
TYPE Original Research

PUBLISHED 15 June 2023

DOI 10.3389/fdata.2023.1195742

OPEN ACCESS

EDITED BY

Bo Han,

Hong Kong Baptist University,

Hong Kong SAR, China

REVIEWED BY

Quanming Yao,

Tsinghua University, China

Jiangchao Yao,

Shanghai Jiao Tong University, China

Zhanke Zhou,

Hong Kong Baptist University,

Hong Kong SAR, China

*CORRESPONDENCE

Xia Hu

xia.hu@rice.edu

RECEIVED 28 March 2023

ACCEPTED 25 April 2023

PUBLISHED 15 June 2023

CITATION

Liu Z, Song Q, Li L, Choi S-H, Chen R and Hu X

(2023) PME: pruning-based multi-size

embedding for recommender systems.

Front. Big Data 6:1195742.

doi: 10.3389/fdata.2023.1195742

COPYRIGHT

© 2023 Liu, Song, Li, Choi, Chen and Hu. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

PME: pruning-based multi-size
embedding for recommender
systems

Zirui Liu1, Qingquan Song2, Li Li3, Soo-Hyun Choi3, Rui Chen3 and

Xia Hu1*

1Computer Science Department, Rice University, Houston, TX, United States, 2Linkedin, Sunnyvale, CA,

United States, 3Samsung Electronics America, Mountain View, CA, United States

Embedding is widely used in recommendation models to learn feature

representations. However, the traditional embedding technique that assigns a fixed

size to all categorical features may be suboptimal due to the following reasons.

In recommendation domain, the majority of categorical features’ embeddings

can be trained with less capacity without impacting model performance, thereby

storing embeddings with equal length may incur unnecessary memory usage.

Existing work that tries to allocate customized sizes for each feature usually either

simply scales the embedding size with feature’s popularity or formulates this size

allocation problem as an architecture selection problem. Unfortunately, most of

these methods either have large performance drop or incur significant extra time

cost for searching proper embedding sizes. In this article, instead of formulating

the size allocation problem as an architecture selection problem, we approach

the problem from a pruning perspective and propose Pruning-based Multi-size

Embedding (PME) framework. During the search phase, we prune the dimensions

that have the least impact on model performance in the embedding to reduce its

capacity. Then, we show that the customized size of each token can be obtained

by transferring the capacity of its pruned embedding with significant less search

cost. Experimental results validate that PME can e�ciently find proper sizes and

hence achieve strong performance while significantly reducing the number of

parameters in the embedding layer.

KEYWORDS

neural network, recommender system, embedding compression, pruning, scalability

1. Introduction

Embedding feature information into vector representations is crucial for the success of

deep learning based recommendation models (Zhang et al., 2019). In practice, the input

features to recommender systems are often categorical, such as userID, itemID, and the

category of items. For deep learning based recommendation models, these categorical

features are mapped to low-dimensional learnable vectors (i.e., embeddings). Then, the

learned vectors are fed into the rest of the model to learn the interaction between features.

The number of layers in the rest of the recommendation model is typically small (usually

less than 10) and independent of the number of categorical features (Cheng et al., 2016; Guo

et al., 2017; Lian et al., 2018). In contrast, the dimension of the embedding matrix grows

linearly with the number of categorical features, which can easily be at the scale of millions

(Park et al., 2018). As a result, the weight matrix of the embedding layer is often responsible

for the major memory consumption of a deep learning based recommendation models.

For example, the embedding layer of Facebook recommender system contains billions of

parameters. Consequently, the embedding layer occupies more than 99.9% memory of the

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1195742
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1195742&domain=pdf&date_stamp=2023-06-15
mailto:xia.hu@rice.edu
https://doi.org/10.3389/fdata.2023.1195742
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1195742/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

whole model, which can consume hundreds of gigabytes or

even terabytes (Park et al., 2018; Ginart et al., 2021). Without

compressing the embedding layers, the excessive memory usage

of recommendation models is a major obstacle for serving them

on-device, where the memory is limited.

Traditional embedding compression methods usually put

efforts on compacting the embedding matrix (Markovsky and

Usevich, 2012; Wang et al., 2017): Low-rank based methods assume

the weight matrix has reduced rank that can be decomposed into

several smaller matrices (Markovsky and Usevich, 2012). Hashing

based methods reduce the number of embedding vectors in the

matrix by mapping similar items into a same bucket (Wang et al.,

2017). All these methods follow the framework of the standard

embedding technique that learns embeddings with equal length for

each token.1 However, recent advances demonstrate that assigning

a fixed embedding size to all tokens may be suboptimal due to the

following reasons (Joglekar et al., 2020; Zhao et al., 2020a,b; Ginart

et al., 2021). In the recommendation domain, usually a few head

tokens dominate the data, while the majority of tokens (i.e., long-

tail tokens) are rarely observed (Park and Tuzhilin, 2008). Since

the token’s popularity and the importance of its representation to

model performance is correlated (Joglekar et al., 2020; Zhao et al.,

2020a; Ginart et al., 2021). Thus, when using a fixed embedding

size, it may either lose the information of head tokens or waste

parameters on long-tail tokens (Kang et al., 2020; Zhao et al.,

2020b).We usually choose a large enough embedding size to ensure

model performance, which incurs unnecessary memory usage for

storing long-tail token’s embedding.

To overcome the mentioned drawback of embedding with

equal length, several recent work proposes to allocate more capacity

(i.e., larger embedding size) to important tokens, and less capacity

to unimportant ones (Joglekar et al., 2020; Kang et al., 2020; Zhao

et al., 2020a,b; Ginart et al., 2021). These work can be roughly

divided into two categories. Some work proposes to explicitly scale

token’s embedding size with its frequency according to heuristic

rules designed by human experts (Kang et al., 2020; Ginart et al.,

2021). However, such allocation strategy may be suboptimal since

the importance of a token is not purely decided by its popularity.

Inspired by neural architecture search (NAS), another line of

research formulates the embedding size allocation problem as an

architecture selection problem, which selects the embedding size

for each token from several predefined options (Joglekar et al., 2020;

Zhao et al., 2020a,b). Due to the extremely large search space, the

search process incurs a significant computational cost. Although

the number of parameters in the embedding layer is significantly

reduced, these methods still either have large performance drop or

introduce significant extra time cost for searching embedding sizes.

In this article, we approach the embedding size allocation

problem from a pruning perspective. Our work is motivated by

the observation that the majority of token’s embeddings can be

trained with less capacity without impacting model performance

(Joglekar et al., 2020). Therefore, during the search phase, instead

of selecting from a set of candidate embedding sizes, we prune

the dimensions that have the least impact on model performance

1 For convenience, we use the term “tokens” to represent elements (e.g.,

users and items) in the vocabulary.

in token’s embeddings to reduce its capacity. Then, we build a

multi-size embedding table for training without sacrificing model

performance, where the customized size of each token is obtained

by transferring the capacity of its pruned embedding. Moreover,

we show that the unimportant parameters in the embedding

layer can be identified and pruned at initialization, and this

significantly reduces the time cost of searching the customized sizes.

Consequently, our framework can reduce the memory occupied

by the embedding layer during both the training and inference

phases without sacrificing model performance. Our contributions

are summarized as follows:

• We rigorously show that the embedding size allocation

problem can be converted to a pruning problem. Based

on this reformulation, we propose a pruning-based multi-

size embedding (PMB) framework to search the customized

embedding size for each token.

• In our framework, during the search process, the embedding

layer is pruned without training it. Thus, the time cost of the

search process is significantly reduced. Once pruned, we build

the multi-size embedding table for training by transferring the

capacity of token’s pruned embedding. Our framework can

reduce the memory occupied by the embedding layer during

both the training and inference phases.

• We show that our framework can match or improve

the performance of several recommendation models using

significantly less parameters. e.g., for Autoint+ (Song et al.,

2019), we show that PME could significantly improve the

Logloss and AUC while using 40× fewer parameters for click-

through rate prediction task on the Criteo dataset.

2. Preliminary and problem statement

2.1. Notations

We denote matrices with uppercase bold letters (e.g., V),

vectors with lowercase bold letters (e.g., v), and scalars with

lowercase alphabets (e.g., v). We use Vi,: to represent the ith row

of V, and Vi,j to denote the entry at the ith row and jth column

of V. We denote the standard L0 norm as || · ||0. The operation

V = concat(V1,V2) represents row-wisely concatenating matrix

V1 and V2 into a new matrix V. We use N = {0, 1, 2, 3 · · · } to

denote the set of all non-negative natural numbers. We use ⊙ to

denote the Hadamard product.

2.2. Preliminary

Recommender systems involve a massive amount of categorical

feature fields, such as userIDs, itemIDs, and the category of items.

Let x = [x1; x2; · · · ; xM] be an input instance with M feature

fields, where xi is the one-hot vector corresponding to the ith field.

Suppose the vocabulary size of the ith field is ni, i.e., there are ni
unique tokens (i.e., categorical features) in the ith field. For each

token xi, it is mapped into a low-dimensional vector vi ∈ R
d by

vi = Vixi, where Vi ∈ R
ni×d is the embedding matrix of the ith

field and d is the embedding size. For convenience of notations, let

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

FIGURE 1

The multi-size embedding framework in our article. For element-wise operations to work (e.g., dot-product in factorization machines), the retrieved

embeddings are padded to equal length with zeros following by a field-specific projection.

V = concat(V1, · · · ,VM) be the embeddingmatrix consisting of all

tokens’ embeddings. Consider a deep learning based recommender

system φ parameterized by V and 2, where 2 denotes all other

model’s parameters excluding those inV. We denote the prediction

corresponding to x as ŷ = φ(x|V,2). We aimed to minimize the

loss L(V,2;D) = E(x,y)∼Dℓ(φ(x|V,2), y) over a dataset D =

{(x, y)}, where ℓ is the loss function such as Logloss.

2.3. Multi-size embedding

The multi-size embedding framework allows each token in the

vocabulary to have embeddings of different sizes (Joglekar et al.,

2020; Ginart et al., 2021). By allocating an appropriate size for

each token, the multi-size embedding framework can significantly

reduce the total number of parameters in the embedding layer

while maintaining the quality of learned representations (Joglekar

et al., 2020). Although the multi-size embedding has the mentioned

advantages over the standard single-size embedding, applying it

requires solving the following problem: Suppose there are n tokens

in the vocabulary. If the total number of parameters in the multi-

size embedding table is limited to nomore than a predefined budget

k, how to search for the optimal size di of token i under the

budget constraint, such that the loss could be minimized as much

as possible with the learned di-dimensional embedding vector

v̂i? We formally define this embedding size allocation problem

in Problem 1.

Problem 1 (Embedding size allocation problem). Given a

maximum embedding size d and a predefined parameter budget

k, let the v̂i be a di-dimensional embedding representing token

i. For element-wise operations between embeddings to work,

embeddings of different sizes are padded to equal length d with

zeros following by a projection. Namely, the v̂i ∈ R
di will be

padded with ei trailing zeros such that di + ei = d, leading to a

padded vector v̂′i ∈ R
d. We define d = [d1, · · · , dn]. Let V̂ ∈ R

n×d

be the single-size embedding matrix consisting of all projected

d-dimensional embeddings, i.e., V̂i,: = Piv̂
′
i, where Pi ∈ R

d×d is

a learnable projection matrix associated with token i. The goal of

embedding size allocation problem aimed to solve the following

optimization problem:

min
d

L(V̂∗(d),2∗(d);D), (1)

s.t. V̂∗(d),2∗(d) = argmin
V̂,2

L(V̂(d),2(d);D), (2)

n
∑

i=1

di ≤ k, (3)

∀i ∈ {1, · · · , n}, di ∈ N, di ≤ d. (4)

Figure 1 illustrates our multi-size embedding framework. The

backbone recommendation models in Figure 1 refer to the rest

of the model excluding the embedding layer. Although the

projected embeddings have the same number of parameters as

the uncompressed ones, we will only retrieve and project the

embeddings for tokens in the current mini-batch data. As the

mini-batch size restricts the number of retrieved embeddings, the

memory usage from these additional parameters is negligible when

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

considering the significant reduction in parameter numbers of the

multi-size embedding table.

Following the studies by Zhao et al. (2020a) and Ginart et al.

(2021), in our article, the projection matrix P in Problem 1 is

shared between tokens in a same field to learn field-level structures.

We note that such approach also has a nice algebraic explanation:

the degree of freedom of the token i’s representation is limited by

di since

Pv̂′i =






−p1−

· · ·

−pd−






d×d

[

v1; · · · ; vdi ; 0; · · · ; 0︸ ︷︷ ︸

ei

]

d×1
=

di∑

j=1

vjpj. (5)

In each field, for the token allocated with larger di, the

expressive ability of its embedding is stronger since it is represented

using more basis from the row space of P. Thus, the multi-

size embedding framework illustrated in Problem 1 can control

the capacity of each token’s representation by allocating different

embedding sizes.

Solving Problem 1 poses a significant computational hurdle

due to the following two reasons. First, in the recommendation

domain, the vocabulary size can easily reach the million level

(Covington et al., 2016). Second, since the size of embedding could

only be integers, the combinatorial nature of this problem leads to

an intractable optimization for a large search space. Finding the

optimal embedding sizes for millions of tokens from a discrete

search space requires a large amount of computational resources.

In the next section, we show that this combinatorial

optimization problem can be converted to a pruning problem,

which can be approximately solved with significantly less cost.

3. Methodology

Figure 2 illustrates the overview of our proposed framework.

We first search the customized embedding size for each token in a

separate search process before training. The key intuition of our

proposed method is the optimal capacity of a token that can be

obtained by pruning unimportant dimensions in its embedding. In

particular, given a standard single-size embedding layer, we prune

the dimensions that have the least impact on model performance

in token’s embeddings to reduce its capacity. Then, the customized

size of each token can be obtained by transferring the capacity of

its pruned embedding (Section 3.1). We then derive our proposed

pruning-based multi-size embedding framework, which prunes the

embedding layer at initialization (Section 3.2). In this way, the time

cost of the search process is significantly reduced.

In practice, a multi-size table is implemented as multiple two-

dimensional embedding matrices, each with different sizes. Since

the searched size could be any integer smaller than the maximal

size d, we need to initialize at most d two-dimensional matrices,

which incurs extra time cost to the retrieval process. To reduce the

extra time cost of retrieving from multi-size table, we optimize the

retrieval process based on group-wise operations (Section 3.3).

3.1. Size allocation as a pruning problem

The success of multi-size embedding framework suggests the

embeddings of long-tail tokens can be trained with less capacity

without impacting model performance (Joglekar et al., 2020; Ginart

et al., 2021). This implies that there exists redundant parameters

in the single-size embedding. It is intuitive to start pruning from

the parameters that have the least impact on model performance,

which is equivalent to reducing the embedding size. For example,

as shown in Figure 3, the second value in embedding v1 is pruned

out and set as zero, leading to a d1 = d − 1 embedding size in

effect. The actual size of the pruned embedding equals the number

of remaining parameters.

Informally, by setting token i’s allocated size di to the number

of remaining parameters, the capacity of its pruned embedding will

be transferred to v̂i in Problem 1. We formalize this statement

by showing under mild assumptions, the optimal solution of

Problem 1 can be constructed using the pruned embeddings 2.

We first give the definition of redundant parameter identification

problem.

Problem 2 (Redundant parameters identification problem). Given

an overparameterized embedding matrixV ∈ R
n×d, the redundant

parameter identification problem aims to solve the following

constrained optimization problem:

min
V,2,C

L(V⊙ C,2;D), (6)

s.t. C ∈ {0, 1}n×d, ||C||0 ≤ k, (7)

where C is an auxiliary variable representing binary “gates” that

denotes whether a parameter in V is present. k is the parameter

budget referring to the number of non-zero entries in V, i.e., the

amount of gates being “on”. The redundant parameters can be

identified by the zeros (the gates being “off”) in C.

Proposition 1 (Proof in Appendix 1). If the projection matrix in

Problem 1 is shared between tokens in each field, the optimal

solution of Problem 1 can be constructed from one solution

to Problem 2.

The solution d to Problem 1 can be obtained by setting the

size of each token to the number of remaining parameters in

its pruned embedding. We note that such constructed d satisfies

all constraints in Problem 1. First, according to Equation (7),

since there are totally at most k remaining parameters in the

pruned embedding matrix, the constructed d meets the budget

constraint in Equation (3). Second, the constructed d naturally

meets the maximal size constraint in Equation (4) since the

number of remaining parameters in the pruned embedding are no

more than d.

As shown in Figure 3, by Proposition 1 and the above analysis,

we build the multi-size embedding table for training, where the

customized size of each token equals the capacity of its pruned

embedding. In the next subsection, we show that Problem 2 can

be approximated solved with significant fewer costs.

3.2. Prune embeddings without training
them

Most of the existing methods in the pruning literature attempt

to identify redundant parameters from a pretrained reference

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

FIGURE 2

Overview of PME framework.

FIGURE 3

An example to illustrate the pruning-based multi-size embedding.

After pruning, we build the multi-size embedding table for training,

where the size of each token is set to the number of remaining

parameters in its pruned embedding. We note that some tokens

may be entirely cuto� from the vocabulary (such as v3, in this

example), and they are mapped to unlearnable zero vectors.

network either based on a saliency criterion (Han et al., 2016;

Kusupati et al., 2020) or utilizing sparsity enforcing penalties

(Carreira-Perpinán and Idelbayev, 2018). Unfortunately, all these

pruning methods require many expensive pretrain-prune-retrain

cycles and introduce additional hyperparameters. Recent work has

explored the possibility of pruning neural networks at initialization

(Lee et al., 2019; Wang et al., 2020). Namely, given a desired

parameter budget, redundant parameters are pruned once before

training, and then the pruned network is trained in the standard

way. Equipped with the technique, there is no need for network

pretraining and complex pruning schedules. Inspired by single-

shot network pruning (SNIP) (Lee et al., 2019), we directly

prune unimportant parameters in the embedding according to

the connection sensitivity, which can be obtained by utilizing a

full-batch of training data. Consequently, the pruning process is

disentangled from the above iterative cycle.

The key idea of connection sensitivity proposed in SNIP is to

preserve the parameters that have the maximum impact on the loss

if perturbed. Specifically, the effect of removing parameter Vi,j on

the loss can be measured as follows:

1Li,j(V,2;D) = L(1⊙ V,2;D)− L((1− eij)⊙ V,2;D), (8)

where eij ∈ R
n×d is an indicator matrix of element Vi,j (i.e., zeros

everywhere except at the ith row and jth column where it is one),

and 1 ∈ R
n×d is an all-ones matrix. Equation (8) measures the

influence of parameter Vi,j on the loss in the discrete setting since

C is binary. Computing 1Li,j for each i, j is prohibitively expensive

since it requires an individual forward pass over the dataset for each

parameter Vi,j. However, by relaxing the binary constraint of C,

1Li,j can be approximated by the derivative of Lwith respect toCi,j,

which is named as connection sensitivity. Specifically, the connection

sensitivity G(V,2;D) in SNIP can be computed as follows:

1Li,j(V,2;D) ≈ Gi,j(V,2;D) =
∂L(C⊙ V,2;D)

∂Ci,j
|C=1 (9)

=
∂L(V,2;D)

∂V
⊙ V. (10)

Parameters that least impact the performance if removed can

be identified according to connection sensitivity. We list the full

algorithm in Algorithm 1. There is only one hyperparaemter in

Algorithm 1, namely, the parameter budget k, which controls the

total number of parameters in the multi-size table. Specifically, we

first initialize a standard single-size embedding layer, then calculate

the connection sensitivityG(V,2;D). OnceG(V,2;D) is obtained,

the parameters corresponding to the top-k values of |G(V,2;D)|

are kept. Finally, the allocated size of each token is set to the number

of kept dimensions in its pruned embedding.

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

Input: Loss L, training dataset D, a recommer

system φ parameterized by the single-size

embedding matrix V ∈ R
n×d and other

parameters 2.

Parameters : parameter budget k.

Output: The embedding size for each token in the

vocabulary {(i, di)}
n
i=1.

1 G← initialize a n× d zero-matrix; C←

initialize a n× d zero matrix.

2 for each mini-batchDb = {(xi, yi)}
b
i=1 ∼ D do

3 G = G+ G(V,2;Db) ; ⊲ Calculate connection

sensitivity in Equation (10)

4 end

5 Build C by setting all indices in the top-k of

|G| to 1.

6 for i = 1, · · · , n do

7 di =
∑d

j=1 Ci,j

8 end

9 return {(i, di)}
n
i=1

Algorithm 1. Pruning-base embedding size search.

3.3. Multi-size table lookup optimization

Most of the deep learning frameworks do not support

embedding table with multiple sizes. In practice, a multi-size table

is implemented as multiple two-dimensional matrices, each with

different sizes.When retrieving embeddings from amulti-size table,

it requires to identify which matrix contains the token’s embedding

according to its size.

The time cost for identifying the matrix containing the token’s

embedding grows linearly with the number of candidate matrices.

In Algorithm 1, the searched size of each token can be arbitrary

integer between 0 and d, which means we need to initialize at

most d two-dimensional matrices. Thus, the retrieval process will

be significantly slowed down when d is large, which contradicts

with the goal of being efficient.

Similar to the previous studies, (Joglekar et al., 2020; Zhao et al.,

2020a,b), we define a candidate size set C = {d̂1, d̂2, · · · , d̂T}, where

0 ≤ d̂1 < d̂2 < · · · < d̂T = d are T predefined embedding

sizes. The searched size given by Algorithm 1 will be rounded to

its nearest neighbor in C. If d̂1 = 0, for these tokens which have

been entirely cutoff from the vocabulary (e.g., v3 in the example

of Figure 3), they will be mapped to a padding index. The padding

index will then be retrieved as an unlearnable zero vector. Formally,

as shown in Figure 2, to retrieve embeddings for a batch of tokens

in different fields, we first split them into T groups based on their

rounded embedding size. Then, we retrieve the embeddings for

each group and pad them to equal length with zeros. Finally, we

re-arrange these padded embeddings to recover the original order

of input tokens, and apply field-specific projection on them. We

note that the above padding and retrieving process can be efficiently

executed in parallel. As the number of groups T is typically small,

we found that this group-wise implementation delivers minimal

overhead compared with standard single-size embedding.

3.4. Discussion and limitation

3.4.1. Discussion
we recap and discuss the difference between our formulation of

the embedding size allocation problem and that in a previous study.

There are two main difference between them.

First, in most of the previous studies, the size allocation

problem is formulated as an architecture selection problem

(Joglekar et al., 2020; Zhao et al., 2020a,b). Consequently, following

the paradigm of NAS, the validation set is used for selecting the

size, i.e., the objective in Equation (1) is Lval(V̂
∗(d),2∗(d);Dval).

In contrast, we formulate this size allocation problem as a pruning

problem, which tries to identify parameters that least impact the

training loss if removed. Only with such formulation, we can

search embedding sizes without training the model, and hence

significantly improve the search efficiency. Moreover, the memory

usage of embedding layers can be reduced during both the training

and inference phases. A detailed discussion about the difference

between the formulation based on NAS and the formulation based

on pruning is provided in Appendix 2 (Supplementary material).

Second, most of the previous work constructs several projection

matrices for each field. In each field, tokens with same allocated

sizes share a common projection matrix. In contrast, we propose

to construct only one projection matrix for each field since tokens

in a same field have field-level latent structure (Zhao et al., 2020a;

Ginart et al., 2021). Specifically, embeddings with different sizes are

padded to equal length with zeros, enabling the feasible adoption

of the field-specific projections. This approach has nice algebraic

explanation (see Equation 5). We note that our approach also

enables embeddings of equal length but belonging to different fields

to be retrieved simultaneously, which is inflexible in most of the

previous studies. A detailed analysis is provided in Appendix 2

(Supplementary material).

3.4.2. Limitation
The main limitation of PME is that, during the embedding size

search phase, the memory usage of embedding layers cannot be

reduced. However, we note that most of the search based multi-

size embedding frameworks also have this problem (Joglekar et al.,

2020; Zhao et al., 2020a,b; Liu et al., 2021). It is necessary to

initialize embeddings with maximal size to evaluate whether the

maximal available size in the search space is suitable for a specific

token. In this article, we mainly focused on reducing the memory

usage of models during the training and inference phases, and their

storage requirements.

4. Experiment

We verify the effectiveness of our proposed framework through

answering the following research questions:

• RQ1. How is PME compared with other embedding

compression methods in terms of model performance at

different compression rates?

• RQ2. What is the additional time cost for searching the

embedding size and for training the model, respectively?

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

FIGURE 4

Test Logloss of recommendation models at approximately 10×, 20×, and 40× compression rate on Criteo dataset. (A) The backbone model is

DeepFM. (B) The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

FIGURE 5

Test Logloss of recommendation models at approximately 10×, 20×, and 40× compression rate on Avazu dataset. (A) The backbone model is

DeepFM. (B) The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

FIGURE 6

Test AUC of recommendation models at approximately 10×, 20×, and 40× compression rate Criteo dataset. (A) The backbone model is DeepFM. (B)

The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

• RQ3. How sensitive are the searched embedding

sizes to the backbone models and to the initialized

weights, respectively?

4.1. Experimental settings

We first introduce the baseline methods for comparison. Then,

we introduce the applied datasets and the hyperparameter settings.

4.1.1. Baselines
We compare our proposed method with the following five

representative embedding compression methods: (1) SE (single-

size embedding): a standard single-size embedding method that

assigns a fixed embedding size to all tokens in the vocabulary.

(2) MDE (mixed dimension embedding) (Ginart et al., 2021):

a multi-size embedding method that scales token’s embedding

sizes with its frequency according to heuristic rules designed

by human experts. (3) QREMB (quotient-remainder embedding)

(Shi et al., 2020): a hashing-based method to reduce the total

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

FIGURE 7

Test AUC of recommendation models at approximately 10×, 20×, and 40× compression rate on Avazu dataset. (A) The backbone model is DeepFM.

(B) The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

vocabulary size by storing multiple smaller embedding tables

based on a standard remainder-hashing function. (4) LRF (low-

rank factorization) (Koren et al., 2009): a low-rank based method

that factorizes the embedding matrix V ∈ R
n×d as QR, where

Q ∈ R
n×r ,R ∈ R

r×d, and r is the rank, which satisfies

r < d. (5) DartsEMB (Zhao et al., 2020b): a NAS-based mutli-

size embedding method that relaxes the discrete embedding size

allocation problem to a continuous one that can be solved by

gradient descent (Liu et al., 2019). This method is chosen to display

the performance of NAS-based mutli-size embedding methods.2

Different embedding compression methods are deployed to three

representative state-of-the-art recommendation models: DeepFM

(Guo et al., 2017), Autoint+ (Song et al., 2019) and Wide and Deep

(Cheng et al., 2016), to compare their performance. More details

about the hyperparameters of these three recommendation models

are elaborated in Appendix 3.2 (Supplementary material). Logloss

and AUC score are selected as the core metrics for evaluating

recommendation model performance.

4.1.2. Data preprocessing
We adopt two public benchmark datasets in this article, i.e.,

Criteo3 and Avazu.4 The basic statistics of these two datasets are

summarized in Supplementary Table A1 (Supplementary material).

Both the datasets are processed based on the method and codes

provided in the study by Song et al. (2019). Following the studies

by Guo et al. (2017) and Song et al. (2019), for each dataset, we

divide the data into the training (80%), validation (10%), and test

sets (10%).

4.1.3. Hyperparameter settings
Since there is a trade-off between recommendation model

performance and the number of parameters in the embedding

table, to fairly compare the effectiveness of different embedding

compression methods, we adjust their hyperparameters to ensure

2 We do not compare with NIS (Joglekar et al., 2020), since the

reinforcement learning based search process is extremely slow in the

normal setting.

3 https://www.kaggle.com/c/criteo-display-ad-challenge

4 https://www.kaggle.com/c/avazu-ctr-prediction

the number of their trainable parameters are comparable. For PME,

the size of the full SE embedding table to be pruned is set to 32. As

illustrated in Section 3, PME has two hyperparameters, namely, the

parameter budget k and the candidate embedding size set C. The

candidate size set C is set to {0, 2, 8, 16, 32} across all experiments,

i.e., each searched size given by Algorithm 1 will be rounded to its

nearest neighbor in C. Suppose before pruning, the total number of

parameters in the single-size embedding table is K. The parameter

budget k is set to 2%×K, 5%×K, and 10%×K. Due to the page limit,

detailed hyperparameter settings for all other baselines are specified

in Appendix 3.3 (Supplementary material). The compression rate

cr can be calculated as follows:

cr =
of parameters in the full SE embedding table

of parameters in the compressed embedding table.

We implement our method using Pytorch (Paszke et al., 2019).

Every single experiment is run on a single NVIDIA GeForce RTX

1080 Ti GPU with several models parallelly trained on it. To reduce

the variance, all of the reported numbers are averaged over four

random trials.

4.2. Performance vs. parameter number

To answer RQ1, we evaluate model performance with

embedding compressionmethods at different compression rates. In

addition, we also experimentally analyze the relationship between

token’s assigned sizes and its frequency to understand how PME

allocates embedding sizes for each token.

4.2.1. Criteo and Avazu results
Figures 4, 5 depict the Logloss of three recommendation

models with embedding compression methods on Criteo and

Avazu dataset, respectively. We observe that PME generally

outperforms other baselines at different compression rates.

Furthermore, we remark that PME can outperform SE even when

SE uses maximal sizes on Criteo dataset. For example, PME

improve the Logloss by 0.001 level while eliminating 97.4% and

95.7% parameters in the embedding layer for Autoint+ and Wide

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

FIGURE 8

Distribution of token’s allocated embedding size across all fields on

Criteo Dataset. The backbone model is DeepFM. PME generally

assigns larger embedding sizes to frequent tokens and smaller sizes

to infrequent tokens.

and Deep on Criteo dataset, respectively. It is worth pointing out

that an improvement of approximately 0.001 in terms of Logloss

or AUC is already regarded as practically significant on these CTR

prediction tasks (Cheng et al., 2016). The AUC results are shown

in Figures 6, 7, which are similar to the Logloss, due to the page

limit. We note that DartsEMB cannot assign zero dimension to

tokens due to its NAS-based formulation. Moreover, DartsEMB

cannot directly control the compression rate. Consequently, the

only way to control the DartsEMB’s compression rate is to decrease

the maximal available size in its search space. However, decreasing

maximal available size will limit the capacity of important tokens’

representation. Thus, with DartsEMB, it is hard to achieve good

performance at a high compression rate beyond 10×. In contrast,

PME can directly exclude unimportant tokens from the vocabulary

by assigning zero dimensions to them. Since the majority of

tokens in the vocabulary are unimportant, PME can maintain the

model performance even at an extremely high compression ratio,

such as 40×. Moreover, we emphasize that the memory usage of

recommendation models with PME is reduced during both the

standard training and inference process.

4.2.2. Relationship between frequency and
allocated sizes

Recent work hypothesizes that frequent tokens are more

important for model performance, and hence deserve to have more

capacity while few parameters are enough for infrequent tokens

(Joglekar et al., 2020; Kang et al., 2020; Ginart et al., 2021). Based

on the hyperthesis, several studies explicitly scale the embedding

size with token’s frequency (Kang et al., 2020; Ginart et al., 2021).

In contrast to them, PME learns embedding sizes by transferring

the capacity of tokens’ pruned embeddings without using the

frequency information.

TABLE 1 Search time (second) of PME and DartsEMB on criteo dataset

with di�erent backbone models.

Search time DeepFM Autoint+ Wide and deep

DartsEMB 801 2,404 745

PME 228 (−71.5%) 1,034 (−60.0%) 219 (−70.6%)

To study whether the embedding sizes assigned by PME are

relevant to the frequency, we visualize the distribution of token’s

embedding size against its frequency on Criteo dataset in Figure 8,

where the backbone model is DeepFM with a 40× compressed

embedding layer. Two main observations are summarized as

follows: (1) PME generally assigns larger sizes to frequent tokens,

and vice versa. (2) Several infrequent tokens, whose frequency is

less than 103, are assigned with large capacity, and some frequent

tokens are assigned with a smaller capacity. These two observations

are partially aligned with the hyperthesis that frequent tokens

are more important for model performance, and hence deserve

to have more capacity. More importantly, our observations also

suggest that the token’s capacity should not be purely decided by

its popularity. For example, niche items, such as cult films in movie

recommendation, are rarely observed compared with popular

ones in the collected data, however, the quality of these niche

items’ representations is crucial for personalized recommendations,

and hence deserve to have more capacity. However, simply

scaling embedding sizes with token’s frequency may sacrifice the

quality of these niche item’s representation. In contrast, PME

allocates sizes which can maintain model performance with the

full embedding as much as possible, and hence may allocate more

capacity for tokens whose representation plays a decisive role for

recommendation performance.

4.3. E�ciency analysis

As shown in Figure 2, the entire pipeline has two phases,

namely, the size search phase and the training phase. To answer

RQ2, we present and analyze the time cost of these two

phases, respectively.

For the search phase, we report the search time of PME

and DartsEMB in Table 1. We note that all other baselines do

not have a separate search process. The search cost of PME is

approximately 30% ∼ 40% of DartsEMB. This is mainly because

the embedding table in PME is not trained during the search. In

contrast, DartsEMB follows the paradigm of neural architecture

search, leading to solve the bi-level optimization problem during

the search.

For the training phase, Figure 9 displays the training time

per epoch of three models with different embedding compression

methods. We can observe that PME generally reduce the 10% ∼

20% training time compared with SE, and is comparable or faster

than other baselines. This speedupmay be due to models with PME

have significantly less trainable parameters, i.e., many tokens are

mapped to unlearnable zero vectors during training (see Figure 8).

We remark that PME could retrieve tokens’ embeddings from

different fields simultaneously, which cannot be done in DartsEMB

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

(see Appendix 2 in Supplementary material). To summarize, PME

can not only reduce the memory occupied by the embedding layer

during both the training and inference process, but also can speed

up the training process.

4.4. Sensitivity analysis

In this subsection, we study the sensitivity of searched sizes

proposed by PME on backbone models and initialized weights

using the Criteo dataset (RQ3).

4.4.1. Initialization sensitivity analysis
The Lottery Ticket Hypothesis (LTH) demonstrates randomly

initialized networks contain subnetworks (winning tickets) that,

when trained in isolation, can reach the accuracy comparable to

the original network (Frankle and Carbin, 2019). LTH suggests the

connections of winning tickets have those specific initial weights

thatmake training particularly effective (Frankle and Carbin, 2019).

However, in PME, the allocated size of each token is obtained by

transferring only the capacity of its pruned embedding. Moreover,

the randomly initialized weights used for identifying redundant

parameters are not trained during the search process. According

to LTH, the allocated sizes may overfit the particular initialized

weights used during the search process. To investigate whether

searched sizes are customized for the initialized weights used

during the search process, following the method given in the

study by Zhao et al. (2020a), we calculate the averaged Pearson

correlation of searched sizes with five different random seeds. Here,

the searched sizes refers to the output of Algorithm 1, instead

of rounded sizes for a fine-grained comparison. The results are

presented in Figure 10. We note that a Pearson correlation beyond

0.8 is already regarded as strongly correlated (Buda and Jarynowski,

2010; Zhao et al., 2020a).

As shown in Figure 10, PME is generally robust to different

initializations in terms of Pearson correlation. Moreover, as the

parameters are being pruned, the Pearson correlation converges to

one. This suggests that under highly limited resource constraints,

the allocation strategy of PME is initialization-agnostic.

4.4.2. Architecture sensitivity analysis
For PME, the embedding sizes are calculated based on the

gradients of the randomly initialized weights. Thus, backbone

models may largely influence the searched embedding sizes since

the gradient flow is decided by the architecture of backbone model.

To investigate whether the searched embedding sizes are sensitive

to the backbone models, similar to the initialization sensitivity

analysis experiments, Figure 11 presents the Pearson correlation of

searched embedding sizes with two representative models, namely,

DeepFM and Autoint+.

Similarly, as shown in Figure 11, PME is generally robust to

backbone models in terms of Pearson correlation. Moreover, as the

parameters are being pruned, the Pearson correlation converges to

one. This suggests that under highly limited resource constraints,

the searched embedding sizes proposed by PME is model-agnostic.

We note that both DeepFM and Autoint+ with PME can achieve

comparable or better performance at high compression rates

on Criteo dataset (see Figure 4), we hypothesize that although

backbone models are different, PME identifies a same group of the

most important tokens and allocate more parameters to them.

5. Related work

Many embedding compression embedding methods have been

proposed to reduce the memory consumption of the embedding

layer. We roughly categorize existing embedding compression

methods into four classes as follows.

5.1. Multi-size embedding

Multi-size embedding allows each token in the vocabulary

to have embeddings of different sizes. Specifically, mixed

dimension embedding (MDE) proposes to adaptively allocate

sizes for tokens according to their frequency (Ginart et al.,

2021). Neural Input Search (NIS) tries to search the embedding

size using Reinforcement Learning (Joglekar et al., 2020).

Inspired by the differentiable architecture search (DARTS) (Liu

et al., 2019), AutoEmb makes the embedding sizes selection

process differentiable by incorporating the DARTS method (Zhao

et al., 2020b). Similarly, AutoDim proposes to search field-wise

embedding sizes by relaxing the discrete embedding size allocation

problem to a continuous one that can be solved by gradient descent

(Zhao et al., 2020a).

Plug-in Embedding Pruning (PEP) (Liu et al., 2021) also adopts

the pruning-based formulation to learn embedding sizes, which is

the most related study to ours with two main differences. First,

PEP uses the sparse matrix format to store the pruned embedding

layer and retrains the model with the sparse embedding matrix. In

contrast, PME builds a multi-size embedding table for training by

transferring the capacity of the token’s pruned embeddings. Second,

PEP utilizes Soft Threshold Reparameterization (Kusupati et al.,

2020) to prune redundant parameters, which requires expensive

pretrain-prune-retrain cycles. In contrast, PME disentangles the

pruning process from the iterative cycle by pruning redundant

parameters at initialization. We do not compare with PEP due to

the following two reasons. First, to the best of our knowledge, the

official implementation of embedding layers in Pytorch does not

support the sparse matrix format. The official codes of PEP have

not released yet. Second, the baseline performance reported in Liu

et al. (2021) has a large gap with ours.

5.2. Low-rank approximation

Low-rank approximation assumes there is a low-rank latent

structure in the embedding matrix, and decomposes the original

matrix to several smaller matrices (Markovsky and Usevich, 2012).

TT-Rec uses tensor train decomposition instead of the standard

low-rank decomposition to optimize for GPU computations (Yin

et al., 2021).

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

FIGURE 9

Training time per epoch of recommendation models with di�erent embedding compression methods on Criteo dataset. (A) The backbone model is

DeepFM. (B) The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

FIGURE 10

Averaged Pearson correlation between searched sizes with di�erent

random seeds. As parameters are being pruned, the Pearson

correlation converges to one.

5.3. Hashing

Hashing is a widely used technique to reduce the store

space by mapping similar tokens into the same bucket, and

vice versa (Wang et al., 2017). Recently, efforts have also been

devoted to jointly learn feature representations and hashing

functions to preserve the similarity, and hence minimize the

performance gap after compression (Lin et al., 2015; Cao et al.,

2017; Wang et al., 2017). Another representative work is ROBE

(Desai et al., 2022). Specifically, Desai et al. (2022) maintain

a single array for learned parameters which is a compressed

representation of embedding table. All embedding tables share the

same array of learned parameters. The embeddings are accessed in

a blocked manner from the embedding array using GPU-friendly

universal hashing.

5.4. Quantization

Quantization refers to representing weights or gradients

with a small numbers of bits, e.g., eight bits. In this way, we can

FIGURE 11

Averaged Pearson correlation between searched sizes with DeepFM

and Autoint+. Here, we use the searched sizes instead of rounded

sizes. As parameters are being pruned, the Pearson correlation

converges to one.

effectively shrink the model size and accelerate the inference

procedures (Han et al., 2016). Specifically, differentiable product

quantization (DPQ) proposes a differentiable quantization

framework that enables end-to-end training for embedding

compression and achieves significant compression rates on

NLP models (Chen et al., 2020). Inspired by DPQ, multi-

granular quantized embeddings (MGQEs) generalize the

framework of DPQ to the recommendation domain by

incorporating the frequency information of tokens (Kang

et al., 2020).

6. Conclusion

In this study, we approach the embedding size allocation

problem from a pruning perspective. During the search phase,

we prune the dimensions that have the least impact on model

performance in the embedding to reduce its capacity. Then,

we show that the customized size of each token can be

obtained by transferring the capacity of its pruned embedding.

Experiments verify that PME can achieve strong performance

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

while significantly reducing the parameter number and can be

trained efficiently.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

ZL, QS, and XH contributed to the whole framework. XH, QS,

LL, S-HC, and RC contributed to the revision of the manuscript.

All authors contributed to the manuscript and approved the

submitted version.

Funding

This work was funded by NSF IIS-2224843 and IIS-1849085.

Conflict of interest

QS was employed by LinkedIn. RC, LL, and S-HC were

employed by Samsung Electronics America.

The remaining authors declare that the study was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Author disclaimer

The views and conclusions contained in this paper are those

of the authors and should not be interpreted as representing any

funding agencies.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.

1195742/full#supplementary-material

References

Buda, A., and Jarynowski, A. (2010). Life Time of Correlations and its Applications.
Andrzej Buda Wydawnictwo NiezaléLL’ne.

Cao, Z., Long, M., Wang, J., and Yu, P. S. (2017). “Hashnet: Deep learning to hash
by continuation,” in IEEE International Conference on Computer Vision, ICCV 2017
(Venice: IEEE Computer Society), 5609–5618. doi: 10.1109/ICCV.2017.598

Carreira-Perpinán, M. A., and Idelbayev, Y. (2018). ““Learning-compression”
algorithms for neural net pruning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 8532–8541.

Chen, T., Li, L., and Sun, Y. (2020). “Differentiable product quantization for end-
to-end embedding compression,” in Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, Virtual Event (PMLR), vol. 119 of Proceedings of
Machine Learning Research (Vienna), 1617–1626.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., et al.
(2016). “Wide & deep learning for recommender systems,” in Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems, 7–10.

Covington, P., Adams, J., and Sargin, E. (2016). “Deep neural networks for youtube
recommendations,” in Proceedings of the 10th ACM Conference on Recommender
Systems, eds S. Sen, W. Geyer, J. Freyne, and P. Castells (Boston, MA: ACM), 191–198.
doi: 10.1145/2959100.2959190

Desai, A., Chou, L., and Shrivastava, A. (2022). “Random offset block embedding
(ROBE) for compressed embedding tables in deep learning recommendation systems,”
in Proceedings of Machine Learning and Systems 2022, MLSys 2022, eds D. Marculescu,
Y. Chi, and C. Wu (Santa Clara, CA: mlsys.org).

Frankle, J., and Carbin, M. (2019). “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in 7th International Conference on Learning
Representations, ICLR 2019 (New Orleans, LA: OpenReview.net).

Ginart, A. A., Naumov, M., Mudigere, D., Yang, J., and Zou, J. (2021).
“Mixed dimension embeddings with application to memory-efficient recommendation
systems,” in IEEE International Symposium on Information Theory, ISIT 2021
(Melbourne, VIC: IEEE), 2786–2791. doi: 10.1109/ISIT45174.2021.9517710

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. (2017). “Deepfm: A factorization-
machine based neural network for CTR prediction,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, ed C. Sierra (Melbourne, VIC: ijcai.org), 1725–1731. doi: 10.24963/ijcai.
2017/239

Han, S., Mao, H., and Dally, W. J. (2016). “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding,” in 4th
International Conference on Learning Representations, ICLR 2016, eds Y. Bengio and Y.
LeCun (San Juan).

Joglekar, M. R., Li, C., Chen, M., Xu, T., Wang, X., Adams, J. K., et al. (2020).
“Neural input search for large scale recommendation models,” in KDD ’20: The 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
eds R. Gupta, Y. Liu, J. Tang, and B. A. Prakash (New York, NY: ACM), 2387–2397.
doi: 10.1145/3394486.3403288

Kang, W., Cheng, D. Z., Chen, T., Yi, X., Lin, D., Hong, L., et al. (2020).
“Learning multi-granular quantized embeddings for large-vocab categorical features
in recommender systems,” in Companion of The 2020 Web Conference 2020, eds A.
E. F. Seghrouchni, G. Sukthankar, T. Liu, and M. van Steen (Taipei: ACM / IW3C2),
562–566. doi: 10.1145/3366424.3383416

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer 42, 30–37. doi: 10.1109/MC.2009.263

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M., Jain, P., Kakade, S. M.,
et al. (2020). “Soft threshold weight reparameterization for learnable sparsity,” in
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
Virtual Event (PMLR), vol. 119 of Proceedings of Machine Learning Research, 5544–
5555.

Lee, N., Ajanthan, T., and Torr, P. H. S. (2019). “Snip: single-shot network
pruning based on connection sensitivity,” in 7th International Conference on Learning
Representations, ICLR 2019 (New Orleans, LA: OpenReview.net).

Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., and Sun, G. (2018). “xdeepfm:
Combining explicit and implicit feature interactions for recommender systems,” in
Proceedings of the 24th ACMSIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD 2018, eds Y. Guo and F. Farooq (London: ACM), 1754–1763.
doi: 10.1145/3219819.3220023

Lin, K., Yang, H., Hsiao, J., and Chen, C. (2015). “Deep learning of binary hash
codes for fast image retrieval,” in 2015 IEEE Conference on Computer Vision and Pattern
RecognitionWorkshops, CVPRWorkshops 2015 (Boston,MA: IEEE Computer Society),
27–35. doi: 10.1109/534CVPRW.2015.7301269

Liu, H., Simonyan, K., and Yang, Y. (2019). “DARTS: differentiable architecture
search,” in 7th International Conference on Learning Representations, ICLR 2019 (New
Orleans, LA: OpenReview.net).

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/articles/10.3389/fdata.2023.1195742/full#supplementary-material
https://doi.org/10.1109/ICCV.2017.598
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1109/ISIT45174.2021.9517710
https://doi.org/10.24963/ijcai.2017/239
https://doi.org/10.1145/3394486.3403288
https://doi.org/10.1145/3366424.3383416
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.1109/534CVPRW.2015.7301269
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742

Liu, S., Gao, C., Chen, Y., Jin, D., and Li, Y. (2021). “Learnable embedding sizes for
recommender systems,” in 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event (OpenReview.net).

Markovsky, I. (2012). “Low rank approximation - algorithms, implementation,
applications,” in Communications and Control Engineering (London: Springer).
doi: 10.1007/978-1-4471-2227-2

Park, J., Naumov, M., Basu, P., Deng, S., Kalaiah, A., Khudia, D. S., et al. (2018).
Deep learning inference in facebook data centers: Characterization, performance
optimizations and hardware implications. arXiv [Preprint]. arXiv: 1811.09886.

Park, Y., and Tuzhilin, A. (2008). “The long tail of recommender systems and how
to leverage it,” in Proceedings of the 2008 ACM Conference on Recommender Systems,
RecSys 2008, eds P. Pu, D. G. Bridge, B. Mobasher, and F. Ricci (Lausanne: ACM),
11–18. doi: 10.1145/1454008.1454012

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.
(2019). “Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, eds H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché–Buc, E. B. Fox, and R. Garnett (Vancouver, BC), 8024–8035.

Shi, H. M., Mudigere, D., Naumov, M., and Yang, J. (2020). “Compositional
embeddings using complementary partitions for memory-efficient recommendation
systems,” in KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, eds R. Gupta, Y. Liu, J. Tang, and B. A. Prakash (ACM),
165–175. doi: 10.1145/3394486.3403059

Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., et al. (2019).
“Autoint: Automatic feature interaction learning via self-attentive neural networks,”
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM 2019, eds W. Zhu, D. Tao, X. Cheng, P. Cui, E.
A. Rundensteiner, D. Carmel, Q. He, and J. X. Yu (Beijing: ACM), 1161–1170.
doi: 10.1145/3357384.3357925

Wang, C., Zhang, G., and Grosse, R. B. (2020). “Picking winning tickets before
training by preserving gradient flow,” in 8th International Conference on Learning
Representations, ICLR 2020 (Addis Ababa: OpenReview.net).

Wang, J., Zhang, T., Sebe, N., and Shen, H. T. (2017). A survey on learning to Hash.
IEEE Trans. Pattern Anal. Mach. Intell. 40, 769–790. doi: 10.1109/TPAMI.2017.2699960

Yin, C., Acun, B., Wu, C., and Liu, X. (2021). “Tt-rec: Tensor train compression
for deep learning recommendation models,” in Proceedings of Machine Learning and
Systems 2021, MLSys 2021, virtual, eds A. Smola, A. Dimakis, and I. Stoica (mlsys.org).

Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019). Deep learning based
recommender system: a survey and new perspectives. ACM Comput. Surv. 52, 1–38.
doi: 10.1145/3158369

Zhao, X., Liu, H., Liu, H., Tang, J., Guo, W., Shi, J., et al. (2020a). Memory-efficient
embedding for recommendations. arXiv [Preprint]. arXiv:2006.14827.

Zhao, X., Wang, C., Chen, M., Zheng, X., Liu, X., and Tang, J. (2020b). AutoEMB:
automated embedding dimensionality search in streaming recommendations. arXiv
preprint arXiv:2002.11252.

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://doi.org/10.1007/978-1-4471-2227-2
https://doi.org/10.1145/1454008.1454012
https://doi.org/10.1145/3394486.3403059
https://doi.org/10.1145/3357384.3357925
https://doi.org/10.1109/TPAMI.2017.2699960
https://doi.org/10.1145/3158369
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	PME: pruning-based multi-size embedding for recommender systems
	1. Introduction
	2. Preliminary and problem statement
	2.1. Notations
	2.2. Preliminary
	2.3. Multi-size embedding

	3. Methodology
	3.1. Size allocation as a pruning problem
	3.2. Prune embeddings without training them
	3.3. Multi-size table lookup optimization
	3.4. Discussion and limitation
	3.4.1. Discussion
	3.4.2. Limitation

	4. Experiment
	4.1. Experimental settings
	4.1.1. Baselines
	4.1.2. Data preprocessing
	4.1.3. Hyperparameter settings

	4.2. Performance vs. parameter number
	4.2.1. Criteo and Avazu results
	4.2.2. Relationship between frequency and allocated sizes

	4.3. Efficiency analysis
	4.4. Sensitivity analysis
	4.4.1. Initialization sensitivity analysis
	4.4.2. Architecture sensitivity analysis

	5. Related work
	5.1. Multi-size embedding
	5.2. Low-rank approximation
	5.3. Hashing
	5.4. Quantization

	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Author disclaimer
	Supplementary material
	References

