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Data integration is a well-motivated problem in the clinical data science domain.

Availability of patient data, reference clinical cases, and datasets for research have

the potential to advance the healthcare industry. However, the unstructured (text,

audio, or video data) and heterogeneous nature of the data, the variety of data

standards and formats, and patient privacy constraint make data interoperability

and integration a challenge. The clinical text is further categorized into di�erent

semantic groups and may be stored in di�erent files and formats. Even the same

organization may store cases in di�erent data structures, making data integration

more challenging. With such inherent complexity, domain experts and domain

knowledge are often necessary to perform data integration. However, expert

human labor is time and cost prohibitive. To overcome the variability in the

structure, format, and content of the di�erent data sources, we map the text into

common categories and compute similarity within those. In this paper, we present

a method to categorize and merge clinical data by considering the underlying

semantics behind the cases and use reference information about the cases to

perform data integration. Evaluation shows that we were able to merge 88% of

clinical data from five di�erent sources.

KEYWORDS

data categorization, data integration, datasets, heterogeneous data, schema mapping,

semantic similarity, unstructured data

1. Introduction

In the healthcare domain, data integration plays an important role in data science

applications for improving patient care and aiding clinical research. However, it is hampered

by the heterogeneous and unstructured nature of medical data. Our ability to merge data

across hospitals and research institutions remains limited due to the lack of annotations

or other descriptive category information, because this information is available, it can be

further used toward knowing data elements properties for integration purposes. There is a

significant need to design and develop a data integration system that can enable the reuse

of multi-institutional data by researchers and clinical practitioners (Meystre et al., 2017). In

this work, we describe a methodology for data integration that enables the merging of data

from heterogeneous biomedical sources based on the semantics of their data elements. We

map the biomedical data elements (clinical cases) from different, but related, datasets into

categories and merge sub-categories to design an integrated database schema.
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We perform the categorization by classifying sub-categories

from medical data sources, extracting semantics of their data

elements, computing their semantic similarity, and integrating

those that meet a predetermined similarity confidence threshold.

We set this confidence threshold based on empirical analysis and

evaluation of different cases.

To integrate data sources, we cluster sub-categories and identify

the super-category combinations that can be merged. Once we

merge the sub-categories based on their semantic similarity, we

identify different attributes for schema design based on the contents

of merged data elements and design an appropriate database

schema. For example, sub-categories with findings, observation,

and diagnosis would be treated as one category (with similar

representation pattern), while another category could integrate

cases that include patient clinical history, e.g., discussion, history,

or comments. As illustrated in Figure 1, we find super-category

combinations that we can merge to find the super category

(final category) for the data integration purposes. Using our data

categorization and merging technique, we were able to merge

88% of sub-categories—reducing original sub-categories to 35%

(total 82 sub-categories from original data sources reduced to 29

merged categories) from five public medical datasets [EURORAD

(Neutorgasse, 2017), MyPacs (Group, 2017), MIRC RSNA,1 NIH

clinical reports NIH,2 and NIH x-ray NIH3].

1.1. Contributions

1.1.1. In this paper we present
Algorithms that extract semantic information from

unstructured data and find attributes for developing a schema for

integrated data repository.

A methodology for data integration that enables the merging

of data from heterogeneous biomedical sources based on the

semantics of their data elements.

A mapping of the biomedical data elements (clinical cases)

from different, but related, datasets into categories and merged

sub-categories to design an integrated database schema.

The remainder of the paper is organized as follows:

Section 2 presents related work; Section 3 discusses our system

implementation and design choices; Section 4 describes evaluation

results and Section 5 discusses the evaluation methodology.

Section 6 provides discussion about the problems in healthcare

data integration and our solution toward these problems. Section 7

discusses our research work conclusions and future directions.

1.2. Terminology

1.2.1. Sub-categories
We define sub-categories as the titles already provided by

dataset providers to identify the type of information in the

case. For example, “Diagnosis” provides information about the

1 http://mirc.rsna.org/query

2 https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345

3 https://www.nih.gov/news-events/news-releases/

patient’s illness, “Differential diagnosis” discusses several possible

conditions of the patient based on their clinical symptoms.

1.2.2. The semantics of super-category
The semantics of clinical cases provides the information of the

clinical cases, by identifying terms from our data sources. Based

on our evaluation, we consider semantically similar sub-categories

with at least 80% Hausdorff distances within clusters that are

between 0 and 10 range.

1.2.3. Category or attribute name
Through our analysis, we are creating categories - which are

the merged super-category combinations that can be used as an

attribute while designing a database schema.

2. Background and related work

Our literature survey primarily focuses on studies about

techniques and existing systems for clinical data integration used

in hospitals. We also discuss different techniques used by industry

in order to reduce data variability in different data sources. Several

research studies have investigated the topic of relational database

integration. Common data models Microsoft4 are used to share

data and its meaning across different applications and business

processes, but this applies only to relational databases. Limited

research work has been reported for unstructured data, especially

for clinical data. Many hospitals are using tools that adhere to

the Health Level 7 (International, 2018) standard for the exchange

of data among different facilities. Fast Healthcare Interoperability

Resources (FHIR) HL7FHIR5 is a collection of different standards

that defines “Resources” representing different clinical concepts.

These resources are based on XML or JSON structures, and all

resources have a Unified Resource Locator (URL) associated with

them. However, these solutions are standards defined to exchange

healthcare data and not data integration systems that will aggregate

different data sources into a unified repository. Industry approaches

seek to avoid mismatch of sub-categories by standardizing data

collection in medical research field. For example, Food and Drug

Administration enforces clinical experts to use standard formats

defined by the Clinical Data Interchange Standards Consortium

Study Data Tabulation (CDISC - SDTM) CDISC.6 The CDISC-

SDTM is a framework that is used to organize clinical data for

human and animal studies. Another example is, for COVID-19,

the WHO (World Health Organization) proposed a case report

form that all researchers should use, so that data could easily be

shared among research groups and countries. This requirement

enforces that researchers use the same format to report their

findings across different institutions. Clinical researchers were able

to validate different studies efficiently (in terms of time) due to

this standardization. All these techniques are contributing greatly

4 https://docs.microsoft.com/en-us/common-data-model/

5 https://www.hl7.org/fhir/index.html

6 https://www.cdisc.org/standards/foundational/sdtm
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FIGURE 1

Super-category combination sample example.

to the data integration process. However, data standardization

after the fact remains a major concern observed by the clinical

industry; developing a comprehensive approach that can be used

by all hospital is a great challenge in itself. Our algorithms try to

reduce the variability in data sources without going back to original

data sources and incorporate merging sub-categories to create an

integrated repository.

Seneviratne et al. (2019) is a great motivation for our work.

Specifically, they discuss the importance of data integration in

medical data analysis science. The authors present a survey of

methods for merging heterogeneous medical data and related

technical, semantic, and ethical challenges in integrating these data.

The authors argue that the integration of medical data sources

significantly improves the performance of prediction algorithms,

knowledge discovery, and diagnostic processes. Revesz and Triplet

(2010) discuss the reasons why data integration using classifiers

is difficult and present an approach for classifying data based

on reclassification (classification performed on classifiers). The

authors suggest that data integration using classifiers faces several

challenges such as missing values and adequately addressing

privacy concerns. Data integration process needs raw data

which might not be available due to different constraints (e.g.,

privacy, security, interoperability). Authors used models shared

by hospitals, so they do not have to deal with all these data

constraints. The authors used data classifier models shared by

different hospitals (instead of using raw data) and then integrated

classifiers to build a new classifier. Their approach differs from

ours since we work with unlabeled datasets which cannot be used

with classifiers. Stonebraker and Ilyas (2018) discuss the status of

data integration through a software product called Tamr (https://

www.tamr.com/). The authors discuss data integration challenges

and practical aspects of schema mapping with the classification

of data. Their data integration process needs domain experts,

which can be prohibitively expensive in practice. So, authors

suggest that future data integration systems should be designed

in a way to require less human interaction. Research in the

domain of data collection and integration has contributed to patient

care and adopting artificial intelligence techniques in their tools

[European Society of Radiology (ESR), 2019; Paranjape et al.,

2020; Orthuber, 2020]. Gagalova et al. (2020) discuss reviews from

different research studies to understand different architectures and

features from a variety of integrated clinical data repositories.

The authors conclude that the clinical data integration process is

influenced by data sources, nature of the project (single institute

or collaborative), users (e.g., end-users, researchers, clinical users)

needs, and purpose of the research work. Le Sueur et al. (2020)

discuss challenges in the integration of large and diverse clinical

datasets. The authors talk about the importance of using standards

for data collection and representation toward the integration of

large datasets.

Toward improving biomedical data integration techniques, we

have previously developed and reported on Integrated Radiology

Image Search framework as a pilot for a radiology data source

and medical ontology integration system that provides text-based

relevance search (Deshpande et al., 2017, 2019a). IRIS is a radiology

search engine that supports natural language queries (Deshpande

et al., 2018). Further, we designed a data integration and indexing

system, a framework that would enable data sharing and search
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across biomedical data sources (Deshpande et al., 2019b). We

also investigated techniques to summarize and find the coverage

of medical ontologies over the medical data sources to interpret

their contents. We designed a workflow that can be used to clean

medical data sources before integration (Deshpande et al., 2020b).

Although data cleaning research is a well-established field, data

cleaning often requires domain-specific considerations, and the

challenges of medical data integration have not received much

attention so far. Building on our previous work, in this paper, we

propose the data clustering algorithms that categorize and merge

heterogeneous biomedical data based on the underlying semantics

of the data elements.

3. Materials and methods

In this section, we discuss our methodology for

grouping/clustering and merging heterogeneous data source

sub-categories. We used hierarchical clustering technique and

incorporated human feedback to choose thresholds and compute

confidence levels in outcomes of clustering and merging data.

3.1. Data sources and medical ontologies
for integration

We focus on three types of data: a) Radiology teaching files or

teaching files used by doctors and radiologists, b) Clinical reports,

and c) Research dataset.

3.1.1. Medical teaching file
A radiology teaching files system is a collection of important

cases for teaching and clinical follow-up, and references to

understand the variety of diseases. Teaching files share a similar

overall structure, but significant variations exist even within

the same data sources. Teaching files can include information

such as patient history, findings, diagnosis, differential diagnosis,

discussion, comments, references, and images related to clinical

reports. We integrate MIRC RSNA,7 and MyPacs (Group, 2017)

teaching cases data sources.

3.1.2. Clinical reports
From our survey of different research institute datasets,

we learned that most of the clinical report types of data in the

healthcare domain are images (e.g., CT, X-ray, MRI). Those images

could be stored in JPEG, DICOM, or PNG formats. Text data

associated with those images are patient data such as patient age,

date of birth, gender, diagnosis, findings, the status of the case

(abnormal/normal). Note that not all records have text reports

associated with image data, but images without text reports always

have metadata associated with them. We use these metadata

to categorize images and to help design the data integration

7 http://mirc.rsna.org/query

approaches. For this step, we integrate data from NIH clinical

reports NIH (see text footnote 2) and EURORAD (Neutorgasse,

2017) clinical reports.

3.1.3. Research datasets
These datasets are used by biomedical researchers to predict

different diseases and help improve the diagnostic process. For

this, we use data from the NIH chest x-ray NIH8 dataset. This is

a dataset compiled by NIH that provides images from more than

30,000 patients and over 100,000 anonymized chest x-ray images

and associated data.

3.1.4. Medical ontologies
Medical ontologies provide definitions, synonyms, and

conceptual relation information for medical terms. Our

algorithm uses two medical ontologies, RadLex RSNA9 and

SNOMED CT (SNOMED, 2017). We used medical ontologies

to develop coding standards for different medical terms,

develop abbreviation dictionary, and to find synonyms

for medical terms. Coding standard document included

all relevant definitions (e.g., medical term synonyms) and

pertinent information about the diseases (for evaluators with no

medical training).

3.2. System architecture

In this section we discuss system architecture that we

designed to cluster sub-categories and merge them for data

integration.

As shown in Figure 2, our data categorization work starts

by collecting cleaned heterogeneous data sources (based on data

cleaning algorithm byDeshpande et al., 2020a). These data cleaning

algorithms are used to replace the missing category contents and

removal of errors and inconsistent values from different data

sources. We choose to replace missing category in a report using

another category based on a similarity threshold. To measure the

similarity between two categories, we used the Gestalt pattern

matching similarity metric Wikipedia.10 We also apply stemming,

lemmatization (removing inflectional endings—e.g., “studies” and

“studying” are converted to “study”) using python NLTK library

(https://www.nltk.org/), language identification, garbage characters

removal, and removal of stop-words. Stop-words are the most

common words used in a language, removed in natural language

processing because term frequency of these words would be higher

than other important words in corpus (e.g., “the”, “but”, “and”).

Using medical ontologies (RadLex and SNOMED CT), we created

our own list of stop-words that we did not remove from our

data. For example, “with” or “no” are stop-words. However, in

the medical domain these terms are significant and may belong

8 https://www.nih.gov/news-events/news-releases/

9 http://www.radlex.org/

10 https://en.wikipedia.org/wiki/Gestalt_Pattern_Matching
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FIGURE 2

Data categorization and integration system flow (SC, super-category cluster).

to an ontology entry or modify other medical terms. We have

identified 24 custom stop-words that we keep in our dataset such

as most, between, no, below, or with. After cleaning of the data,

we generate term frequency-inverse document frequency (tf-idf)

matrix for all terms in the corpus and use this toward forming

clusters of these clinical data. For example, for MIRC findings

super-category we had total number of cases 2,319 (rows) and

total terms were 5,500 (columns). We used hierarchical clustering

algorithm with Ward’s linkage distance (Murtagh and Legendre,

2014), which minimizes the total within-cluster variance. We use

Euclidean distance to measure similarity between documents and

Ward’s linkage distance to measure similarity between clusters

of reports.

We categorize data based on the semantics of the data

elements. We identify terms from our data sources that provide

semantic information of the data elements. We select different sub-

categories and apply hierarchical clustering with different criteria

to select the appropriate number of clusters (see Section 3.3).

We used ward-linkage distance (Murtagh and Legendre, 2014)

to compare these clinical cases from our datasets. This distance

is used to minimize the total within-cluster variance. In the

next step, we find the semantic similarity between super-category

sub-clusters. We leverage human feedback to set a threshold

of similarity between different super-category sub-clusters and

to evaluate data categorization outcomes. We merge the sub-

categories with semantic similarity and then we created a

new attribute name for our integrated schema based on the

contents of the merged sub-categories. We iteratively perform

data categorization for any newly added data sources and expand

the schema model, as necessary. Our algorithm is designed in

a way that, to add any new super-category, we can take a

sample subset of merged categories and our repeat steps of

data categorization.

3.3. Categorization of medical data
elements

To categorize the data, we look for semantic similarity between

data source sub-categories. We seek to find the semantics from

subgroups, which we formed by dividing super-category into

clusters. Number of subgroups equal to number of clusters for

respective super-category.

We used hierarchical clustering to form groups of cases for

each super-category. We performed clustering on all sub-categories

(e.g., history, findings, diagnosis) of medical datasets (e.g., MIRC,

EURORAD). We chose hierarchical clustering because it works

well with structures and substructures (nested partitions), which

we expect in our clinical datasets. Also, we can find arbitrary shape

clusters using hierarchical clustering.

We use biomedical data sources with specific focus on medical

reports where the data is represented in terms of patient diagnosis,

findings, differential diagnosis, history etc. These data come with

special properties with many related relations between concepts so

when trying to discover themes or categories, partitioning the data

is not an ideal solution. Clustering is the process of finding natural

groups within a data set such that patterns within a group are more

similar to each other than patterns belonging to different groups.

Clustering is a difficult problem with complex mathematical

modeling. There are two major types of approaches, fast, non-

deterministic partitioning techniques, and slower finer-grained

hierarchical techniques in addition to more specialized methods

(e.g., density based and grid-based clustering (Amini et al., 2011).

These approaches differ considerably in terms of efficiency, cost,

solution quality, etc. Each approach has its strengths, weaknesses,

and limitations. Clustering has been used in a wide range of

scientific and engineering applications. In practice, the “best”

method is the one that produces the most interpretable results as
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there is no universal optimum way to select the number of clusters

(Rosenberger and Chehdi, 2000). Due to the interrelated nature

of our data, we do not expect distinct convex shape clusters but

related structures and sub-structures, hence we use hierarchical

clustering to discover categories in our biomedical data. We used

Euclidean distance after experimenting with different measures like

Manhattan and Cosine distances. Our experiments were focused on

looking at top frequent terms from theses clusters (with different

distance measures) and counting the number of terms which were

correlated to each other. We used a multi-annotator consensus of

two evaluators to assess the quality of the clusters and determine

that Euclidean distance retrieves more meaningful clusters. For

example, the top frequent terms from clusters for one meta-

category would be anomaly, congenital abnormality, atresia, defect

with the Euclidean distance; multifocal, adrenal cortical carcinoma,

extra-adrenal, eaten, umbilical artery with the Cosine distance; and

shunt catheter, parinaud, concomitant, abutment, nonproductive

with the Manhattan distance.

We used Hierarchical Agglomerative Clustering (HAC) to

group objects in clusters based on their similarity. HAC does

not need to know the value of k in advance, partitioning data

involves multiple steps that assigns number data points to number

of clusters and then merge that most similar clusters based on

the similarity (distance between each of the clusters), until we get

a single cluster. Therefore, to refine the number of clusters we

used HAC with intermediate steps, which worked well for our

datasets. We considered values of k (number of clusters) between

2 and 150 and used classification and regression tree (CART)

(Crawford, 1989) classifier to determine the best initial number

of clusters where the classes were the k clusters, the splitting

criterion was entropy, and minimum number of samples per

node was varied to avoid overfitting. We selected the minimum

value of k for which there was a significant decrease in the

performance of the classifier when the number of clusters was

increased to k+1. This process resulted in grouping each repository

into 45 clusters—we then further clustered these 45 clusters into

fewer clusters (making it easier to interpret) using HAC with

Ward’s linkage distance (Murtagh and Legendre, 2014), which

minimizes the total within-cluster variance. Our intermediate

steps include the following. First, to select the initial number of

clusters, we use a scree plot to graph classification membership

accuracy of relevant cases. Cluster analysis accuracy is verified

using scree plot accuracy. The scree plot shows that our cluster

membership classification accuracy is above 90%. Clusters with

data membership classification accuracy greater than 90% are used

as the initial number of clusters. We use the minimum square

root measure to refine these clusters. In this approach, our criteria

is to chose the number of clusters where the minimum number

of terms per cluster is greater than
√
N, where N is the number

of unique terms for that super-category. Using the minimum

square root approach, we get two different values of “k.” For

example, the “Indication” super-category from the NIH clinical

dataset, 1,404 unique terms and as per this criteria minimum

unique terms per cluster should be 37. For the “Indication” super-

category our clusters fulfill minimum square root approach at the

minimum square root approach at k = 2, however from 2 to 12

clusters, all clusters are larger than
√
N. For this criterion, we

chose the maximum number of clusters to perform a detailed

analysis of each super-category. To confirm the number of clusters,

we also find the distance within-clusters using a dendrogram.

Furthermore, we use dendrogram (as shown in Figure 3) to

visualize the hierarchical clustering results and a distance plot

to visualize Ward-linkage distance within clusters (as shown in

Figure 4). We compare the clusters and use these distances to

find the optimal number of clusters with distance plot of Ward-

linkage. We analyzed the dendrogram and observed that we can

choose k = 3 (where a knee in the plot is present); however, we

also noted that there is a small distance difference from k = 6 to

k = 15. Short vertical distances indicate close similarity between

clusters. We could choose the maximum, k = 15 or using the

minimum square root guideline, k = 12. Based on agreement

between these two methods, we decided final number of clusters

(in this case k = 12) for an individual super-category (results are

discussed in Section 4). In cases where there is no agreement

between these methods, we can choose the maximum number

of clusters.

3.4. Super-category merge combination
analysis

The categorization of super-category into clusters provides the

semantics (using terms and their appearance in clinical cases)

behind different data elements. Next, wemerge semantically similar

sub-categories to design the schema for medical data sources. We

calculate the similarity among clusters of different sub-categories

and choose a confidence level (a threshold based on experimental

evaluation) to match sub-categories from different data sources.

We used the Hausdorff distance (Wikipedia, 2020) to measure the

distance between super-category clusters. As shown in Equation

(1), we calculate distance between clusters from 2 sub-categories (A

and B). dH is the maximum distance between two non-empty sets

of A and B. In this equation sup represents the supremum (least

upper bound) and inf the infimum (greatest lower bound).

dH(A,B) = max

{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}

(1)

We compute the distances between sub-categories by

calculating the distance from each cluster of one super-category

to all other clusters from other super-category. We partition the

distance range into 0–10, 11–20, 21–30, 31–40, and 41-above

buckets—we have this range of distance based on our analysis that

shows that data lies within maximum distance of 50 (no data above

distance 50). Our evaluation shows that smaller distance measure

corresponds to higher similarity between clusters from sub-

categories. Clusters with distances that fall within the first range

of 0–10 are semantically similar to each other (results discussed

in Section 4). Super-category sub-clusters with distances that fall

in the second range of 11–20 often provide semantically similar

elements, but some of the cases are not similar. It is unlikely that

all clusters from sub-categories will have distances range between 0

and 10. So, to decide threshold to merge sub-categories along with

manual evaluation we used heuristic measurement, in which we

picked 10 sample sub-categories to check howmany sub-categories

fall in the range of 0–10 distance. Our analysis shows that we
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FIGURE 3

Example of dendrogram for NIH clinical reports indication super-category.

can merge sub-categories in which a minimum of 80% distances

within clusters should lie between the 0–10 range. We also find

that the distance directly within sub-categories (without clustering

sub-categories) and our analysis shows that we lose important

information (semantics) if we directly measure distances within

full sub-categories (results discussed in Section 4). We calculate

similarity between each cluster of one super-category with each

cluster from other super-category (many-to-many—as shown

in Figure 2) and set a threshold to match sub-categories. If the

sub-categories clusters similarity (Hausdorff distance) is above the

chosen threshold then we merge that super-category combination

into a new attribute. All pairs of super-category combinations

with similarity score exceeding a given threshold are returned as

matches and define the database schema. Images are categorized

based on meta-data or text associated with those images. In some

of the data sources, there is meta-data associated with images and

no text reports (e.g., NIH chest-x-ray image datasets with diagnosis

information). We consider this information as a super-category

to merge these cases with other sub-categories, using the same

algorithm as for regular sub-categories.

3.5. Evaluation of super-category merge
combination

In this section, we discuss our evaluation criteria for

super-category clustering results and merging of super-category

combinations. For evaluation purposes, we used the coding

standards that we designed using medical ontologies [RadLex

RSNA11 and SNOMED CT (SNOMED, 2017)] that explain

ontology terms synonyms and definitions. Our evaluation was

focused on observing contents of sub-categories and look for

11 http://www.radlex.org/

FIGURE 4

Example of distance plot using ward-linkage.

overlap of most commonly used ontology terms and appearance

in different sub-categories. For example, left, right position of body

part, imaging sign, and margin (angular or irregular margin) are all

ontology terms that represent observation of a particular clinical

case. So, if the term appears as the super-category then these

contents belong to observation category.

3.5.1. Analysis of top-frequent terms
We evaluated top frequent terms from different super-

category combinations, where merge analysis matches our distance

threshold approach (sub-categories at are merged based on

Hausdorff distance). We look for frequent terms and interpret

relevance of terms using our coding standards and then we evaluate

merge super-category combinations. If we find frequent terms

(minimum 2) relevant to super-category and their appearance is
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logical with ontology entities or title of the sub-categories then we

consider that is a correct combination.

3.5.2. Evaluate sample number of cases
We manually evaluated 20 (randomly chosen) cases from the

merged sub-categories, which are merged based on our algorithm.

Our evaluation is binary (YES/NO), based on relevance of the

cases as it relates to the title of merged combinations. We find

relevance using our coding standards and documentation that

provides details about clinical terms, systems, and corresponding

definitions. From these cases, we look for the contents and ontology

terms that provide information about that case. While manually

evaluating these cases we also look at the overlap of top most

frequent terms. Evaluators use this document to find the relevancy

between frequent terms and clinical case contents. We evaluated

total 10 super-category combinations with 20 sample cases for each

combination. Our analysis shows that our relevance score for these

results was more than 80%. When we looked at the false positive

cases, we observed that we have cases where contents of different

sub-categories have some overlap of terms from different sub-

categories, which is not surprising as this is the nature of clinical

data. For example, case with diagnosis of renal failure also discuss

history of diabetic in the discussion. In this example, terms related

to history super-category also appears in discussion super-category.

3.5.3. Distances within full sub-categories
To evaluate our clustering approach, we also compute distances

directly between 10 sample sub-categories before we classify them

into clusters. Our analysis shows that direct distance within super-

category is not as effective for finding semantics behind clinical

cases, as these results shows many of the dissimilar cases; more

than 60% of Hausdorff distances within sub-categories are above

30, which ultimately not useful to merge similar sub-categories.

Our evaluation analysis and results are discussed Section 4.

4. Results

4.1. Clustering with semantics of data
elements

As our datasets are not labeled, we rely on unsupervised

machine learning techniques to categorize data elements. We

used HAC with Ward’s linkage distance (Murtagh and Legendre,

2014) which minimizes the total within-cluster variance, in order

to cluster sub-categories. We used a scree plot to visualize

membership classification accuracy of cases, which is used for

categorization of data elements of different number of sub-clusters

for sub-categories. From the scree plot in Figure 5. We can observe

that for all clusters we get high classification accuracy with respect

to the number of clusters (approximately 96% of clinical cases are

correctly classified into their chosen clusters at this point). Further,

and because it is the minimum value of k (which is 100) for which

there is a decrease in the performance of the CART classifiers

for NIH clinical cases. We also used scree plot to evaluate the

FIGURE 5

Cluster membership accuracy scree plot.

classification accuracy for 10 different sub-categories (chosen based

on super-category captions that do not share similar captions (not

having same captions) and observed that we get a minimum 90%

accuracy with 100 clusters or more.

So, we decided to choose value of k with classification accuracy

greater than 90%. Looking at scree plot of accuracy is not enough

because analyzing at least 100 clusters that are above the 90%

accuracy threshold will require a lot of human labor. Further, we

also wanted to capture context of the data elements. Therefore,

as discussed in methodology Section 3.3, we use an additional

technique that choose the clusters using the minimum square root

approach. This helped us determine the number of clusters based

on minimum unique terms per cluster. As shown in Figure 6, we

performed analysis which evaluates clusters based on the number

of terms present in individual clusters, and identified the value

of k where clusters will have fewer than
√
N terms, when we

stop further clustering. Figure 6 shows an example of clustering

for NIH clinical reports indication category. The category has

1,404 unique terms (
√
1, 404 threshold is 37). After k = 13 we

get clusters with values with fewer than 37 terms in each cluster.

Therefore, we stop at 12th clusters. However, one can still consider

between 2 and 12 clusters for this example based on the minimum

square root approach. Further, we used dendrogram to visualize the

hierarchical clustering results (as shown in Figure 3) and a distance

(ward’s linkage) graph (as shown in Figure 4) in order to validate

our minimum square root approach. We find the distances within

clusters and use these distance to find number of clusters with

distance plot of ward-linkage. We observe from the ward-linkage

graph that we can choose clusters at k = 3; however, we can also see

that there is a small differences within distances of k = 6 to k = 15.

Clusters with less distances are the clusters that representing similar

objects (based on our manual evaluation), so we decided to choose

clusters within the range of k = 6 to k = 15. As we wanted to do in

depth analysis of clusters and based on our minimum square root

approach we choose maximum i.e. k = 12 number of clusters. This

way we find number of clusters to extract semantic information

from individual super-category.
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FIGURE 6

Example of term frequency analysis to decide number of clusters.

FIGURE 7

Example of Hausdor� distance between sub-categories clusters.

4.2. Hausdor� distance for sub-categories
similarity analysis

Once we categorize data elements from super-category into

clusters, our next goal is to detect similarity between pairs of

sub-categories; when two sub-categories are similar, we aim to

merge these categories into one. As discussed in Section 3, we

used the Hausdorff distance to calculate similarity between two

sub-categories. We illustrate this process by discussing an example

of finding distance between MIRC history and NIH clinical reports

indication super-category. For MIRC history category, we have 7

clusters and in NIH clinical reports indication category we have

12 clusters (using our clustering technique that we discussed

in Section 3). We calculated distance from each cluster for an

individual category to another category (many-to-many). As

shown in Figure 7, we obtained 84 distances within these 2 sub-

categories with 90% of the distances within 0–10 range—which

is within our threshold (as discussed in Section 3.4) and can lead

us to merge these categories. We performed this analysis on all

super-category combinations. To determine merge criteria for

sub-categories we performed a further analysis of finding the

distance distribution across all super-category combinations in

order to identify the threshold to determine which sub-categories

can be merged. As shown in Figure 8, we calculated frequency

distribution of Hausdorff distance within all clusters from different

super-category combinations. We partition our distances into
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FIGURE 8

Super-category combination threshold analysis.

ranges of 0–10, 11–20, 21–30, 31–40, and 41-above. We illustrate

our analysis using 10 sample super-category combinations. These

categories were chosen based on super-category captions—we

focused on names that are not obviously similar at a glance

(e.g., MIRC history and NIH indication): #1: MIRCdiagnosis

_NIHindication, #2: MIRCdiagnosis _MyPacsdiagnosis,

#3: MIRCdiagnosis _NIHimpression, #4: MIRChistory

_NIHindication, #5: MIRCdiagnosis _EURORADobservation,

#6: MIRChistory _EURORADobservation, #7:

MIRCfindings _EURORADobservation, #: MIRCdiagnois

_EURORADpatient, #9: MIRCfindings _EURORADpatient,

#10: MIRChistory_EURORADpatient. From this analysis we

can observe that for #2, #3, #4, #7, and #10 super-category

combinations, 80% of clusters distances range within 0-10, so we

can merge these sub-categories. We also calculated sub-categories

direct Hausdorff distance (as shown in Figure 8 with a green

line) and, using our heuristic measurement (discussed in Section

3.4), observed that those distances are above 0–10 range and

do not provide us with semantically similar data elements. We

observed that #7 and #10 super-category combination with direct

distances are below 20. Our evaluation shows that those cases

(with range of 11–20), do not provide similar cases and further

if we observe, our approach provides us 5 merge combinations

(out of 10) and direct distance approach provides us 2 merge

super-category combination, which ultimately leads us to use

super-category clustering approach. We evaluated our super-

category combination analysis (as discussed in Section 3.4)

and we observed that we can merge sub-categories in which

minimum 80% distances within clusters lie between 0 and 10

range.

We have a total of 82 sub-categories and after applying our

data categorization and merge technique we were able to merge 72

sub-categories (88%), which resulted in 29 final categories.

As shown in Figure 9 our super-category merge analysis shows

that out of 5 datasets, MIRC and MyPacs sub-categories are 100%

merged (all sub-categories are merged). EURORAD have total 24

sub-categories and 5 of them did not merge: Area of interest,

Imaging technique, Imaging Procedure, Image Origin, and DOI

(Digital Object Identifier). From NIH clinical reports 4 out of

22 did not merge: Author affiliation, Case comparison, license

type, and license URL and from NIH chest x-ray with 9 sub-

categories 1 did not match i.e., Diseases. We were not able to

merge 100% sub-categories because we do not have datasets that

provide cases with semantically similar data elements and that

did not cross our threshold that we use to find distance within

different sub-categories. Our next step is to a design a database

schema.

4.3. Database schema attribute name

After merging semantically similar data elements, our next

goal is to design a database schema. In order to assign attribute

names to the database schema for the newly merged categories

we used the following steps: 1) If more than one super-category

has the same name, then use that name as an attribute name.

2) If there is no agreement then: a) Find the top frequent

terms (to augment that decision) for individual super-category.

b) Find the top frequent terms for merged sub-categories data.

c) Compare coverage (overlap of frequent terms) of top frequent

terms from merged combination with all individual super-category

frequent terms. d) Choose the attribute name from a super-

category with maximum coverage of frequent terms. e) If two

sub-categories have same coverage of frequent terms then look

at the ontology entity name (if present) to choose attribute

name with top 5 frequent terms from super-category. If no
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FIGURE 9

Super-category merge analysis.

ontology entity name matches with super-category name then

randomly choose any of the name within these sub-categories.

For example, MIRC Findings, EURORAD Observation, MyPacs

Clinicalfindings, NIHCR MedlineCitationFindings (NIH clinical

reports dataset), NIHX-ray FindingLabels (NIHX-ray dataset) have

semantic similarity above our threshold (80%), so we merged these

sub-categories. In order to decide attribute name for these merged

data, we apply above steps and find top frequent terms and their

overlap with merged data. In this example we get MIRC with

highest coverage of merged category frequent terms, which makes

merged attribute name Findings.

5. Evaluation analysis

5.1. Merge data category analysis

To evaluate merge data category analysis results we

used 10 sub-categories—as discussed in Section 4.2 (e.g.,

MIRCdiagnosis-NIHimpression, MIRChistory-NIHindication,

MIRCdiagnosis-EURORADobservation). Here we discuss MIRC

findings and EURORAD observation sample combinations of

sub-categories, because these two sub-categories are examples of

having completely different titles—which are representative of

our other super-category experiments. As we could assume some

obvious merges such as MIRC diagnosis and MyPacs diagnosis

sub-categories, we used other combinations such as MIRC finding,

EURORAD observation for validation of our results. While

evaluating these results, we wanted to see the overlap between

terms from merged-categories. We find the top 25 frequent terms

from MIRC findings and EURORAD observation categories and

checked if there was any overlap within top frequent terms. Within

these top frequent terms we observed that 16 out of 25 termsmatch,

which is around 65% overlap. We performed the same experiment

with other nine super-category combinations and concluded that

we can set 50% as a threshold for overlap in term in order to

validate merge super-category combinations. We do not ignore

super-category combinations below threshold, we keep those

sub-categories as a separate while designing a database schema.

As discussed in Section 4.2 we calculated Hausdorff distance

between pairs of sub-categories (without clustering) for 10 sample

sub-categories and observed that some direct super-category

distances were in the range of 20–30, which is not in the range of

our semantic similarity threshold (0–10), and therefore does not

meet our criteria to merge sub-categories. This demonstrates that

our clustering approach is better than calculating direct distances

within sub-categories for the purposes of merging.

We also performed a third validation by manually evaluating

20 cases from each super-category. We observed that cases from

these sub-categories have more than 60% coverage of “findings”

entity ontology terms, which shows that these cases discuss findings

behind particular case. As a last validation step we calculated

coverage of top 25 frequent terms in those sample 20 cases from

each dataset super-category and observed that, in MIRC findings

super-category average 20% of terms are top-most frequent terms,

in EURORAD observation super-category average 24% of terms

are top-most frequent terms. Similarly, we calculated coverage of

top frequent terms from other super-category combinations, and

observed that 15% has amarginal overlap of terms with a sample set

of terms from 20 cases. Our evaluation shows that overlap of term

above 15% are relevant sub-categories from merging perspective.

From this analysis we show that our approach to merge

different sub-categories based on context of data elements provides

category combinations which are semantically similar to each other.

Our approach can be used along with existing data standards to

exchange patient’s electronic healthcare data and make it more

accessible across different systems.

6. Discussion

In this proposed work we addressed three important questions:

Finding semantics of data elements from clinical super-categories,

merging super-categories, and labeling of the merged-super-

categories, for data integration purposes.

6.1. Inter-annotator agreement

We evaluated these merged categories from experts in order to

know these merging is useful or not. We used multiple annotators

(two from the clinical domain and two from the computer science

domain with knowledge of medical data). We manually evaluated

20 (randomly chosen) cases from the merged sub-categories, which

are merged based on our algorithm. Our evaluation is binary

(YES/NO), based on relevance of these cases toward the title of

the merged combinations; we find relevance using our coding

standards. Using the medical ontologies RadLex and SNOMEDCT,

we designed our own coding standard, in which we map clinical

terms with their synonyms and definitions. Coding standards (as

discussed in Section 3.5) documentation describe details about

clinical terms, systems, and corresponding definitions which we

designed using medical ontologies (RadLex and SNOMED CT).

From these cases we look for the contents and ontology terms that

provide information about that case. While manually evaluating

these cases, we also look at the top most frequent terms. Evaluators

use this coding standard document to find the relevancy between

frequent terms and clinical case contents. Evaluators provided us
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feedback as to whether the merged combination cases were relevant

or not. Our analysis shows that 88% of the merged combinations

provide relevant results. When we reviewed the remaining 12%

of the combinations, we observed that the Hausdorff distance

within sub-clusters of these super-categories was above 10. Based

on this evaluation, we decided final distance range to merge

super-categories when it is between 0 and 10 (that is based on

irrelevant categories). We then evaluated total 10 sub-category

combinations with 20 sample cases for each combination. These 10

sub-categories were chosen based on their captions—that do not

share similar captions (not having same captions e.g., diagnosis,

history) and observed that we get a minimum 90% classification

accuracy with 100 clusters or more, confirming the choice of

our Hausdorff distance threshold. This methodology will help

researchers understand the content from different super-categories

and use similar analysis to merge extract and merge categories for

different datasets.

We used hierarchical clustering to capture semantics from

clinical cases. We used CART classification (where the clusters

represented the classification classes) to learn the best starting point

for our clustering analysis. The scree plots in Figure 5 show the

classification accuracy for different number of clusters for NIH

clinical reports. We chose 45 clusters as it results in a good accuracy

with respect to the number of clusters (approximately 95% of

teaching files are correctly classified into their chosen clusters at this

point) and because it is the minimum value of k for which there is

a significant decrease in the performance (in terms of time) of the

CART classifiers for data repositories.

Cluster analysis is verified by building a classifier of the

cluster labels and checking for a drop accuracy in Figure 5. For

finding similarities between different clusters, we used Hausdorff

distance, and this analysis was further used for merging of

different sub-categories from these clusters. Our super-category

merge evaluation shows that we can merge sub-categories with

distance between 0-10. While we do not expect 100% merging

due to heterogeneity of data, we were able to merge 88% of data

from five clinical data sources. Some data was not merged as

it did not meet our threshold of similarity. Further, we name

these merged-sub-categories (attributes) for designing a database

schema, based on the knowledge we gained from data analysis

of these attributes. These results show that our algorithm can be

used to categorize and merge clinical sub-categories without any

annotations or human experts’ involvement. These are the different

parameters that affect our data categorizations techniques: We

used the different parameters that affect our data categorizations

techniques; such as, hierarchical clustering algorithm with Ward’s

linkage distance, minimum square root approach to decide the

number of clusters, and Hausdorff distance to compare similarity

between different sub-clusters. We experimented our algorithm

on two more datasets from the healthcare domain, the NIH X-

ray dataset NIH12 and CheXpert dataset,13 however we are also

planning to check our algorithm on other datasets (e.g., claim

dataset, pathology dataset) as a part of future work. The datasets

that we used in this paper took an average of 4 min to form these

12 https://www.nih.gov/news-events/news-releases/

13 https://stanfordmlgroup.github.io/competitions/chexpert/

clusters, however, our clustering time may vary for other types of

datasets or different sizes of datasets. We tuned these parameters by

considering variability between clinical data-sources but these can

be changed based on the properties of the datasets. Our future work

will focus on developing an annotation-based integrated clinical

cases repository from a variety of data sources. We also want

to validate our approach by integrating a few more data sources

(e.g., clinical trial data, claim data, health surveys) and test this

algorithm with researchers who face data categorization problems.

In the future we are planning to use these annotations and different

clustering criteria to refine, compare these clinical cases and merge

toward an integrated repository.

7. Conclusions

Heterogeneous and unstructured properties of biomedical

data make it challenging to categorize and organize into

a unified data repository. Our data categorization technique

categorizes and merges these medical data elements based

on the semantics of clinical cases. Our approach involves

human input to set a threshold for finding similarities between

different categories of medical data sources and further evaluate

results. In this way, we designed database schema and integrate

these merged sub-categories. Our next goal is to develop

a correlation-aware index for this integrated repository to

enhance recall and performance in terms of the time of data

retrieval.
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