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The COVID-19 emergency underscored the importance of resolving crucial issues

of territorial health monitoring, such as overloaded phone lines, doctors exposed

to infection, chronically ill patients unable to access hospitals, etc. In fact, it

often happened that people would call doctors/hospitals just out of anxiety, not

realizing that they were clogging up communications, thus causing problems

for those who needed them most; such people, often elderly, have often felt

lonely and abandoned by the health care system because of poor telemedicine. In

addition, doctors were unable to follow up on the most serious cases or make

sure that others did not worsen. Thus, uring the first pandemic wave we had

the idea to design a system that could help people alleviate their fears and be

constantly monitored by doctors both in hospitals and at home; consequently,

we developed reCOVeryaID, a telemonitoring application for coronavirus patients.

It is an autonomous application supported by a knowledge base that can react

promptly and inform medical doctors if dangerous trends in the patient’s short-

and long-term vital signs are detected. In this paper, we also validate the

knowledge-base rules in real-world settings by testing them on data from real

patients infected with COVID-19.
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1. Introduction

COVID-19 is an infectious respiratory disease caused by the virus called SARS-CoV-

2, which belongs to the coronavirus family. In the course of the disease, after an initial

phase with a flu-like course, a very severe respiratory syndrome may occur, related to the

development of bilateral interstitial pneumonia. Its symptoms involve difficulty breathing,

dyspnea, breathlessness and increased heart rate. In fact, COVID-19 pneumonia leads to a

decrease in blood oxygen level (saturation) without the patient realizing it, until the urgency

of hospitalization arises. Therefore, it is necessary to monitor individuals who are under

observation for COVID-19 infection at home in order to check the saturation level so

that it does not fall below the established threshold, especially in the absence of previous

diseases affecting the respiratory system. In such situations, by trending the saturation

data, the medical staff will be able to tell whether or not that patient, asymptomatic,

symptomatic, or pre-symptomatic and in home isolation, should be hospitalized, thus

arriving at an early hospitalization before the clinical picture may worsen. The development

of an intelligent telemonitoring system, involving the use of traditional diagnostic devices

such as a thermometer and oximeter, will thus make it possible:
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1. Leave individuals who are not in imminent danger at home,

thus avoiding occupying hospital beds;

2. Monitor individuals at risk with possible respiratory crisis;

3. Monitor the part of the population that has not been tested

for COVID-19 but may be asymptomatic or pre-symptomatic

(such as patients in precautionary quarantine);

4. Measure essential parameters in order to avoid a respiratory

crisis for patients with COVID-19 in non-severe form;

5. Allow General Practitioners to keep the patient under constant

supervision, thus avoiding the risk of possible infections due to

direct and repeated contact over time.

In order to achieve these goals, we designed and developed

reCOVeryaID, an intelligent telemonitoring application for

symptomatic, asymptomatic, and pre-symptomatic coronavirus

patients, which we describe in this paper.

The remainder of the paper is organized as follows. In the next

section, we show the related work in the eHealth context, with

particular focus on monitoring vital signs, and in Section 3 we

give an overview of the reCOVeryaID prototype, also focusing on

the communication protocol between patient and medical doctor.

Then, Section 4 illustrates in detail the knowledge-base rules of the

framework, aimed at promptly detecting short-term (Section 4.1)

and long-term alerts (Section 4.2). Additionally, Section 5 shows

the experimental results, and Section 6 concludes the paper and

outlines future work.

2. Related work

From the pandemic situation we have just experienced, and

what has happened since the pandemic began, it is clear that in

general, telemedicine in Italy and the rest of the world, never really

got started. Among other benefits, apart from the clinical one, it

could have saved a lot ofmoney for several health systems, and from

the very beginning of the pandemic it could have been very useful

in making the monitoring work of primary care physicians on

COVID-19 patients (and of course, not only on them)more reliable

and lighter (Charles, 2000). The potential of telemedicine, on the

other hand, is enormous (Ali and Khoja, 2020; Chauhan et al.,

2020; Hollander and Carr, 2020; Monaghesh and Hajizadeh, 2020).

This is evidenced by the piecemeal trials underway in some places

around the world, as well as the emergence of startups, devices and

useful technologies for remote monitoring, but also the interest of

health insurance companies that now offer teleconsultations and

muchmore refined solutions in their fee-for-service packages; from

wearable devices to virtual triage, from vital signs monitoring to

remote examinations (at least those that are feasible), from which

the various national health systems could also benefit.

The alarm in this regard, or rather the push for the use of

telemedicine systems, has also recently come from the various

Rheumatology Societies, as patients with lupus, rheumatoid

arthritis, vasculitis, and other similar chronic and often

autoimmune diseases need timely diagnosis and especially

appropriate therapeutic management, as well as constant

monitoring (Danhieux et al., 2020; Dimitroulas and Bertsias.,

2020; Mason et al., 2020; Wright et al., 2020; Coupet et al., 2021;

Hacker et al., 2021). In fact, these companies are proposing to

invest heavily in telemedicine, and some of them have already

developed online platforms dedicated to rheumatology patients,

but these only work in certain territories. A similar model should

be structured and implemented everywhere, for all diseases.

Considering that, for example, in Italy, where we had one of the

largest pandemic spikes in the world at the beginning of the first

pandemic wave, even electronic medical records, a relatively simple

tool for coordinating all the services provided to citizens, never took

off, we realize that the road to digitizing public health is still a long

one. Despite the mandatory acceleration of the pandemic, so far

only dematerialized prescriptions have found widespread use, and

this mostly reduces telemedicine to the (often busy) telephone of

General Practitioners.

In some cases, attempts have been made to buffer the lack

of adequate telemedicine systems with the help of AI to make

predictions about disease or diagnosis (Li et al., 2020). The use of

artificial intelligence has been proposed to analyze CT scans of the

chest (Han et al., 2020) and make early diagnosis of COVID-19, as

well as to detect predictive criteria for cytokine storm (Caricchio

et al., 2021) or assess specific laboratory parameters (such as

lymphocyte count or hsCRP) to predict the worsening clinical

condition of the patient. Apart from the difficulty of validating new

valid parameters, the main problem with this work is that patients

have to perform invasive “screening” procedures, such as CT scans

or blood draws involving hospitals and laboratories, thus making

the diagnostic process costly. For this reason, other authors propose

algorithms to predict the risk of death in hospitalized patients (Gao

et al., 2020) and the need for invasive ventilation (Burdick et al.,

2020), acting only when it is too late and the patient already

needs hospitalization.

Considering the above, and consistent with past findings

from various studies on the importance of monitoring saturation

level through the use of an oximeter (Taguchi et al., 1994; Solé

et al., 2009; Scott and McDougall, 2017; Elliott and Baird, 2019;

Takei et al., 2020), there is a clear need to monitor individuals

who are home under observation for COVID-19 infection to

check that the saturation level does not fall below a threshold,

especially in the absence of previous respiratory illness. In such

situations, by trending saturation data, medical staff will be able

to understand whether that patient, asymptomatic, symptomatic

or pre-symptomatic and in home isolation, should be admitted or

not, thus arriving at an early admission before the clinical picture

may worsen.

Consequently, an integrated home care/telemedicine system

involving the use of a saturation device and a thermometer can

address all the problems mentioned: The patient could provide the

data needed for analysis on his or her own, while an algorithm

processes and filters the results, presenting any alerts to the

referring medical doctor in real time. The advantages will be that

the patient will not have to undergo invasive examinations, such

as taking CT scans or blood samples, and that there will be less

hospital attendance in case of mild symptoms that do not require

intensive treatment.

Other recent and relevant telemonitoring systems based on vital

parameter monitoring are listed below. Specifically, Wiffen et al.

(2023) support the refinement of data collection and processing

toward the development of a robust app that is suitable for
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routine clinical use, whereas Ko et al. (2023) conducted in-

person home visits at least once a day, with nursing visits

up to 3 times a day for intravenous therapy; additionally,

patients were discharged from the program when they met

conventional inpatient discharge criteria. Murali (2023) offer a

more effective way to keep track of the patient’s medical system.

They mainly focus on using Machine Learning (ML), Internet

of Things (IoT), and cloud services for patient monitoring.

In addition, their system can be used as a sophisticated IOT-

equipped real-time patient monitoring system to track the

patient’s vital signs, such as body temperature, blood pressure,

heart rate, and oxygen saturation. Then, Totuk et al. (2023)

compared measurements of Value Stream Mapping (VSM) with

pulse oximetry probes, smartphones, and Blood Group Antigens

(BGA). The Integrated Comprehensive Care (ICC) of the oxygen

saturation of arterial blood (SaO2) measurements performed by

the VSM, smartphone, and BGA indicated an excellent agreement

between the devices. Similarly, the ICC value of the Heart Rate

(HR) measurements showed an excellent agreement between the

VSM and smartphone. Furthermore, Smith et al. (2021) claim

that the future success of wearable technologies lies in establishing

clinical confidence in the quality of the data measured and the

accurate interpretation of that data in the context of the individual,

the environment, and the activity performed; in fact, in the near

future wearable physiological monitoring could improve point-

of-care diagnostic accuracy and inform critical command and

medical decisions.

To sum up, another strength of the reCOVeryaID prototype

is that it is flexible and general enough that it can also be

integrated with other systems dealing with different diseases; in

fact, it could be integrated with Italian clinical notes (D’Auria

et al., 2023), telemonitoring systems based on intelligent agents

and complex event processing (Persia et al., 2021; De Lauretis

et al., 2023), and a multi-agent based system for epilepsy

detection and prediction in neuropediatrics (Bertoncelli et al.,

2023).

3. The reCOVeryaID prototype

To meet the above requirements, we have developed an

intelligent telemonitoring application.1 Specifically, we exploited

the following technologies:

• Flutter2: Google’s open source framework for creating cross-

platform (Android, iOS, Web, Linux, Windows, MacOS,

Embedded) applications compiled natively from a single code

base;

• Dart3: open source language supported by Google and

optimized to have fast applications on any kind of platform

(Android, iOS, Web, Linux, Windows, MacOS, Embedded);

1 The application and source code have not yet been released due to some

constraints with the Italian Ministry. However, we sincerely hope to do so

soon.

2 https://flutter.dev

3 https://dart.dev

and the following tools:

• An oximeter to measure oxygen saturation (SpO2), which can

be used by the patient at home;

• A thermometer for measuring body temperature, which can

be used by the patient at home;

• The patient’s smartphone (or PC);

• The doctor’s smartphone (or PC); and

• The free reCOVeryaIDWeb-App.

Specifically, the application provides for the monitoring of

patients by general practitioners or other medical specialists based

on measurements sent by the patient through the application. Each

measurement must contain the body temperature value, the SpO2

value, the heart rate (HR), and the related timestamp. The system,

using rules stored in a specific knowledge base, will assign an alert

level (red, yellow, or green) to each measurement. To design the

rules to be adopted to generate alerts on the measurements taken

by the patient, it was decided to use threshold values of temperature,

SpO2 and HR that have been validated by medical experts in

the field. At this point, once the medical doctor has received the

measurement and its alert level and viewed (easily via the Web-

App) the historical trend of the various measurements, (s)he can

easily respond to the patient with an appropriate feedback message.

This message will be:

• An OK, in case of a green alert;

• A specific request to the patient, in case of a yellow alert;

• A notification of intervention by an ambulance, in case of a

red alert.

In the last case, the application will call an ambulance,

subject to confirmation by the doctor. In addition, the system

will periodically perform more detailed statistical analyses of the

latest N measurements of each individual patient. These checks

will be stored in a database, which will keep track of patient ID,

measurement interval, and outcome, and may generate additional

alerts no longer tied to the last timestamp, but to a larger time

interval. If, for example, M measurements out of the last N (with

M ≤ N) are too close to the red threshold of one of the three

vital parameters, the system will signal a long-term anomaly of

the affected parameter. reCOVeryaID is currently a prototype.

The features that make this system innovative are the quick and

easy interaction protocol between the patient and the medical

doctor, as well as the original system of rules—involving vital

parameters—stored in the knowledge base aimed at generating

alerts. Taking these peculiarities into account, reCOVeryaID is

easily transferable to other fields of application not strictly related to

COVID-19 emergency, such as monitoring patients with diseases,

such as diabetes or hypertension, which broaden its potential and

strengthen its acceptance by medical doctors.

3.1. The communication protocol

Figure 1 shows more details about the Patient → Medical

Doctor Communication Protocol; specifically, it consists of the

following steps:
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FIGURE 1

Patient→ Medical Doctor communication protocol.

1. The patient (periodically) monitors his or her vital parameters

through the medical equipment, namely the oximeter and the

thermometer;

2. The current measurement (of temperature, oxygen saturation,

and heart rate) is forwarded to the patient’s smartphone either

manually or automatically via bluetooth.4.

3. The knowledge base (see Section 4) analyzes the current

measurement (as well as the last N ones) and computes the

related short-term (Section 4.1) and long-term (Section 4.2)

alerts.

4. The measurement and related short- and long-term alerts are

immediately shown to the patient and stored in the database.

5. The computed alerts are forwarded to the doctor’s smartphone.

6. The medical doctor has access to all alerts, sorted according to

the level of urgency (i.e., from red to green).

For instance, Figure 2 exhibits a possible example of Step 2

of the Patient → Medical Doctor Communication Protocol; in

this case, the current measurement is inserted by the patient

manually via the app. A possible instance of Step 4 of the

Communication Protocol depicted in Figure 1 is shown in Figure 3;

in this case, the system shows the latest short-term alerts of a

patient (the name is omitted for privacy reasons) ordered by

4 Automatic acquisition via Bluetooth is still in a prototype version due

to constraints caused by the national grant funding to which the project is

related. Anyway, it was tested on the following bluetooth pulse oximeter;

https://www.nonin.com/products/3230/.

FIGURE 2

A possible instance of Step 2 of the Patient→ Medical Doctor

communication protocol.

descending timestamp. Additionally, Figure 4 shows one of the

patient’s alerts analyzed by the medical doctor, which combine

the values of temperature, oxygen saturation, and heart rate.

Then, the medical doctor can quickly click on the icon on the

right to send a feedback message to the patient, who can easily

receive it.

Symmetrically, Figure 5 shows the Medical Doctor → Patient

Communication Protocol; specifically:

1. The medical doctor, after reviewing the patient’s short-term and

long-term alerts via the smartphone, sends the patient a feedback

message.

2. The system stores the feedback message in the database.

3. The system forwards the feedback message to the patient’s

smartphone.

4. The patient has access to the medical doctor’s

feedback message.
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FIGURE 3

A possible instance of Step 4 of the Patient→ Medical Doctor

Communication Protocol, where the alerts are shown to the patient.

The possible feedback messages are the following:

• OK, situation under control;

• Situation to be monitored more closely shortly;

• Red alert: call to the emergency service.

4. Knowledge-base rules

As also mentioned in Section 3, the system is intended to

identify two categories of alerts:

• Alerts on the last measurement, which do not take into account

the patient’s history (see Section 4.1);

• Alerts on the last N measurements, generated after a more

detailed analysis of the lastN measurements of the patient (see

Section 4.2).

The process of defining the rules for modeling the two

categories of alerts was supported by medical doctors Silvestro

Volpe and Vittorio Palmieri.

4.1. Short-term alerts

In order to design the rules to be adopted for generating alerts

on the last measurement taken by the patient (which can be red,

yellow, or green), we decided to use:

• Temperature threshold values tL, tH ∈ R, with tL < tH ;

• Oxygen saturation threshold values OSL,OSH ∈ R, with

OSL < OSH ;

• Heart rate threshold valuesHRL,HRH ,HRM1,HRM2 ∈ R, with

HRL < HRM1 < HRM2 < HRH .

Hence, if t ∈ R is the current temperature measurement, we

have the following cases for the temperature:

• t > tH → negative situation;

• tL < t ≤ tH → average situation;

• t ≤ tL → positive situation.

Similarly, ifOS ∈ R is the current oxygen saturation measurement,

we have the following cases for the oxygen saturation:

• OS < OSL → negative situation;

• OSL ≤ OS ≤ OSH → average situation;

• OS > OSH → positive situation.

Finally, if HR ∈ R is the current heart rate measurement, we have

the following cases for the heart rate:

• (HR < HRL)OR(HR > HRH)→ negative situation;

• (HRL ≤ HR < HRM1)OR(HRM2 < HR ≤ HRH)→ average

situation;

• HRM1 ≤ HR ≤ HRM2 → positive situation.

Therefore, initially considering only temperature and oxygen

saturation values (which have been identified as the key parameters

by medical doctors), after extensive discussion with medical

doctors, we have obtained 9 possible combinations, corresponding

to the following alert levels:

OS \t t ≤ tL tL < t ≤ tH tH < t

OSH < OS green yellow yellow

OSL ≤ OS ≤ OSH yellow yellow yellow

OS < OSL red red red

Thus, the following rules are deduced for red, yellow, and green

alerts:

• (t ≤ tL)AND(OS > OSH)→ green alert;

• (t > tLANDOS ≥ OSH)OR(OSL ≤ OS ≤ OSH)→ yellow

alert;

• OS < OSL → red alert.

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1205766
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


D’Auria et al. 10.3389/fdata.2023.1205766

FIGURE 4

A possible instance of Step 6 of the Patient→ Medical Doctor communication protocol.

FIGURE 5

Medical Doctor→ Patient communication protocol.

In addition, as validated by medical doctors, the inclusion

of heart rate values (considered less important than the other

parameters in any case) in the rules allows the set of green alerts to

be narrowed, thus further extending the set of yellow alerts. Below

are the rules for the identification of the alerts that also take heart

rate into account.

• (t ≤ tL)AND(OS > OSH) AND (HRL ≤ HR ≤ HRH) →

green alert;

• (t > tLANDOS ≥ OSH)OR(OSL ≤ OS ≤ OSH) OR (t ≤

tLANDOS > OSHAND(HR < HRLORHR > HRH)) →

yellow alert;

• OS < OSL → red alert.
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Such rules for finding alerts on the last measurement are stored

within the specific knowledge base to be consulted before storing

the new measurement in the database.

4.2. Long-term alerts

Unlike the short-term alerts discussed earlier, which depend

only on the last measurement taken, the long-term alerts are

generated by analyzing the patient’s last N measurements, which

are stored in the database.

In this subsection, we show two different versions of the rules

for defining long-term alerts; the former are written as triggers

directly in the database5, whereas the latter are evenmore restrictive

in that, following medical doctors’ guidelines, they are defined

to identify even shorter negative trends that may be caused by

COVID-19 variants.

4.2.1. First version
As regards the first version, some specific triggers have

been defined and implemented; such triggers are able to signal

anomalies related to the last N measurements of temperature,

oxygen saturation and heart rate. Specifically, in case M (M ∈ N)

measurements out of the last N (M < N) turn out to be “too close”

to the red threshold of one of the three vital parameters, a long-

term anomaly of the parameter concerned is signaled. Specifically,

we apply the Event-Condition-Action (ECA) paradigm, exploited

as follows;

• EVENT: after each insertion of a new measurement.

• CONDITION: when the parameter value (temperature, oxygen

saturation or heart rate) in the last measurement is “too close”

to the red threshold for that parameter.

• ACTION: the last N measurements of this parameter are

analyzed; if at least M of these measurements are “too close”

to the red threshold for this parameter, a long-term anomaly

is generated.

In order to scientifically quantify the concept of “too close,” we

define some additional thresholds allowing to identify orange alerts,

i.e., yellow alerts close to the red ones. Here, we focus on the SpO2

analysis, but we made a similar assumption for temperature and

heart rate as well.6 More specifically, we define a new threshold

SpO2O ∈ R (where the O subscript stands for Orange), such that

SpO2L < SpO2O < SpO2H ; SpO2O = SpO2L + β · SpO2L, where β ∈

R, β ∈ [0, 1] is the percentage of increase over SpO2L.

As a result, Algorithm 1 is triggered by every insert on the

relational table of the database storing all the measurements (i.e.,

measurements); if the SpO2 value entered is within the orange

zone (Algorithm 1), the SpO2_Monitoring function (Algorithm 2)

is invoked.

5 Here, we show the code in PL/pgSQL.

6 Due to space constraints, we only show the PL/pgSQL code to detect

oxygen saturation long-term alerts.

1: CREATE TRIGGER SpO2_Anomaly

AFTER INSERT ON measurements

FOR EACH ROW

WHEN (NEW.SpO2≤ SpO2O and NEW.SpO2 > SpO2L)

EXECUTE PROCEDURE SpO2_Monitoring();

Algorithm 1. SpO2_Anomaly trigger.

Specifically, the SpO2_Monitoring function (Algorithm 2)

accepts two arguments: the minimum number of short-term

anomalies which raise a long-term alert (i.e., M), and the number

of most recent short-term alerts to analyze (i.e., N); its output is

the NEW object triggering Algorithm 1. In Lines 2–4 two variables

(inv_SpO2_number andmin_ts) are declared to hold the result sets

of the queries, respectively, in Line 6 and Line 7. The query in Line

6 computes how many of the last N SpO2measurements fall in the

orange zone, whereas the query in Line 7 retrieves the minimum

timestamp within the last N measurements. Eventually, Lines 8–9

in Algorithm 2 generates a SpO2 long-term alert if at leastM out of

the last N SpO2 measurements are in the orange zone, by inserting

long-term-alerts in the specific table.

4.2.2. Second version
More recently, after further discussion with medical doctors,

also due to the COVID-19 variants, we decided to make

the algorithm even stricter. Specifically, with respect to the

first version shown in Algorithms 1, 2, there are mainly three

differences. First, in the new version we have expanded the set

of possible measurements that can generate long-term alerts;

in fact, Algorithm 3 in Supplementary material also adds red

short-term alerts to the orange set (see Line 2). Second, while

Algorithms 1, 2 just focus on measurements, independently from

the dates, Algorithm 3 in Supplementary material just works on

dates; as a result, if multiple measurements are taken on the same

day, they are aggregated into a single value (i.e., the average),

and consequently here M and N denote days, not measurements.7

Third, Algorithm 3 in Supplementary material further expands the

set of short-term alerts that generate long-term alerts by giving

more weight to recent history than to past history. This is obtained

by defining and exploiting specific pattern scores (Line 20, Line 24,

Line 28).

More specifically, Algorithm 3 in Supplementary material8

takes 5 arguments; (i) measurements - an array of recent

measurements sorted from the most to the last recent; (ii) M -

minimum number of anomalous measurements required to trigger

a long-term alert; (iii) N - number of recent measurements to

take into account; (iv) span - maximum number of days over

whichM anomalous measurements must be found to raise an alert;

(v) score_threshold - the minimum pattern score which raises a

long-term alert. The output is the alerts arraylist, which contains

the long-term alerts generated by the last N measurements (of

oxygen saturation, temperature, and heart rate) and triggered by

the current one. Line 1 initializes (as empty) the arraylist holding

7 We developed additional code for this, which we do not report here.

8 Its pseudocode is shown in Section 6.
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Input: M, N

Output: NEW

1: CREATE OR REPLACE FUNCTION SpO2_Monitoring()

RETURNS TRIGGER AS $BODY$

2: DECLARE

3: inv_SpO2_number integer;

4: min_ts timestamp;

5: BEGIN

6: // Computing how many of the last N measurements

fall within the orange zone

SELECT count( * ) INTO inv_SpO2_number

FROM measurements

WHERE measurements.SpO2 ≤ SpO2O and

measurements.SpO2 > SpO2L and id in (

SELECT id

FROM measurements

WHERE patient = NEW.patient

ORDER BY timestamp DESC LIMIT N);

7: // Looking for the minimum timestamp within the

last N measurements

SELECT min(timestamp) INTO min_ts

FROM measurements

WHERE id in (

SELECT id

FROM measurements

WHERE patient = NEW.patient

ORDER BY timestamp DESC LIMIT N);

// Checking whether to raise a SpO2 long-term alert

8: if (inv_SpO2_number ≥ M) then

9: INSERT INTO long_term_alerts

VALUES (NEW.patient, min_ts, now(), “Spo2

Long-Term Alert”);

10: else

11: NEW← NULL;

12: end if

13: return NEW

Algorithm 2. SpO2_Monitoring function.

the output, Line 2 defines the set of dangerous levels (in this case,

red and orange), and Line 3 counts the number of measurements

currently stored. Line 4 checks whether the values for M and N

make sense (otherwise, the algorithm returns the error message

Incorrect values of the parameters—Lines 58–59); in that case, if at

leastMmeasurements (Line 5) have already been stored (otherwise,

the algorithm ends, since there are not enough records to compute

long-term alerts—Lines 55–56), in case they are at least N, the

candidates to be analyzed are N (Lines 6–7), otherwise they are

something between M and N (Lines 8–9). Lines 11-12 respectively

extract the start and the end date of the temporal interval to

be analyzed, whereas Line 13 counts the number of days in the

interval. In case (Line 14) the considered interval is within the

range of the maximum number of days over which M anomalous

measurements must be found to raise an alert (otherwise, the

algorithm terminates, since the measurements are too sparse—

Lines 52–53), the algorithm initializes to zero two counters for

each vital (oxygen saturation, temperature, and heart rate); one

TABLE 1 Example of SpO2 short-term alerts generating the 1101001

pattern for a generic patient.

Date Short-term alert Coding

22-Nov-21 Red 1

23-Nov-21 Red 1

24-Nov-21 Yellow 0

25-Nov-21 Red 1

26-Nov-21 Green 0

27-Nov-21 Yellow 0

28-Nov-21 Red 1

for counting the short-term alerts falling in the dangerous levels

set (Line 15), and one for counting the score achieved by the

analyzed sequence of measurements (Line 16). Then, for each

measurement (Line 17), the algorithm checks whether the short-

term alert previously assigned to such a temperature measurement

is within the set of dangerous levels (Line 18); in that case, the

related counter is incremented (Line 19), and the pattern score is

(linearly) incremented giving higher scores to recent history with

respect to past history (Line 20). Lines 22–25 and Lines 26–29 do

the same for, respectively, for oxygen saturation and heart rate

candidates. Then, Lines 31–37 check if the analyzed temperature

measurements raise a temperature long-term alert (symmetrically,

Lines 38–44 and Lines 45–51 do the same for, respectively, oxygen

saturation and heart rate); specifically, this happens if at least one of

the following conditions occurs; either at leastMmeasurements fall

in the dangerous levels set, or the pattern score is at least equal to

the score_threshold taken as fifth argument; in that case, a new alert

object is initialized (Line 32)9, the alert type is set to temperature

(Line 33), the start date (Line 34), and the end date (Line 35) are

stored, then the object is pushed into the output arraylist (Line 36),

which is eventually returned in Line 61.

Moreover, Table 2 clarifies how Algorithm 3 extends the

set of long-term alerts detected by Algorithm 1 (new patterns

generating long-term alerts are highlighted in purple); specifically,

the candidates pattern held in the first column is a string

of length N from the most recent measurement to the last,

where 0 means no dangerous level, and 1 means dangerous

level. For instance, Table 1 shows an example of SpO2 short-

term alerts generating the 1101001 pattern (Table 2) for a

generic patient.

Specifically, Table 2 refers to the following setting: M = 5,

N = 7, score_threshold = N + (N − 1) + (N − 2) = 18;

this is a reasonable scenario, since N covers a week, M is more

than 70% of N, and score_threshold is sufficiently high to raise a

long-term alert when a negative trend is identified in the most

recent measurements, although less than M out of N short-term

alerts fall within the dangerous levels set. In fact, Table 2 shows the

different short-term alerts patterns for which either Algorithm 3 or

Algorithm 1 raises a long-term alert10; the latter category includes

9 For the sake of clarity, we utilize an Object-Oriented-Programming-like

notation.

10 Table 2 clearly shows that the former category is a superset of the latter.
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all the scenarios where at least M measurements out of N are

dangerous short-term alerts, whereas the former also includes those

generating a long-term alert according to the additional condition

(exceeded score threshold). For instance, one of the measurement

patterns for which only Algorithm 3 in Supplementary material

detects a long-term alert is 1110000, which occurs when the last

3 measurements are either orange or red; in this case, since less

thanMmeasurements are orange or red, Algorithm 1 does not raise

a long-term alert; differently from it, Algorithm 3 (Lines 17–21,

assuming they are temperature measurements) assigns it the score

of 18 (7+ 6+ 5), which is equal to the chosen score_threshold, and

thus generates a long-term alert (Line 31). As a result, Algorithm 3

in Supplementary material can quickly identify scenarios in which

vital signs suddenly worsen.

5. Experimental evaluation

In this section we show the detailed experiments we conducted

in order to validate the knowledge base rules defined in Section 4;

specifically, in Section 5.1 we provide some details about the

experimental setting and the data sets involving real patients

provided by medical doctors. Then, Section 5.2 exhibits the

evaluation of the rules for detecting short-term alerts, and

Section 5.3 shows the detailed evaluation done to validate the rules

to detect long-term alerts.

5.1. Experimental setting

After a long discussion with medical doctors, the following

threshold values (Section 4) were chosen and used for

the experimentation;

• tL = 37; tO = 37.5; tH = 38.

• SpO2L = 0.90; SpO2O = 0.92; SpO2H = 0.95.

• HRL = 50; HRO1 = 55; HRM1 = 60; HRM2 = 75; HRO2 = 90;

HRH = 100.

We used two different data sets as the basis for our experiments.

Both of them were kindly provided by the Pineta Grande Hospital

in Caserta. The data sets are listed and quickly described below.

• Hospital, which includes anonymized data on 20 hospitalized

patients infected with COVID-19. These data contain

information on several temperature, oxygen saturation, and

heart rate measurements over time, with at most one

measurement per day.

• USCA,11 which stands for Special Continuity Care Units,

includes anonymized data on 76 patients infected with

COVID-19 in home telemonitoring. These clearly

anonymized data contain information on several

measurements of temperature, oxygen saturation, and

heart rate over time, with at most one measurement per day.

11 From the Italian “Unità Speciali di Continuità Assistenziale.”

TABLE 2 Long-term alerts (M = 5, N = 7, score_threshold = 18).

Pattern (from
the MOST to
the LAST
recent
measurement)

Score Does
Algorithm 3
detect a
long-term
alert?

Does
Algorithm 1
detect a
long-term
alert?

0011111 15 YES YES

0101111 16 YES YES

0110111 17 YES YES

0111011 18 YES YES

0111100 18 YES NO

0111101 19 YES YES

0111110 20 YES YES

0111111 21 YES YES

1001111 17 YES YES

1010111 18 YES YES

1011010 18 YES NO

1011011 19 YES YES

1011100 19 YES NO

1011101 20 YES YES

1011110 21 YES YES

1011111 22 YES YES

1100110 18 YES NO

1100111 19 YES YES

1101001 18 YES NO

1101010 19 YES NO

1101011 20 YES YES

1101100 20 YES NO

1101101 21 YES YES

1101110 22 YES YES

1101111 23 YES YES

1110000 18 YES NO

1110001 19 YES NO

1110010 20 YES NO

1110011 21 YES YES

1110100 21 YES NO

1110101 22 YES YES

1110110 23 YES YES

1110111 24 YES YES

1111000 22 YES NO

1111001 23 YES YES

1111010 24 YES YES

1111011 25 YES YES

1111100 25 YES YES

1111101 26 YES YES

1111110 27 YES YES

1111111 28 YES YES
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5.2. Short-term alerts evaluation

5.2.1. Goals
Themain objective of evaluating short-term alerts is to measure

the accuracy of the system against a ground truth provided by

human annotators. More specifically, the goal is to quantify the

ability of the rules defined in the knowledge base to identify red,

yellow and green short-term alerts. In order to do so, we exploit

the following metrics, whose formulas are then shown in detail in

Section 5.2.2.

• Average patient accuracy, focusing on the average system

performance on patients;

• Global accuracy, focusing on the system’s performance in

detecting short-term alerts, regardless of patients;

• Precision, focusing on the system’s ability to avoid false

positives when calculating short-term alerts. This is done for

red, yellow, and green short-term alerts, respectively;

• Recall, focusing on the system’s ability to avoid false negatives

when calculating short-term alerts. This is done for red,

yellow, and green short-term alerts, respectively.

5.2.2. Methodology
In order to evaluate the accuracy of the rules discussed in

Section 4, we defined a specific protocol, and we applied it both

to the Hospital and to the USCA data set. The human annotators

are medical doctors from the Pineta Grande Hospital in Caserta,

who were not involved in the design process of the knowledge-

base rules. Consequently, the annotators were informed about the

short-term alerts (red, yellow, or green) with which they were to

label each triple (temperature measurements, oxygen saturation,

and heart rate), giving them only informal descriptions. So, they

were asked to look at all triples of each patient and label them with

the most appropriate color.

More formally, given a patient j, let {Aa
ij}i∈[1,mj] denote the set

of short-term alerts returned by the algorithm in response to the

mj measurements of patient j. On the other hand, let {Ah
ij}i∈[1,mj]

denote the set of short-term alerts associated by human annotators

to the mj measurements of patient j. Consequently, the accuracy

of the knowledge-base rules for patient j is computed as follows

(Equation 1):

patientj accuracy =
|{Aa

ij}i∈[1,mj] ∩ {A
h
ij}i∈[1,mj]|

mj
(1)

Assuming to work on the data of n patients, the average

accuracy per patient is computed as follows (Equation 2):

average patient accuracy =

∑n
j=1 patientj accuracy

n
(2)

After computing the average accuracy, it is straightforward

to also calculate variance and standard deviation via the

well-known formulas.

Additionally, assuming the total number of patients’

measurements to be m =
∑n

j=1 mj, the global system accuracy is

TABLE 3 Details of the Hospital data set.

Parameter Value

n 20

mmin 2

mmax 13

mavg 6

m 120

TABLE 4 Short-term alert accuracy on the Hospital data set.

Metrics Value

Average patient accuracy 81.22%

Variance 0.06

Standard deviation 0.24

Global accuracy 77.50%

defined as follows (Equation 3):

global accuracy =
|{Aa

ij}i∈[1,m] ∩ {A
h
ij}i∈[1,m]|

m
(3)

So far, the mentioned metrics have been defined to compute

the overall system accuracy. From now on, we focus on the system

ability to compute red, yellow, and green alerts instead. Specifically,

we do it by exploiting the classic precision (Equation 4) and recall

(Equation 5) metrics.

precisionx =
|{Aa

ij|A
a
ij = x}i∈[1,m] ∩ {A

h
ij|A

h
ij = x}i∈[1,m]|

|{Aa
ij|A

a
ij = x}i∈[1,m]|

x ∈ {red, yellow, green}

(4)

recallx =
|{Aa

ij|A
a
ij = x}i∈[1,m] ∩ {A

h
ij|A

h
ij = x}i∈[1,m]|

|{Ah
ij|A

h
ij = x}i∈[1,m]|

x ∈ {red, yellow, green}

(5)

5.2.3. Results
As regards the Hospital data set, Table 3 summarizes its main

information. In particular, we report the details about the number

of analyzed patients (n), and the minimum, maximum, average,

and total number of measurements per patient (respectively,mmin,

mmax,mavg ,m).

Then, Table 4 shows the accuracy achieved by the system when

computing short-term alerts on the Hospital data set. Additionally,

Figure 6 exhibits in detail the patient accuracy values for each

patient and the related average patient accuracy. Furthermore,

Table 5 summarizes the results on the short-term alert precision

and recall computed on the Hospital data set.

Regarding the USCA data set, Table 6 shows its details, Table 7

the patient accuracy, Figure 7 exhibits the patient accuracy detailed

behavior, and Table 8 reports the precision/recall values.
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FIGURE 6

Patient accuracy on the Hospital data set.

TABLE 5 Short-term alert Precision/Recall on the Hospital data set.

x |{Aa
ij|A

a
ij = x}i∈[1,m] |{Aa

ij|A
a
ij = x}i∈[1,m]| |{Ah

ij|A
h
ij = x}i∈[1,m]|

∩
{Ah

ij|A
h
ij = x}i∈[1,m]|

precisionx recallx

red 11 9 9 81.82% 100%

yellow 35 29 19 54.29% 65.52%

green 74 82 66 89.19% 80.49%

TABLE 6 Details of the USCA data set.

Parameter Value

n 76

mmin 1

mmax 6

mavg 3.76

m 286

5.2.4. Discussion
Overall, the results shown in Table 4 and Figure 6 are

promising, especially if we consider that they deal with the 120

TABLE 7 Short-term alert accuracy on the USCA data set.

Metrics Value

Average patient accuracy 88.51%

Variance 0.03

Standard deviation 0.17

Global accuracy 86.36%

measurements of the Hospital data set and that the system global

accuracy value is not far from 80%.

Then, Table 5 demonstrates that the results shown in Table 4

and Figure 6 are even better than what we mentioned so far. This

is due to at least three reasons; (i) recallred = 100% implies that
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FIGURE 7

Patient accuracy on the USCA data set.

the algorithm for detecting red alerts did not miss any of them

(i.e., there are no false negatives); (ii) the values of precisionyellow
and recallyellow are low, since the rules for detecting red alerts

are, prudentially, even stricter than necessary, as confirmed by the

value of precisionred. However, in the middle of the pandemic we

opted for a prudential choice; (iii) a remark similar to the one in

(ii) can be made between yellow and green alerts; however, this

case is much smaller than (ii), since the values of precisiongreen
and recallgreen are much higher than the ones of precisionyellow and

recallyellow.

Regarding the USCA, a positive trend similar to the one

highlighted on the Hospital data set, but on an even larger one

(Table 6), is discovered. In fact, while the higher value of average

patient accuracy in Table 7 with respect to the one in Table 4

can be biased by the lower value of mavg (Tables 3, 6), the

global accuracy in Table 7 sis unconditionally even higher than

the one in Table 4. Additionally, the precision for the short-term

yellow alerts is lower than the other values because the rules

for detecting yellow alerts are, conservatively, even stricter than

necessary; in fact, the algorithm often returned yellow alerts as

a response to measurements that human annotators had labeled

as green. This is why the system returned some false positives,

but it was mainly because the testing was done during the

spread of the delta variant of COVID-19, so the rules were tuned

more tightly.

5.3. Long-term alerts evaluation

5.3.1. Goals
The main objective of evaluating long-term alerts is to measure

the accuracy of the system against a ground truth provided by

human annotators. In this case, the goal is to quantify the ability

of the rules defined in the knowledge base to identify long-term

alerts via Algorithm 1 and Algorithm 3. In order to do so, we exploit

the following metrics, whose formulas are then shown in detail in

Section 5.3.2.

• Precision, focusing on the system’s ability to avoid false

positives when calculating long-term alerts;

• Recall, focusing on the system’s ability to avoid false negatives

when calculating long-term alerts.

5.3.2. Methodology
Similarly to what depicted for the short-term alerts, let

us assume {LTAa
i (ts)}i∈[1,aa] denotes the set of long-term alerts

returned by the algorithm in response to the m measurements

mentioned above. More specifically, let aa denote the total number

of long-term alerts returned by the algorithm, and let ts be the

timestamp when each of them is detected (clearly, being ts the right

endpoint of the analyzed long-term interval).
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TABLE 8 Short-term alert Precision/Recall on the USCA data set.

x |{Aa
ij|A

a
ij = x}i∈[1,m] |{Aa

ij|A
a
ij = x}i∈[1,m]| |{Ah

ij|A
h
ij = x}i∈[1,m]|

∩
{Ah

ij|A
h
ij = x}i∈[1,m]|

precisionx recallx

red 26 26 26 100% 100%

yellow 110 72 72 65.45% 100%

green 150 188 150 100% 79.79%

TABLE 9 Setting for the long-term alerts experiments.

Parameter Value

M 2

N 4

span 7

score_threshold 4

TABLE 10 Long-term alert Precision/Recall on the Hospital data set.

Precision (%) Recall (%)

Algorithm 1 60 60

Algorithm 3 55.56 100

Symmetrically, let {LTAh
i (ts)}i∈[1,ah] denote the set of long-term

alerts associated by human annotators (i.e., by medical doctors)

to the m measurements, where ah is the total number of long-

term alerts found by the annotators and ts is still their timestamp.

Clearly, human annotators were informed about the meaning of

long-term alerts, but, differently from our algorithm, they could

also have a look at different patient’s symptoms and vitals.

Due to the not-too-large mavg values for the Hospital (Table 3)

and the USCA (Table 6) data sets, we opted for just computing

global evaluations of precision (Equation 6) and recall (Equation 7).

precision =
|{LTAa

i (ts)}i∈[1,aa] ∩ {LTA
h
i (ts)}i∈[1,ah]|

|{LTAa
i (ts)}i∈[1,aa]|

(6)

recall =
|{LTAa

i (ts)}i∈[1,aa] ∩ {LTA
h
i (ts)}i∈[1,ah]|

|{LTAh
i (ts)}i∈[1,ah]|

(7)

Then, Table 9 exhibits the setting chosen for the

algorithm for computing long-term alerts (Algorithm 3 in

Supplementary material).

5.3.3. Results
Tables 10, 11 show the precision and recall values for,

respectively, the Hospital and USCA data sets.

5.3.4. Discussion
Strictly speaking, the recall values achieved by Algorithm 3 are

higher than the ones by Algorithm 1; this is mainly due to the main

TABLE 11 Long-term alert Precision/Recall on the USCA data set.

Precision (%) Recall (%)

Algorithm 1 80 40

Algorithm 3 75 90

improvements we added to it, in order to broaden the set of short-

term combinations generating long-term alerts (Section 4.2.2).

Additionally, low values for precision (especially for the Hospital

data set) are due to the fact that our algorithms were even stricter

than medical doctors; however, the obtained precision values are

just lower bounds, since the human annotators provided us with

their ground truth before the delta-variant spread. For instance,

when analyzing the ground truth, medical doctors often remove

the long-term alert whenever a green short-term alert is detected

after some red short-term alerts, whereas our algorithms are more

cautious and keep the long-term alert. Furthermore, the achieved

values are a bit biased by the small values for mavg , and by the fact

that most of the short-term alerts in the data sets are not red.

6. Conclusion

In this paper, we have shown reCOVeryaID, an intelligent

telemonitoring application for symptomatic, asymptomatic and

pre-symptomatic coronavirus patients. More specifically, we

described in detail the overall prototype, and verified the

effectiveness of the knowledge-base rules for modeling and

promptly detecting short-term and long-term alerts with data of

real patients infected with COVID-19 and hospitalized at the Pineta

Grande Hospital in Caserta. The high values of achieved accuracy

demonstrate that a constant use of the reCOVeryaID framework

by infected or potential patients can significantly help to promptly

identify possible negative trends in their vitals, thus allowing an

early hospitalization which can save his/her life.

Future work will be devoted to improve the current version

of the developed prototype described in Section 3, in order

to make it even more usable in a real scenario. Specifically,

we intend to strengthen, with continuous interactions with the

clinical staff involved in the COVID-19 emergency as well as

the General Practitioners, the following features: - Acquisition of

measurements, to be made also automatically via Bluetooth. This,

in addition to facilitating data collection, will make it possible

to guarantee safety and integrity of the inserted measurements.

In addition, through this communication protocol, it will also be

possible, if necessary, to hospitalize the patient, to interface the
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application with the different hospital systems, and also to allow the

General Practitioners to continue to follow their patients, even if in

the hospital; - Checking of the Tax Code, at the time of registration;

- Allowing the patient to login by reading the health card or

their digital identity; - Integrating the system for cases related to

emergencies with the system of the First and Emergency Room, of

the Operations Centres of Emergency Services, such as the Italian

118, Helicopter, etc.; -Integrating the system with the Hospital

Information System (HIS), i.e., with the integrated set of IT tools

used in healthcare to manage the administrative and clinical flows

of a hospital, such as: Central Registry, Repository of Reports,

Patient Management System (ADT), etc.; -Integrating the system

with the healthcare platforms used by the General Practitioners.

Additionally, due to its simplicity and flexibility, reCOVeryaID

is also easily transferable to other fields of application, not

strictly related to the COVID emergency; in fact, it could be

exploited to monitor patients with pathologies such as diabetes or

hypertension, which expand its potential and further strengthen its

acceptance by clinicians. Clearly, including other vital signs, such

as blood pressure, in the system and then combining the different

metrics in an original way, so as to detect early or even prevent

potentially dangerous situations, involves further exploitation of

knowledge representation and artificial intelligence techniques,

such as logical inference.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

Ethical approval was not required for the study involving

human data in accordance with the local legislation and

institutional requirements. Written informed consent

to participate in this study was not required from the

subjects in accordance with the national legislation and the

institutional requirements.

Author contributions

DD’A created and implemented the project. RR and AF

provided significant help in experimenting on the two data sets.

FA provided valuable advice and support as a biomedical engineer.

DC is the project supervisor and provided his expertise in building

knowledge bases. All authors contributed to the article and

approved the submitted version.

Funding

This work was supported by a National Grant from the

Italian Ministry of University and Research under FISR2020IP

01767 (reCOVeryaID—Una applicazione di telemonitoraggio

intelligente per pazienti sintomatici, asintomatici e pre-sintomatici

al Coronavirus). This work was also supported by the Open Access

Publishing Fund of the Free University of Bozen-Bolzano.

Acknowledgments

We would like to thank the managers of the Pineta Grande

Hospital in Caserta, Italy, for allowing us to get information

about real patients infected with COVID-19, and the medical

doctors Vittorio Palmieri—UOSD, Monaldi Hospital, Napoli, Italy

and Silvestro Volpe - Director UOC, A.O.R.N. San Giuseppe Moscati

Hospital, Avellino, Italy and Director 0DIMT, Campania Nord, Italy,

for the excellent and productive support they gave us during the

knowledge-base rules definition phase.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.

1205766/full#supplementary-material

References

Ali, N. A., and Khoja, A. (2020). Telehealth: an important player during the
COVID-19 pandemic. Ochsner J. 20, 113–114. doi: 10.31486/toj.20.0039

Bertoncelli, C. M., Costantini, S., Persia, F., Bertoncelli, D., and D’Auria, D.
(2023). Predictmed-epilepsy: a multi-agent based system for epilepsy detection
and prediction in neuropediatrics. Comput. Methods Prog. Biomed. 236, 107548.
doi: 10.1016/j.cmpb.2023.107548

Burdick, H., Lam, C., Mataraso, S., Siefkas, A., Braden, G., Dellinger, R.
P., et al. (2020). Prediction of respiratory decompensation in Covid-19 patients

using machine learning: the READY trial. Comput. Biol. Med. 124, 103949.
doi: 10.1016/j.compbiomed.2020.103949

Caricchio, R., Gallucci, M., Dass, C., Zhang, X., Gallucci, S., Fleece,
D., et al. (2021). Preliminary predictive criteria for COVID-19 cytokine
storm. Ann. Rheumat. Dis. 80, 88–95. doi: 10.1136/annrheumdis-2020-
218323

Charles, B. L. (2000). Telemedicine can lower costs and improve access. Healthcare
Fin. Manage. 54, 66.

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2023.1205766
https://www.frontiersin.org/articles/10.3389/fdata.2023.1205766/full#supplementary-material
https://doi.org/10.31486/toj.20.0039
https://doi.org/10.1016/j.cmpb.2023.107548
https://doi.org/10.1016/j.compbiomed.2020.103949
https://doi.org/10.1136/annrheumdis-2020-218323
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


D’Auria et al. 10.3389/fdata.2023.1205766

Chauhan, V., Galwankar, S., Arquilla, B., Garg, M., Di Somma, S., El-Menyar, A.,
et al. (2020). Novel coronavirus (COVID-19): leveraging telemedicine to optimize care
while minimizing exposures and viral transmission. J. Emerg. Trauma Shock 13, 20–24.
doi: 10.4103/JETS.JETS_32_20

Coupet, S., Nicolas, G., Louder, C., and Meyer, M. (2021). When public health
messages become stressful: managing chronic disease during COVID-19. Soc. Sci.
Hum. Open 4, 100150. doi: 10.1016/j.ssaho.2021.100150

Danhieux, K., Buffel, V., Pairon, A., et al. (2020). The impact of COVID-19 on
chronic care according to providers: a qualitative study among primary care practices
in Belgium. BMC Fam. Pract. 21, 255. doi: 10.1186/s12875-020-01326-3

D’Auria, D., Moscato, V., Postiglione, M., Romito, G., and Sperli G. (2023).
Improving graph embeddings via entity linking: a case study on Italian clinical notes.
Intell. Syst. Appl. 17, 200161. doi: 10.1016/j.iswa.2022.200161

De Lauretis, L., Persia, F., Costantini, S., and D’Auria D. (2023). How to leverage
intelligent agents and complex event processing to improve patient monitoring. J. Logic
Comput. 33, 900–935. doi: 10.1093/logcom/exad016

Dimitroulas, T., and Bertsias., G. (2020). Practical issues in managing systemic
inflammatory disorders during the COVID-19 pandemic.Mediterranean J. Rheumatol.
31(Suppl. 2), 253–256. doi: 10.31138/mjr.31.3.253

Elliott, M., and Baird, J. (2019). Pulse oximetry and the enduring neglect of
respiratory rate assessment: a commentary on patient surveillance. Brit. J. Nurs. 28,
19. doi: 10.12968/bjon.2019.28.19.1256

Gao, Y., Cai, G.-Y., Fang,W., Li, H.-Y., Wang, S.-Y., Chen, L., et al. (2020). Machine
learning based early warning system enables accurate mortality risk prediction for
COVID-19. Nat. Commun. 11, 5033. doi: 10.1038/s41467-020-18684-2

Hacker, K. A., Briss, P. A., Richardson, L., Wright, J., and Petersen, R. (2021).
COVID-19 and chronic disease: the impact now and in the future. Prev. Chronic Dis.
18, E62. doi: 10.5888/pcd18.210086

Han, Z., Wei, B., Hong, Y., Li, T., Cong, J., Zhu, X., et al. (2020). Accurate screening
of COVID-19 using attention-based deep 3D multiple instance learning. IEEE Trans.
Med. Imaging 39, 2584–2594. doi: 10.1109/TMI.2020.2996256

Hollander, J. E., and Carr, B. G. (2020). Virtually perfect? Telemedicine for Covid-
19. N. Engl. J. Med. 382, 1679–1681. doi: 10.1056/NEJMp2003539

Ko, S., Wang, Z., Premkumar, A., Qi, T., Shuhua, K., Lim, Y, W., et al. (2023).
Continuous vital signs monitoring in patients hospitalized at home: Burden or benefit?
J. Am. Med. Direct. Assoc. 24, 547. doi: 10.1016/j.jamda.2023.02.109

Li, W., Ma, J., Shende, N., Castaneda, G., Chakladar, J., Tsai, J. C., et al. (2020).
Using machine learning of clinical data to diagnose COVID-19: a systematic review

and meta-analysis. BMC Med. Inform. Decis. Mak. 20, 247. doi: 10.1186/s12911-020-
01266-z

Mason, A., Rose, E., and Edwards, C. J. (2020). Clinical management
of Lupus patients during the COVID-19 pandemic. Lupus 29, 1661–1672.
doi: 10.1177/0961203320961848

Monaghesh, E., and Hajizadeh, A. (2020). The role of telehealth during COVID-19
outbreak: a systematic review based on current evidence. BMC Public Health 20, 1193.
doi: 10.1186/s12889-020-09301-4

Murali, S. (2023). Machine learning and internet of things to improve patient health
monitoring systems. Indian J. Nat. Sci. 14549, 56814–56820.

Persia, F., Costantini, S., Ferri, C., Lauretis, L. D., and D’Auria, D. (2021). “A
smart framework for automatically analyzing electrocardiograms,” in 2021 Third
International Conference on Transdisciplinary AI (TransAI) (IEEE), 64–67.

Scott, D. A., and McDougall, R. (2017). The effective introduction of Lifebox pulse
oximetry to Malawi. Anaesthesia 72, 675–677. doi: 10.1111/anae.13897

Smith, M., Withnall, R., Blackadder-Coward, J., and Taylor, N. (2021). Developing
a multimodal biosensor for remote physiological monitoring. BMJ Mil. Health 169,
170–175. doi: 10.1136/bmjmilitary-2020-001629

Solé, D., Komatsu, M. K., Carvalho, K. V. T., and Naspitz, C. K. (2009). Pulse
oximetry in the evaluation of the severity of acute asthma and/or wheezing in children.
J Asthma 36, 327–333. doi: 10.3109/02770909909068225

Taguchi, O., Hida, W., Kikuchi, Y., Miki, H., Iijima, H., Homma, M., et al.
(1994). Bronchial asthma and desaturation-assessment by pulse oximetry.Nihon Kyobu
Shikkan Gakkai Zasshi 32, 115–120.

Takei, R., Yamano, Y., Kataoka, K., Yokoyama, T., Matsuda, T., Kimura, T., et al.
(2020). Pulse oximetry saturation can predict prognosis of idiopathic pulmonary
fibrosis. Respirat. Investig. 58, 190–195. doi: 10.1016/j.resinv.2019.12.010

Totuk, A., Bayramoglu, B., and Tayfur, I. (2023). Reliability of smartphone
measurements of peripheral oxygen saturation and heart rate in hypotensive
patients measurement of vital signs with smartphones. Heliyon 9, e13145.
doi: 10.1016/j.heliyon.2023.e13145

Wiffen, L., Brown, T., Brogaard Maczka, A., Kapoor, M., Pearce, L., Chauhan, M.,
et al. (2023). Measurement of vital signs by lifelight software in comparison to standard
of care multisite development (VISION-MD): protocol for an observational study.
JMIR Res. Protoc. 12, e41533. doi: 10.2196/41533

Wright, A., Salazar, A., Mirica, M., Volk, L. A., and Schiff, G. D. (2020). The invisible
epidemic: neglected chronic disease management during COVID-19. J. Gen. Internal
Med. 35, 2816–2817. doi: 10.1007/s11606-020-06025-4

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2023.1205766
https://doi.org/10.4103/JETS.JETS_32_20
https://doi.org/10.1016/j.ssaho.2021.100150
https://doi.org/10.1186/s12875-020-01326-3
https://doi.org/10.1016/j.iswa.2022.200161
https://doi.org/10.1093/logcom/exad016
https://doi.org/10.31138/mjr.31.3.253
https://doi.org/10.12968/bjon.2019.28.19.1256
https://doi.org/10.1038/s41467-020-18684-2
https://doi.org/10.5888/pcd18.210086
https://doi.org/10.1109/TMI.2020.2996256
https://doi.org/10.1056/NEJMp2003539
https://doi.org/10.1016/j.jamda.2023.02.109
https://doi.org/10.1186/s12911-020-01266-z
https://doi.org/10.1177/0961203320961848
https://doi.org/10.1186/s12889-020-09301-4
https://doi.org/10.1111/anae.13897
https://doi.org/10.1136/bmjmilitary-2020-001629
https://doi.org/10.3109/02770909909068225
https://doi.org/10.1016/j.resinv.2019.12.010
https://doi.org/10.1016/j.heliyon.2023.e13145
https://doi.org/10.2196/41533
https://doi.org/10.1007/s11606-020-06025-4
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	An intelligent telemonitoring application for coronavirus patients: reCOVeryaID
	1. Introduction
	2. Related work
	3. The reCOVeryaID prototype
	3.1. The communication protocol

	4. Knowledge-base rules
	4.1. Short-term alerts
	4.2. Long-term alerts
	4.2.1. First version
	4.2.2. Second version


	5. Experimental evaluation
	5.1. Experimental setting
	5.2. Short-term alerts evaluation
	5.2.1. Goals
	5.2.2. Methodology
	5.2.3. Results
	5.2.4. Discussion

	5.3. Long-term alerts evaluation
	5.3.1. Goals
	5.3.2. Methodology
	5.3.3. Results
	5.3.4. Discussion


	6. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


