account for

new user engagements. Data analysis shows that in certain topics

there is a considerable number of new users that make up a

large portion of activities in a given day. Figure 1 shows the

fraction of new users for different topics of discussion and across

different social media platforms in the BRIA dataset during the

testing period. In Twitter, at least 60% of users who interact

are new, where “new” in this case means not previously seen

in our training data. In YouTube, the fraction of new users

who interact each day is much larger (at least 90%) for all

topics. For this reason, it is necessary to account for new users

when modeling social media activity, as they are the engaged

user accounts.

These data-driven observations encouraged us to depart from

an end-to-end, monolithic model and adopt a decompositional

approach, where we could use trained models for specific aspects of

the problem. Figure 2 shows the final design of our model pipeline,

which consists of three main components. First, we implemented

specialized time series forecasting models that were tasked with

different objectives such as predicting the number of activities (e.g.,

number of tweets, retweets, comments, etc.), or the number of new

and the number of previously-seen users. We experimented with

various ML algorithms, such as LSTMs and XGBoost regressors,

which achieved good performance against traditional baselines

such as ARIMA or Shifted, as shown in Mubang and Hall (2022)

and Ng et al. (2022). We emphasize that the time series algorithms

we used can be easily substituted for any other regression-based

model of interest.

The second component in our pipeline was tasked with

generating conversation trees. That is, given a set of predicted

activities per unit of time (in our case, hour), the objective is to

distribute such activities to individual information trees in order

to model which message is a response to which (in a Reddit
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FIGURE 1

Fraction of new users during the testing period not previously seen in the training period for BRIA topics across Twitter and YouTube. (A) Twitter. (B)

YouTube.

FIGURE 2

Framework for the modular design approach we proposed in the SocialSim challenges. Time series features are extracted from the train data and are

used for regression tasks predictions such as activity counts, new users, old users, etc. The predicted time series along with social interaction

networks are used to generate conversation trees in the message cascades module. Finally, user identities are assigned to the nodes of the

conversation trees in the user-assignment module.

conversation, for example) and eventually forecast the evolving

network structure of social interactions by assigning users to

such messages. To this end, we leveraged a conversation pool

generation algorithm, which uses branching processes to model the

structure of social media conversations. More details on the specific

algorithm can be found in Horawalavithana et al. (2022).

The final component in our pipeline consists of user

assignments, where the task is to assign social media users to

the conversation nodes of the predicted information cascades.

One of our strategies framed this problem as a temporal link

prediction task, where we used diffusion probability tables—

inferred though temporal user-interaction networks—to predict

which user was most likely to interact with whom. More

details on this user-assignment methodology can be found

in Mubang and Hall (2022). This divide-and-conquer simulation

framework showed a significant improvement over our previous

solutions in the various metrics that were considered during the

SocialSim challenges.

4.2. Specialized time series forecasting
models work better than one single model

During the several iterations of our model design, we learned

that one single ML model trained for the task of time series

forecasting is not sufficient to capture all complexities and

changing relationships between topics that occur within the same

social media platform and on different platforms. The design

choices in our time series forecasting component were based on
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FIGURE 3

Time series of activities for three Twitter topics in the Vz19 dataset. The plot highlights the di�erent scale of activity (topic popularity) on di�erent

topics on the same social media platform. (A) Maduro/cuba_support. (B) Military/dessertions. (C) Violence.

FIGURE 4

Time series of activities for three topics in the Vz19 dataset across two di�erent platforms. The plot highlights the di�erent scale of activity on the

same topics but di�erent social media platforms. (A) Twitter (Vz19). (B) YouTube (Vz19).

several data-driven observations, which are summarized by the

following lessons.

First, we learned that activity of different topics differs widely

on the same platform. Topic popularity within the same social

media platform rapidly changes based on user interest and current

social trends. Topics that had previously seen a wide audience

engagement might quickly die out as newer topics arise. Figure 3

shows the time series for three topics of discussion in Twitter

during the Vz19 political crisis. We observed that peaks of

activity for each topic often occur at different times either due

to users interest or correlations with on-the-ground events. We

also observed that different topics tend to show widely different

magnitudes of activity. For example, the activity on the violence

topic is 13X larger than in maduro/cuba_support. Due to these

observations, we opted for a per-topic model design, where

independent ML models are trained for each topic of discussion.

Second, we observed that the same topic of discussion can

have different volumes and patterns of activity on different

social media platforms. In Figure 4, we compared the time series

for three Vz19 topics across two different platforms: Twitter

and YouTube. We observed that there are clear differences in

the magnitude of activities across the two platforms. Twitter

activities are significantly larger than YouTube as shown by the

order of the magnitude differences between topics being in the

hundredths. These differences are expected due to the nature of

each platform. Twitter is a micro-blogging service with features

for large-scale distribution of information while YouTube is a

video-hosting platform where large-scale interactions are not

expected. Bearing in mind these differences, we decided to include

specialized per-platform models as an attempt to capture such

contrasting behaviors.

Third, online discussions are often correlated with different

exogenous signals over time, especially in datasets driven

by influential events, as shown in Dutta et al. (2020) and

Horawalavithana et al. (2021). Figure 5 shows that, during the

Venezuelan political crisis in 2019, social media activity from

different platforms was often correlated with particular external

events and news articles reports recorded in geopolitical databases.

However, not all external events have a direct influence on a

particular online topic. To capture the changing relationship

between different online topics and exogenous sources, we

proposed in Ng et al. (2022) a technique that dynamically selects

models trained with different exogenous signals to better predict

the future activity of a particular topic.

4.3. Correction of errors across multiple
sub-components is necessary

The modular design as compared with the monolithic solution

comes with a trade-off between performance and complexity.

While the modular design made the problem more manageable,

it also requires lots of supervision. As outputs from earlier
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FIGURE 5

Time series of activities related to the political crisis events in Venezuela during 2019 across di�erent social media platforms and exogenous sources.

The figure shows some correlation between social media activities and external real-world events as recorded by two geo-political databases:

GDELT and ACLED.

components flowed down the pipeline, it was necessary to correct

errors that could negatively impact the final simulation results. For

example, during our work on different datasets, it became clear that

accurate macro-level prediction modules (e.g., components that

predict the volume of activity or the number of users) set the tone

for more accurate micro-level simulations. Hence, we designed

specializedmodules to predict the number of posts and interactions

over time for the duration of the forecasting window. As these

predictions stay closer to the ground truth, our cascade generation

module produces more accurate information cascades.

Table 1 illustrates the importance of accurate macro-level

predictions and their impact on network-level measurements such

as the Relative Hausdorff (RH) distance, which measures the

similarity between user in-degree distributions of two networks.

The results clearly show that accurately capturing the volume

of activities over time has a significant impact on network

measurements. For example, if the ground truth volume is input

to the cascade model, our solution outperforms the shifted baseline

in 8 out of 10 topics. The number of edges generated by our cascade

process was controlled by the number of interactions predicted, so

the smaller the error in these predictions, the smaller the error in

the constructed networks.

Additionally, our pipeline carried out multiple post-processing

checks to prevent generating events or predictions that were

unrealistic to the social phenomena/behavior we modeled. For

example, we make sure that the number of users who tweet was

not larger than the number of tweets predicted by our time series

TABLE 1 RH distance results for topics in BRIA dataset for two model

variations and the shifted baseline.

Topic GT-model NO-GT-
model

Shifted
baseline

COVID 0.58 0.86 1.12

COVID/assistance 0.77 0.99 0.80

Debt 0.72 2.56 1.29

Environmentalism 0.62 0.88 1.00

Infrastructure 1.22 0.54 0.31

Mistreatment 0.93 2.61 1.50

Prejudice 2.64 2.81 0.50

Travel 0.93 1.13 1.00

GT-Model takes the ground truth volume of activities as input while NO-GT-Model takes the

volume of activities predicted by a trained internal model (i.e., uses only historical platform

activity as features). Both model variations generate cascades and user interactions based on

a branching model.

Bold indicates best model.

forecasting components. We also checked that predictions with

ourML components matched particular patterns observed in social

media platforms (for example, the number of tweets being typically

smaller than the number of retweets, or number of users being less

than or equal to the number of interactions). This lesson highlights

the importance of designing accurate macro-level components

and regularly correcting errors that can negatively affect the final

model performance.
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4.4. Previous user reactions are more telling
than previous user interactions

In our early user-assignment strategy, we exploited the social

network topology of previous user interactions (Horawalavithana

et al., 2022) in an attempt to capture the well-accepted observation

according to which people who interact more often will tend to

interact more often in the future as well. Specifically, we extracted,

for each topic, an interaction network where nodes are users and

edges are weighted by the number of previous interactions to bias

the assignment of users to predicted messages. One limitation of

this strategy is that it did not account for the fact that in many

cases the bulk of users interacting with a particular message were

most likely new users, who had never been seen in the interaction

networks. In fact, from data analysis, we observed that only very

few pairs of users repeatedly interacted with each other as shown

by the edge weight distributions in Figure 6. We found that at least

75% of pairwise user interactions have an edge weight of one during

the training period, which was approximately two months for all

datasets listed in the figure. Such observation holds across all social

media datasets we worked with.

Thus, we changed our strategy and assigned users to cascades

based on their susceptibility of being retweeted, thus changing

the focus from edges to nodes in the social network of user

interaction. We considered two user archetypes: (1) spreaders,

those whose retweet to a tweet often attracts other retweets; and

(2) frequent retweeters, those whose retweets are not retweeted

by others. The spreaders were assigned to branch nodes, and the

frequent retweeters were assigned to leaf nodes. The predicted

number of new users from previous components are also assigned

to the frequent retweeters user category as new users mostly

engage in retweeting rather than posting. These modifications

significantly improved our performance against several baselines in

network metrics.

5. Lessons on performance
measurements and baselines

Performance metrics are integral to evaluation in order

to measure success. To evaluate the fidelity of simulations of

social behavior a set of metrics was developed by researchers

at Pacific Northwest National Laboratory (PNNL). These metrics

were intended to cover three different levels of the simulation

phenomena: node-level (includes predictive metrics for individual

users such as predicting whether a user will propagate a message),

community-level (includes measurements associated with a users

or messages), and population-level (includes measurements for

the full diffusion process such as quantifying the total number

of messages shared; Saldanha et al., 2019). The implementation

for this wide range of metrics is publicly available in PNNL’s

GitHub repository16. The lessons we describe in this section

focus particularly on population-level performance measurements,

especially those related to time series forecasting tasks. However,

16 https://github.com/pnnl/socialsim_package

we emphasize that such lessons can also be applicable to evaluation

efforts that focus on other levels of the diffusion phenomena.

First, the identification of the right set of time series forecasting

metrics is a very challenging problem. Certainly having just one

metric is not acceptable for the purposes of our task, given

all of the different properties or key regularities we would like

our models to capture. The choice of right error metrics is

critical, even more so in this domain, where problematic time

series characteristics such as non-normalities or non-stationarities

are often present in the data (Hewamalage et al., 2022). These

characteristics can make some error measurements susceptible

to break down, which can result in spurious conclusions about

model performance. Determining which metrics are the most

relevant or useful heavily depends on the problem(s) to be solved

and a thorough understanding of the metrics’ limitations. For

example, to evaluate time series of social media activity, one might

think that applying traditional and generally accepted regression

metrics such as Root Mean Squared Error (RMSE) or Mean

Absolute Error (MAE) would be appropriate. However, when

the stated goal of a simulation or modeling effort is to help

identify significant social phenomena such as anomalous activity

periods (i.e., bursty behavior that might result from endogenous or

exogenous influences), these metrics are clearly inadequate as time

series that ignore the prediction of extreme values (outliers) would

be favored. Figure 7 illustrates this observation. We show that a

baseline auto-regressive model outperforms a machine learning

XGBoost (Chen and Gestrin, 2016) model in both RMSE and

MAE metrics despite predicting a relatively flat time series. In

these cases, we must carefully consider metrics that account for

the particular characteristics we want to model [e.g., volatility,

skewness, Kleinberg’s burst detection (Kleinberg, 2002), dynamic

time warping (Berndt and Clifford, 1994)] instead of settling for

metrics that, despite being widely used, do not align with the

end goals.

Second, model accuracy is often evaluated in comparison with

a baseline model’s predictions: do its predictions beat the baseline’s

predictions. But what baseline is most useful for forecasting

social media activity? Time series forecasting has been addressed

in many contexts, from markets (Jiang, 2021) to spread of

disease (Scarpino and Petri, 2019), and thus each context has

its well-established baseline(s). But, social media activity reacts

capriciously to both endogenous and exogenous events (Dutta

et al., 2020; Horawalavithana et al., 2021), and thus baselines

that are representative of processes in stock markets, for example,

may be less representative of processes in social media domains.

These observations motivated us to understand and document the

relative performance benefits of existing time series forecasting

methodologies for social media activity. For this, we defined

a typical forecasting problem: forecasting the number of social

media activities per hour within a discussion context for the

next 168 h without using the ground truth information during

the forecasting interval. We chose three existing techniques for

forecasting time series: Shifted, that simply replays the past,

Hawkes processes, and ARIMA. Our observations are presented

in detail in a technical report (Ng et al., 2023), where we focused

on answering various questions regarding the advantages and

limitations of these baselines as applied to time series forecasting in

social media.
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FIGURE 6

Log-log edge weight distributions of Twitter interaction networks across three di�erent datasets. (A) Vz19. (B) CPEC. (C) BRIA.

FIGURE 7

The topic maduro/narco from the Vz19 dataset on Twitter. The red curve is the XGBoost prediction, the dotted green curve is the AR prediction

(baseline), and the black curve is the ground truth. Although the AR model had a slightly lower RMSE and MAE than XGBoost, XGBoost was able to

capture a spike that occurred around 18–19 h. This shows that the selection of metrics should depend on the intended phenomenon to capture.

We found that ARIMA models tend to be inadequate or

misleading in our context. When forecasting social media time

series for long-term settings (e.g., days or weeks), ARIMA’s

predictions often fail to capture relevant temporal patterns

observed in the ground truth. Figure 8 shows that ARIMA typically

creates highly regular (and unrealistic) patterns of variation. On the

other hand, the Shiftedmodel, which simply replays the recent past,

demonstrates competitive performance. Replaying the recent past

is a cheap and highly reliable way to predict the near future in many

scenarios and performance metrics. Another observation is that

the choice of baselines also depends on the task at hand and what

is the most important. For example, if modeling the final volume

of information/message cascades, or predicting next day activity

(assuming previous day ground truth data is always available), then

ARIMA could still be a good choice. However, if the focus is to

capture spiky behavior to identify, say, anomalous periods in the

future, then comparing against baselines such as Shifted or Hawkes,

or AR models that focus on variance/volatility (Lamoureux and

Lastrapes, 1990) might be more appropriate/meaningful. Lastly, an

ensemble of baselines could also result in more competitive models

for comparison purposes. For example, when combining Hawkes

and ARIMA by averaging, we observed an improvement for some

topics in both volume of activity and temporal patterns.

6. Lessons on data use and relevance

As part of this DARPA-funded research project, we had access

to a rich collection of well-curated longitudinal datasets from

various platforms and contexts. For example, in the early stages

of our research we had access to more than 10 years of activities

on GitHub public repositories, 2 years of Reddit and Twitter

conversations that mentioned software vulnerabilities, and over 1

year of discussion on the White Helmets. This variety of datasets
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FIGURE 8

Predicted time series visualizations of di�erent baseline regression models for Twitter activity. The top three most popular topics in each dataset are

shown: Vz19 (A–C), CPEC (D–F), and BRIA (G–I). Each baseline model was set to predict 1 week of activity at hour granularity (i.e., 168 time steps).

(A) International/aid, (B) military, (C) maduro/dictator, (D) controversies/china/border, (E) leadership/sharif, (F) controversies/pakistan/baloch, (G)

COVID, (H) travel, (I) mistreatment.

from different platforms (Reddit, Twitter, and YouTube as often

mentioned here, but also Jamii, GitHub, and Telegram) and

highly variable socio-geo-political contexts, ranging from software

development to international political contexts, allow us to make

well-supported data-driven observations.

6.1. More (longitudinal) data is not always
helpful

While the general assumption is that for machine learning (and

especially deep learning) technologies the more data the better, we

observed that this is not always the case with longitudinal data.

Specifically, for simulation of temporal activity in social media

more data from the distant past is likely not useful, due to various

processes, such as platform algorithmic changes, topic evolution, or

user population variations.

One example is the assignment of users to predicted events, as

sketched in Section 4. In one solution, we assigned user identities

to actions via a probabilistic approach that made use of a lookback

parameter. This parameter was tunable and represented how much

previous history must be considered to make predictions. Table 2

shows a series of experiments where we tested a range of lookback

factor values to understand their impact measured on the user

interaction network. Particularly, we looked at how much our

models improved from the Shifted baseline in terms of the Relative

Hausdorff Distance (RHD) between the predicted user interaction

network (in this case, who is predicted to comment to whose

message) and the ground truth network (who really comments on

whosemessage). Again, the Shifted baseline replays the past 2 weeks

of activities.

We found that after a certain point (144 h in this example),

using a longer history (manifested by a larger lookback parameter)

did not lead to an increase in performance. The largest value

we tested was 960 h (40 days) and it led to the worst result

when compared to the other values. Moreover, as we increased

the lookback factor, our user-assignment predictions became less

accurate, thus affecting the overall performance in RHD. This

highlights that using data from long ago compared to recent activity

can negatively impact models’ performance. Social media activity

and user interactions are influenced by a combination of different

processes such as changes in topics of discussion, or unseen factors

such as exogenous activity or algorithmic biases. Thus, older

patterns of activity (such as topic popularity) do not accurately

reflect current trends and dynamics in social media behavior.

6.2. The power of exogenous vs.
endogenous data

Ng et al. (2022) showed that models trained on endogenous

activity can predict the final volume of activitymore accurately than
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TABLE 2 YouTube user-assignment lookback factors vs. RHD distance

percentage scores relative to howmuch improvement from shifted

baselines.

Lookback factor (in hours) RHD PIFB score (%)

96 19.26

120 19.49

144 19.54

168 19.21

192 19.52

216 18.98

240 18.91

480 18.46

720 18.27

960 17.48

TABLE 3 APE mean performance across topics of interest in two di�erent

challenges and two di�erent platforms.

Model
Vz19 CPEC

Twitter YouTube Twitter YouTube

Exogenous 110.58 92.96 76.26 51.38

Endogenous 107.26 63.25 102.38 53.16

Ensemble 89.88 58.76 146.27 50.13

ARIMA 302.76 79.61 236.93 87.12

Hawkes 124.76 80.36 187.58 51.38

Shifted 399.04 51.73 825.25 66.55

Top-3 best models are bold.

baselines. Table 3 shows the APE results across two datasets (Vz19

and CPEC) and two platforms (Twitter and YouTube) for one of

our solutions (described in Ng et al., 2022) with three different

variants: when only endogenous data is used for training the

model (shown as Endogenous in the table), when both exogenous

and endogenous data is used (Exogeneous) and an ensemble of

models that takes the average over the predictions produced by the

exogenous models (Ensemble) compared to three baselines. The

model trained only on endogenous data was often ranked as one of

the best models in terms of APE for volume of activities prediction,

and in some cases it even outperformed the model trained on both

endogeneous and exogeneous data. Despite their good performance

on the total volume of activities as aggregated over time by APE,

we found that the endogenous models were of limited benefit for

capturing temporal patterns when real world events drove the social

media activity.

For example, Figure 9 shows a time-lagged correlation analysis

on the Vz19 dataset. Our results suggest that, at particular periods

of time, the volume of Twitter discussions about the Venezuelan

political conflict were highly correlated with previous real world

events as captured in GDELT.We also observed that distinct groups

or communities tended to react differently to exogenous influences.

These observations suggest that taking into account exogenous

influences is paramount for accurately forecasting the activity

of different subjects of discussion, especially for capturing

sudden peaks of activity. In fact, we showed the importance

of incorporating exogenous features in Ng et al. (2021a). Via

experimental evaluations on two Twitter datasets, we demonstrated

that models that did not consider exogenous features often

predicted flat lines of activity or time series patterns that tended

to regress toward the mean. Such predictions are not useful in

operational scenarios where forecasting anomalous periods of

activity over time is valuable.

6.3. Augmenting training data can be useful
for increasing model accuracy

While longer historical data is not always beneficial in terms

of forecasting the future, we often found ourselves wanting more

contemporary data than there was available, such as more activities

in a particular interval on a particular topic and platform. To satisfy

similar needs, data practitioners often attempt to augment datasets

via synthetically generated data. We tested this approach in our

problem setup.

We augmented data by using a noise based approach applied

to all data from a topic. Gaussian noise was applied to the

original feature vectors to obtain the augmented ones. Figure 10

shows an example of how data augmentation can provide benefits.

In Figure 10A, a prediction from a data-augmented model is

compared to a prediction from the same model trained on the

original data for the topic anti of the BRIA dataset. TheNRMSE and

APE for the data-augmented model are 0.12 and 0.23, respectively,

while the NRMSE and APE for the non-data-augmented model are

0.16 and 3.8, respectively.

In Figure 10B, the data-augmented and non-data-augmented

model predictions were compared on a different the other-state-

affiliated-accounts topic, again on Twitter BRIA dataset. The

NRMSE and APE for the augmented model are 0.03 and 31.71,

respectively. For the non-data-augmented model, the NRMSE and

APE are 0.06 and 43.53, respectively. Overall, we found that data

augmentation is useful for topics with very sparse time series.

Particularly, augmentation made these models more robust to

small fluctuations and improved the generalization to unseen data,

leading to more accurate predictions.

7. Observations on forecasting social
media activity

While previous sections discussed lessons learned from

working with large and varied datasets as applied to designing and

evaluating machine learning-based models capable of forecasting

social media activity from micro to macro level, this section

discusses the challenges inherent to the problem rather than

stemming from our particular solutions. In hindsight, these

challenges seem intuitive. Stating them explicitly might help future

research focus on the most difficult problems first.
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FIGURE 9

Time lagged correlation between GDELT and Twitter hourly activity timeseries. We split the hourly timeseries into equal chunks, where each chunk

represents the hourly timeseries in a week. We calculate the Pearson correlation coe�cient between GDELT and Twitter activity timeseries in each

week. We incrementally shift one time series vector by hours and repeatedly calculate the correlation between two timeseries. The correlation values

represented in the positive time o�sets suggest that GDELT reacts to Twitter, and the correlation values represented in the negative time o�sets

suggest that Twitter reacts to GDELT. The cell colors in the heat map represent the correlation coe�cient values as presented in the color bar. The

numbered weeks in the y-axis are relative to the start date of January 01, 2019. (A) Anti-maduro (Spanish), (B) pro-maduro (Spanish), (C) anti-maduro

(English), (D) pro-maduro (English).

FIGURE 10

Some instances in which the data-augmented models outperformed the non-data-augmented models. The red curves represent the predictions and

the black curves represent the ground truth. In each sub plot, the left sub plot represents the data-augmented predicted time series, while the right

sub plot represents the non-data-augmented predicted time series. As one can see in each subfigure, the data-augmented models matched the

ground truth better than their non-data-augmented counterparts. (A) Anti—VAM data augmented (Left) vs. VAM non-data-augmented (Right). (B)

other-state-a�liated-accounts—VAM data augmented (Left) vs. VAM non-data-augmented (Right).
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7.1. Long-term forecasting requires
contemporary exogenous data

Long-term forecasting refers to a stream of discrete counts that

must be predicted without any knowledge/feedback of the ground

truth or updated exogenous data and not to the duration of the

predictions (e.g., weeks, months, years). Our experience taught us

that endogenous signals alone (historical platform activity) do not

produce reliable forecasts very far into the future. Not only can they

not reliably capture activity burst behavior due to exogenous events,

but when predicting the future relies on a recent past that is also

in the predicted future, solutions that feed predictions back into

training data lead to accumulation of errors.

The introduction of exogenous features into our models

alleviates these issues. But, it is important to emphasize that as we

stretch out the number of future time steps for which prediction

is required, flat predictions can result even if exogenous data

is available. Figure 11 shows various visualizations of predicted

time series on the BRIA dataset that illustrate this lesson. We

observe that when considering recent exogenous signals (e.g.,

from the previous 3 days) and shorter future steps (next day

prediction) at day granularity (labeled “3-to-1” in Figure 11), our

models can generally capture spikes of activity and temporal trends

more accurately. On the other hand, for longer multi-step ahead

predictions and old exogenous information history (“21-to-21”,

corresponding to 21 days of history and 21 days prediction in the

future), the time series are almost flat and in many cases regress

toward the mean.

7.2. Macro-level characteristics are easier
to predict than micro-level

This observation was independently reached by Bollenbacher

et al. (2021) and simply states that predicting the number of posts

or the number of users who post on a topic is easier to get right than

predicting who are the users who post, or even what are the general

characteristics of their interaction patterns. We illustrate this lesson

by reporting the percent improvement from the Shifted baseline

when performance is measured in APE of volume of activities or

network metrics. For two families of models presented in Mubang

and Hall (2022) and Ng et al. (2022), we observed that the relative

improvement over the Shifted baseline whenmeasuring the volume

of activities on the BRIA dataset is ranging between 35.6 and

45.99%. However, the percentage improvement over the network

characteristics of the user interaction network against the same

Shifted baseline are ranging between 14.55 and 29.61%.

Another example where groups are more predictable than

individuals is at the level of diffusion cascades. Horawalavithana

et al. (2022) proposed a probabilistic generative model with the

support of a genetic algorithm and LSTM neural networks to

predict the growth of discussion cascades on Reddit. Our approach

focused on predicting the microscopic properties of a pool of

conversations, and thus it modeled groups of conversations instead

of individual conversations.

We demonstrated that our solution predicts the properties of

the resulting cascades more accurately than the baselines. However,

while our solution more accurately traces both the distribution

of conversation sizes and that of conversation viralities than

any of the baselines, we found that it struggles with the end

points of the spectrum: the properties of the very small and very

large conversations. These observations highlight the difficulty

of predicting the effect of a particular message as opposed to a

group of messages. The finer granularity predictions require finer

granularity features that we cannot possibly observe and thus use,

such as a particular user’s attention to a topic or even to the social

media platform at any time.

8. Summary and open problems

This paper presents an overview of our data-driven

observations from developing social media forecasting techniques

over a 4-year project. While many of the models developed and

tested were published elsewhere (Liu et al., 2019; Horawalavithana

et al., 2022; Mubang and Hall, 2022; Ng et al., 2022), this paper

synthesizes our conclusions from working with more than 5 years

of aggregated social media data from three different contexts.

Our main observations include the following. First, long-term

forecasting of social media activity at fine granularity is a scarcely

researched topic despite its significant potential for generating

realistic synthetic longitudinal traces for research; enabling safe

experimental environments for testing intervention techniques;

and identifying potentially inorganic behavior that significantly

diverges from predicted trends. Most research to date focused on

predicting the characteristics of a future point in time rather than a

sequence of timed events with authorship attributions (“who does

what when”).

Second, research challenges in this space are more significant

the more finer the granularity of the desired prediction is. Thus,

predicting which user reacts to which piece information at what

time is perhaps close to impossible given the limited information

available from social media platform activities, yet predicting the

number of users engaged with a topic over time is more doable.

Many applications can be beneficial even with such limitations.

Overcoming these limitations, however, may pose significant user

privacy concerns and safety risks, which is not what we advocate.

Third, exogenous information is paramount for predicting the

evolution of social media activity, given how interconnected the

digital and the non-digital worlds are. Which exogenous sources

of information are relevant for which topic of discussion, however,

are not constant over time and different contexts. For example,

we found Reddit data to be useful for forecasting Twitter activity

for several topics related to Venezuela political crisis of 2019 while

ACLED and GDELT data for forecasting Twitter activity for topics

related to CPEC.

Fourth, which performance metrics best capture the success in

forecasting tasks is dependent on the objective to which forecasting

is to be used. For example, if the objective is to identify the

overall volume of posts related to a topic over a period of time

vs. predicting spikes of activity over a short period of time,

different performance metrics should be chosen, as well as different

baseline techniques.

Finally, our experience showed that end-to-end machine-

learning solutions are less accurate than decomposing the problem
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FIGURE 11

Sample time series visualizations on Twitter activity from the BRIA dataset. The blue lines are our LSTM-based models presented in Ng et al. (2022)

and trained with recent exogenous sources (3 previous days), the red lines are our models trained with distant data from exogenous sources (21

previous days), and the black lines are the ground truth. (A) COVID, (B) environmentalism, (C) mistreatment, (D) UN.

into specialized models able to correct unrealistic combined

predictions, such as more users who post than the number of

messages posted in a given interval.

In addition to improving solutions in this problem space,

future research directions include developing simulation scenarios

based on forecasting social media activity. Currently, social media

platforms are solely responsible for containing the damaging

activities on their platforms, especially related to the diffusion

of information, yet they are totally opaque in terms of the

measures they implement or the scientific support for such

measures. Our simulators could be used to evaluate the impact

of interventions targeted at addressing issues such as polarization,

diffusion of information, or the deterrence of coordinated content

promotion efforts. Intervention techniques for testing may include

censoring user accounts, censoring content (URLs, particular

tweets, domains, hashtags), censoring narratives, and scrambling

stances such that a user appears to post opposing viewpoints toward

particular topics.
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