
TYPE Conceptual Analysis

PUBLISHED 25 October 2023

DOI 10.3389/fdata.2023.1227156

OPEN ACCESS

EDITED BY

Vincenzo Moscato,

University of Naples Federico II, Italy

REVIEWED BY

Alberto Ochoa Zezzatti,

Universidad Autónoma de Ciudad Juárez,

Mexico

Daniela D’Auria,

Free University of Bozen-Bolzano, Italy

*CORRESPONDENCE

Ilaria Bartolini

ilaria.bartolini@unibo.it

RECEIVED 22 May 2023

ACCEPTED 05 October 2023

PUBLISHED 25 October 2023

CITATION

Bartolini I and Patella M (2023) A stream

processing abstraction framework.

Front. Big Data 6:1227156.

doi: 10.3389/fdata.2023.1227156

COPYRIGHT

© 2023 Bartolini and Patella. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A stream processing abstraction
framework

Ilaria Bartolini* and Marco Patella

Department of Computer Science and Engineering (DISI), Alma Mater Studiorum, University of Bologna,

Bologna, Italy

Real-time analysis of large multimedia streams is nowadays made e�cient by the

existence of several Big Data streaming platforms, like Apache Flink and Samza.

However, the use of such platforms is di�cult due to the fact that facilities they

o�er are often too raw to be e�ectively exploited by analysts. We describe the

evolution of RAM3S, a software infrastructure for the integration of Big Data

stream processing platforms, to SPAF, an abstraction framework able to provide

programmers with a simple but powerful API to ease the development of stream

processing applications. By using SPAF, the programmer can easily implement

real-time complex analyses of massive streams on top of a distributed computing

infrastructure, able to manage the volume and velocity of Big Data streams, thus

e�ectively transforming data into value.

KEYWORDS

stream processing, real-time analysis, Big Data, multimedia data streams, software

framework

1. Introduction

Starting from early 90’s, multimedia (MM) data have been employed in a wide range of

applications. The widespread accessibility of such data is made possible by the availability

of inexpensive production (cameras, sensors, etc.) and storage technologies. Moreover, MM

data frequently arrives in streams, or successions of the same sort of MM objects, which are

received from a producer.

Significant value can be mined fromMM streams, but there are also significant demands

placed on computational capacity and analytical ability (Tang et al., 2016). Real-time analysis,

in particular, necessitates the processing of data streams at high throughput and low latency

in order to take advantage of data freshness to act and make judgments rapidly.

A number of Big Data platforms exist (Zaharia et al., 2010; Alexandrov et al., 2014;

Noghabi et al., 2017) that provide services for the management and analysis of massive

amounts of information, enabling evidence-based decision making across a wide range of

human activities. However, the usage of such platforms is complicated for analysts, because

their primary attention is on issues of fault-tolerance, synchronization, increased parallelism,

and so forth, rather than offering programmers an intuitive interface.

In this paper, we show how RAM3S (Bartolini and Patella, 2018, 2019, 2021)—a

framework that we developed to integrate Big Data management platforms (RAM3S stands

for Real-time Analysis of Massive MultiMedia Streams)—has evolved int SPAF, a Stream

Processing Abstracting Framework. The use of SPAF makes much easier, for researchers,

to implement real-time complex analyses of massive MM streams exploiting a distributed

computing environment, without specific knowledge of the underlying stream processing

distributed infrastructure.

After introducing the running example that will be exploited throughout the paper

to illustrate RAM3S/SPAF concepts (Section 2), we will briefly describe the scenario that

originally led us to introduce RAM3S and present its current structure (Section 3). The key

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1227156
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1227156&domain=pdf&date_stamp=2023-10-25
mailto:ilaria.bartolini@unibo.it
https://doi.org/10.3389/fdata.2023.1227156
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1227156/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

concepts in SPAF are illustrated in Section 4, while Section 5

provides details on how the stream processing model considered by

SPAF can be extended to deal with Direct Acyclic Graph topologies.

We will then proceed to analyze the time/space overhead of

the SPAF framework (Section 6) and to discuss some of the

developments we are working on to be included in the next SPAF

release (Section 7). Finally, Section 8 concludes, by also providing a

multi-variable analysis of SPAF.

2. Running example: face recognition

In May 2023, Italy’s Interior Minister Matteo Piantedosi,

interviewed by a national newspaper, claimed that the Italian

government was “considering an extensive video surveillance

system with facial recognition capabilities” to be deployed in

“in highly frequented places” such as stations, hospitals, and

commercial areas, in order to contrast the (at the moment)

recent rise of crimes and acts of violence.1 Besides the obvious

concerns about the privacy of citizens and its trade-off with their

security/safety, the proposal was also interesting for its impact

on the technological infrastructure of smart cities. Indeed, in

this application, several cameras are disseminated in the territory

(airports, metro stations, public buildings, and so on), producing

videos. In order to provide automatic facial recognition, each video

has to be first streamed as a sequence of frames and each incoming

frame analyzed to:

(1) Verify if it contains a face;

(2) Compare the (possibly) discovered face against a number of

“known” faces, to retrieve the known face most similar to the

input face;

(3) The face is regarded as correctly recognized if there is a high

enough similarity score between the newly discovered face and

its most similar known face; otherwise, it is regarded as an

unknown face.

Since performing all above tasks within the camera itself would

require expensive hardware (as well as a way to upload “known”

faces), solutions based on edge computing can be hardly applied.

Rather, a data infrastructure has to be devised to (1) send videos

from cameras to a data processing platform and (2) to analyze such

videos on the platform as previously illustrated (see Figure 1). The

amount of data coming from several thousands of cameras around

Italy would clearly prevent the use of a centralized platform. On

the contrary, distributed computing can be of help, because every

single frame might be analyzed independently of the others, so that

processing of incoming videos could be performed in parallel.

Automatic facial identification in videos was the first

application of RAM3S that we created (Bartolini and Patella,

2018).2 For this use case, we exploited the well-known Viola–

Jones algorithm (Viola and Jones, 2001) for face detection, while

comparisons of “faces” was performed using a technique based on

principal component analysis using eigenfaces (Turk and Pentland,

1 https://news.italy24.press/local/509606.html

2 Other applications that have been included in RAM3S (Bartolini and

Patella, 2021) are plate detection/recognition (Du et al., 2013) and printed

text recognition in videos.

1991). Clearly, one could consider using different techniques

for face detection/recognition, with different precision and time

complexity: The use of any particular algorithm is independent on

how the computation is distributed on the processing platform,

which is oblivious of the tasks it performs.

For the purpose of suspect identification, every time a detected

face is sufficiently similar to one of the faces in the knowledge

base, the prototype we implemented to illustrate the use of

RAM3S raises an alarm. This is also reflected in the prototype

GUI (see Figure 2), which outputs incoming images with a frame

enclosing each detected face with color red (if recognized) or green

(not recognized).

We will use the face recognition use case presented here in the

remainder of the paper to instantiate many RAM3S (and SPAF)

components. In this way, we will provide concrete form to abstract

concepts, so as to improve their comprehensibility to the reader.

3. Introducing RAM3S

Our experience with Big Data streaming analysis platforms

derives from a private-financed project focused on the analysis of

multimedia streams for security purposes. The private company

already had an experience in Big Data batch processing, through

the long term use of tools such as Hadoop (http://hadoop.

apache.org) and Spark (http://spark.apache.org). However, it was

clear that the use of such technologies was inappropriate for a

number of security tasks, such as face detection for the automatic

identification of “suspect” people (Turk and Pentland, 1991),

recognition of suspicious behavior from videos (Mu et al., 2016),

human actions (Zhang et al., 2016) or gesture (Roh and Lee, 2015),

audio events (Łopatka et al., 2016), and so on. Indeed, in such

online applications, data have to be analyzed as soon as these are

available, so as to exploit their “freshness.” The storing of incoming

data is, thus, usually unnecessary and the efficiency of the system

depends on the amount of data processed, keeping low latency, at

the second, or even millisecond, level.

To deal with this (at the time) novel stream processing

paradigm other Big Data platforms were introduced, among which

Storm (http://storm.apache.org), Flink (http://flink.apache.org),

and the streaming version of Spark. Abstracting by specificities

of each Stream Processing Engine (SPE) [see Zaharia et al.

(2010) and Alexandrov et al. (2014) for details on Spark and

Flink, respectively], the following common characteristics can be

discovered [see also Bartolini and Patella (2018) for a more detailed

comparison of the SPEs originally considered in RAM3S]:

• Some nodes in the architecture are in charge of receiving the

input data stream, thus containing the data acquisition logic

(these are called Receivers in Spark, Spouts in Storm, and

Producers in Flink).

• Other nodes perform the actual data processing (these are

called Drivers in Spark, Bolts in Storm, and Task Nodes in

Flink).

• Finally, data sources and data processing nodes are connected

to realize the data processing architecture, which takes the

form of a Directed Acyclic Graph, where arcs represent the

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://news.italy24.press/local/509606.html
http://hadoop.apache.org
http://hadoop.apache.org
http://spark.apache.org
http://storm.apache.org
http://flink.apache.org
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

FIGURE 1

Face recognition use case.

FIGURE 2

The GUI of the suspect face detection RAM3S prototype: the left

person is correctly recognized (“mpatella,” included in the face DB),

the right person is correctly unrecognized (not included in the face

DB).

data flow between nodes (in Storm, such architecture is

termed Topology).

We were, therefore, challenged to implement a number of

security-related use-cases on top of such SPEs, with the goal of

comparing them by way of several performance KPI, such as

throughput, scalability, latency, etc. This required to re-implement

every multimedia stream analysis application on top of each SPE,

leading to huge code replication and other inefficiencies. For this,

we considered realizing a middleware software framework to allow

users to:

(1) avoid having to deal with details of each specific SPE (such as

how fault-tolerance is achieved, how stream data are stored,

etc.), and

(2) easily extend already available (centralized) software to a scaled

out solution.

This way, we strove to bridge the technological gap between

facilities provided by SPEs and advanced applications (for which

transition to a distributed computing scenario might not be

straightforward). RAM3S represents, as far as we know, the only

attempt to provide a general perspective on the analysis of massive

multimedia streams, providing the programmer with an abstract

view hiding details and complexity of distributed computing.

3.1. RAM3S: almost a framework

Our original goal for RAM3S was to create a framework,

according to the definition provided in Gamma et al. (1995):

“A framework is a set of cooperating classes that make up

a reusable design for a specific class of software. . . You customize

a framework to a particular application by creating application-

specific subclasses of abstract classes from the framework.”

A framework, therefore, determines the overall architecture

of an application and focuses on the reusability of a solution

architecture, exposing to application programmers only parameters

necessary to realize the desired behavior, as enacted through

the internal mechanisms of the framework itself. Applications

developed on a framework have therefore some degrees of freedom,

that must be however provided by the framework a-priori. For this

latter reason, it is of paramount importance that the framework is

also characterized by extensibility, since it is practically impossible

to predict all the needs of concrete applications in advance; this way,

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

the framework will be able to better withstand the test of time, since

it can eventually evolve through possible future integrations.

The current version of RAM3S allows to experiment with the

various SPEs (namely, Spark Streaming, Storm, Flink, and Samza)

by providing a separate “generic” application for each of them.

Each of such applications allows the execution of the specific

example on the respective SPE. RAM3S interposes an abstraction

layer based on interfaces between the generic and the example

applications. Such interfaces model aspects of both data streaming

and data processing:

• The Receiver interface represents the external system from

which the application receives data. The receive method

accommodates the logic of receiving the single processable

object from the external system.

• The Analyzer interface represents the container of all the

processing logic of the application: its analyze methods

takes aMM object as input, generating a single object as result.

• Finally, the ApplicationFactory interface is responsible

for representing the application as a unit; in essence, it

serves as a collector for the Analyzer implementation

and for the Receiver implementation, by instantiating the

concrete Analyzer and Receiver type classes defined in

the application context.

Figure 3 illustrates (Figure 3A) the relationships between

RAM3S interfaces and (Figure 3B) how these are implemented for

the face detection example.

Let us now consider how RAM3S interfaces are used by

generic applications. The purpose of a generic application is to

map the application (defined in terms of the above interfaces) to

the relevant SPE, therefore executing its logic on the underlying

runtime framework. The class diagram in Figure 4 contextualizes

the RAM3S generic applications with respect to the various stream

processing engines considered in RAM3S.

Generic application code is always completely specified within

the main method and has a recurring structure, presented in

Figure 5.

The concrete factory is used to create the Receiver and

Analyzer; then, such objects have to be translated into objects

and procedures specific of the underlying SPE, as exposed by

its APIs; the purpose of this step is to concretely establish the

connection to the specific data processing infrastructure and to

implement the application logic. Clearly, this is so-called boilerplate

code, peculiar to the underlying SPE, that has to be repeated, almost

verbatim, for each specific application. Moreover, code specific for

a single application is repeated (again, almost verbatim) over the

mainmethod of any used SPE.

A final component of RAM3S is the one used to support

different message brokers (Bartolini and Patella, 2021). The

abstraction layer devoted to message brokers consists of the

messageBroker package shown in Figure 6. This package

includes interfaces for the abstract representation of “readers”

and “writers” (Reader and Writer interfaces) and concrete

classes for the implementation of interfaces for a specific message

broker (the figure reports only those for Apache Kafka, i.e.,

KafkaReader and KafkaWriter). For each stream processing

engine (Figure 6 depicts the example of Flink), an additional layer

is needed to map the above Reader and Writer concrete classes

into, respectively, the source and destination of data processed by

the application.

From the analysis we have presented, we can conclude that, at

present, RAM3S allows different stream processing applications to

be executed in a facilitated manner, but is not yet able to allow the

definition of a new application without having to write part of the

code of RAM3S itself. This drawback places RAM3S in the role

of a “quasi-framework.” On the other hand, the message broker

support is independent of the application code (thus satisfying

the reusability requirement) and makes it possible to decouple

the implementation of the read and write “adapters” of a certain

message broker from the underlying stream processing engine

(thus also offering extensibility). In the next section, we will

introduce SPAF, whose main goal is to enable the use of RAM3S

according to the original intent, namely to facilitate the creation

of new stream processing applications, while striving for both

reusability and extensibility.

4. From RAM3S to SPAF

Before describing the concepts that have been used to define

our Stream Processing Abstraction Framework, SPAF, it is useful to

recollect the original requirements for RAM3S:

Facilitate the creation of stream processing applications:

the SPAF API should explicitly expose the pivotal concepts

of stream processing and, more importantly, allow the

application to be defined by writing code as close as possible

to a description in natural language. Checking type-safety at

compile time would be also helpful.

Framework independence: here, the target user is not

the programmer of applications, rather the developer who

wants to extend SPAF to work with a different SPE. Such

programming interface is called Service Provider Interface

(SPI) and is a programming pattern supported natively by

Java.

Connector independence: it should be possible to integrate,

in a pluggable manner, new connector providers (e.g.,

message queues, file systems, databases), again exposing a

SPI to be implemented by developers. SPAF will therefore

expose a dual abstraction layer: one for SPEs and one

for input/output supports. Connector abstraction actually

concerns the application programmer as well, since the SPAF

API should relieve the programmer of the implementation

details regarding the use of each connector’s libraries and

allow her to specify sources and destinations in a declarative

manner.

4.1. Simplifying assumptions

In the first version of SPAF, a number of simplifying

assumptions has been introduced to ease implementation of the

previously described requisites:

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

FIGURE 3

RAM3S programming interface (A) and its instantiation for the face recognition application (B).

FIGURE 4

RAM3S generic applications for all included stream processing engines.

FIGURE 5

Code of RAM3S for the face recognition application.

(1) Connectors will be limited to message queues, as provided

by well-known message brokers such as Apache Kafka and

RabbitMQ.

(2) Streams will be composed exclusively by key-value pairs.

(3) No support will be provided for storing intermediate

computation results, i.e., stream processing will be stateless.

(4) The processors operating transformations on streams

will accept a single input stream and a single output

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

FIGURE 6

RAM3S support for message brokers.

stream; essentially, it will be possible to define only

“linear” topologies.

(5) It will be possible to specify only the logical topology

(definition of the transformation process from input to output)

and not the physical topology (definition of how various

computational elements of the logical topology—sources,

transformation operators, destinations—are to be distributed

on the physical nodes).

Assumption 1 can be easily overcome by providing tools (e.g.,

a command-line script) able of reading data to be processed from

the desired source type (e.g., an input file) and publishing them to

an appropriate input queue; likewise, it is possible to implement

scripts able of consuming messages from the output queue and

store them on the desired destination (e.g., a database). As for

Assumption 3, our choice was to favor generality and simplicity

over completeness. Indeed, not all SPEs might support stateful

computation (for example, Storm does not) and those that support

it introduce several other concepts that would complicate the SPAF

model of stream processing. Although this version of SPAF does

not include formal, integrated support for storing (globally or

locally) intermediate results of individual transformation nodes,

nothing prevents the programmer to implement access to storage

resources external to the framework (e.g., files, DBs, object caches)

in the transformation logic defined in the processing nodes, i.e.,

the programmer is responsible for implementing support for

stateful computation. In this way, complex algorithms for analyzing

multiple objects, like interval joins (Piatov et al., 2021), can be

mapped to single processing nodes that are part of a more complex

topology, performing other analyses (like image processing and/or

event detection) on data streams (Persia et al., 2017). While a

possible solution to overcome Assumption 4 will be described in

Section 5, Assumption 5 can be partially solved by connecting

multiple independent RAM3S applications by way of appropriate

connectors; in this way, each logical topology would be mapped to

a physical topology (defined automatically by, and peculiar of, the

SPE chosen for each RAM3S application). Since this so-called super-

topology can assume the form of a Direct Acyclic Graph (DAG),

this can also be viewed as a solution to Assumption 4.

4.2. SPAF architecture

Figure 7 shows the general architecture of SPAF. The

application programmers will use the user-facing API to implement

FIGURE 7

SPAF architecture.

their stream processing application using Java code. Developers

wanting to extend SPAF to include new SPEs (or connectors)

will use the provider-facing SPI to write the glue code that allows

bridging SPAF concepts to those peculiar to the SPE.

4.3. SPAF concepts

The first step in the definition of SPAF was to provide a general

model of the stream processing problem, thus defining a set of

entities that are common to all SPEs (see Figure 8).

The Context entity represents the actual execution

environment in which the abstractly defined application will be

implemented. This therefore acts as a “bridge” between the abstract

SPAF world and the concrete world made available by SPEs. The

run method of the Context class is the “entry point” of the

stream processing application, just like the main method of a

Java class. Through the run method, we submit as a parameter

the application, defined in terms the SPAF API to the underlying

SPE; the SPE will then “interpret” the application, “translating”

it into an equivalent representation using its specific concepts.

Implementation of the Context is thus totally peculiar to each

SPE; for this, the class Config allows the programmer to configure

the execution environment in an abstract way (on the API side)

and to implement such configurations in a provider-specific way

(on the SPI side).

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

FIGURE 8

Main SPAF classes and interfaces.

A Topology defines the computational logic of a stream

processing application, that is, how the input data are transformed

into the output data. As said, in the first version of SPAF only linear

topologies are supported. We conceived the framework to accept

specifications of the logic of Processor nodes also via lambda-

functions and present a fluent API to compose the topology.

To achieve this, we exploited a “creational-type” design pattern

called Builder, allowing complex objects (like a topology) to be

constructed step by step; this could also re-used in future versions

of SPAF, where it may be convenient to change the way the topology

is represented (e.g., to encompass DAG topologies).

The concept of Application basically coincides with the

one of Topology, essentially adding descriptive information

only. Conceptually, however, a stream processing application could

define more than one topology: this is why the two entities are

separated, although, in this first version of SPAF, there is a 1-1

relationship between Application and Topology.

Source and Sink clearly denote the source and destination,

respectively, for data in a stream processing application.

A Processor represents a node in the Topology,

implementing a processing step that is used to transform data,

thus realizing the actual data processing logic. Processors can

be thought as “black boxes” with a single input and a single

output stream, where data transformation can be defined arbitrarily

through the process method. The additional init method

can be defined in those cases needing a one-off initialization of

the Processor.

Finally, the Element entity represents the only data type that

can be streamed in a SPAF Topology. The Element class is

somewhat hidden from the application programmer, while its use

appears evident in the SPI layer, for both SPEs and connectors.

We finally provide in Table 1 a mapping between SPAF

concepts and those encountered in the considered SPEs.

4.4. Developing an application using SPAF

To create an application in SPAF, it is necessary to follow some

steps, mostly independent of the specific streaming application

logic to be created. In the following, we will exemplify the

creation of an application for the “face recognition in videos”

example introduced in Section 2. What we want to prove with this

“experiment” is that SPAF is indeed able to satisfy the requirements

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

TABLE 1 Mapping between SPAF and SPE concepts.

SPAF Apache Samza Apache Flink Apache Storm Apache Spark

Context
Local LocalApplicationRunner LocalStreamEnvironment LocalCluster JavaStreamingContext

Remote RemoteApplicationRunner RemoteStreamEnvironment StoreSubmitter JavaStreamingContext

Application TaskApplicationDescriptor StreamExecutionEnvironment
LocalCluster

StoreSubmitter
JavaStreamingContext

Topology
Logical StreamGraph StormTopology DStreamGraph

Physical StreamTask JobGraph Task

Element Object
Tuple0, ..., 25<T>

DataStream<T>
Tuple DStream<T>

Source InputDescriptor SourceFunction<T> Spout InputDStream

Processor StreamTask::process()
ProcessFunction::

processElement()
Bolt DStreammethods

Sink OutputDescriptor SinkFunction<T> Bolt DStream::foreachRDD()

listed in Section 4, i.e., framework and connector independence

and ease of creation of the application. As it will be clear, the

application-specific code can be easily distinguished from the

generic SPAF-based application code.

The code needed for the complete specification of a SPAF

application has actually a dual nature:

• Some declarative code, included in a configuration file, needed

to specify the customization of SPAF entities, like Context,

Source, or Sink.

• Some procedural code, used to instantiate SPAF classes and to

specify the actual stream processing application logic; this is

included in the mainmethod of the application and, again, is

mainly boilerplate code.

For the specific use case, a possible config file is shown in

Figure 9, where one can recognize the specification of the context

(using Flink as SPE) of the application, and of the input and output

connectors (using Kafka).

Finally, the FaceRecognition application includes a main

method with the code included in Figure 10.

The goals of independence on frameworks and connectors

are demonstrated by the fact that it is quite easy to change the

configuration file to encompass different SPEs (in the context

section) or connectors (source and sink sections). As to the

creation of stream processing applications, it is clear that most of

the procedural code is indeed boilerplate, i.e., repeated with no

variation across different applications. The only specific part is at

Step 3, where we specify that this application is composed of three

main phases: (1) detection of faces in each image, (2) recognition

of detected faces, and (3) (possible) marking of recognized faces

(note that these correspond exactly with the three steps illustrated

in Section 2). Obviously, the programmer should also write the code

for each individual Processor (Figure 11 shows the example

for the FaceRecognitionProcessor), but this is absolutely

independent of the underlying stream processing infrastructure

(following the original goal of RAM3S). Step 3 also demonstrates

the use of the Builder pattern, where each Processor refers to its

predecessor through its id.

A dimension of fundamental importance, which should be

taken into account when choosing any development tool, is the so-

called “learning curve”, which relates the level of knowledge and

the time invested in learning a new thing. SPAF plays the role of

the “guide” that takes the programmer through the discovery of

stream processing concepts, providing a logical path that facilitates

their understanding and thus making the learning curve of stream

processing less daunting. SPAF is therefore able to make life easier

for the inexperienced programmer who must venture into the

world of stream processing for the first time, and make that journey

less treacherous (like Virgil, accompanying Dante through the

“hell” of stream processing).

5. Discussion

In this section, we want to highlight two interesting concepts,

both related to the constructions of DAG-shaped topologies,

namely the SPAF representation of topologies and the so-called

super-topologies.

When considering the representation of topologies in SPAF,

we should remind that the key operation for a topology is how

the SPAF stream processing layer (see Figure 7) is able to map the

Topology entity in the corresponding topology of the underlying

SPE (who will then autonomously map it to a physical topology on

computing nodes). Since this version of SPAF only accepts linear

topologies, this mapping is extremely simple, being implemented

as a loop visiting all nodes of the topology in an ordered way (see

Figure 12).

Refactoring the Source, Processor, and Sink entities

(see Figure 8), currently used to build topologies, an abstract

entity TopologyNode could be created, exposing a common

interface. In this way, Sources, Processors, and Sinks could

be considered as TopologyNode instances, allowing to use

polymorphism to implement simple (and elegant) algorithms for

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

FIGURE 9

Configuration file for the SPAF face recognition application.

FIGURE 10

mainmethod for the SPAF face recognition application.

mapping topologies, e.g., by exploiting a Visitor pattern based on a

topological sort of the DAG.

Finally, we consider the use of multiple SPAF applications, in

a simultaneous and coordinated manner, with the aim of solving

a stream processing problem in a “highly distributed manner”

(we will soon clarify what we mean by this adjective). The main

idea is based on the decomposition of the stream processing

problem into sub-problems, and in solving them through the use

of multiple, independent but cooperative, SPAF projects. Each

SPAF application will define a certain logical topology able of

solve a certain sub-problem; each topology will receive data via the

connectors provided by SPAF, process them, and send the processed

data back to the outside world. In this scenario, message queues

are used as means of communication between the topologies of

individual projects. In other words, we can implement a topology

of topologies (see Figure 13). Individual topologies, in fact, can be

thought as “black boxes”, processing nodes of a DAG, receiving

and sending data via the arcs connecting them, the latter realized

by different message queues. What we just described corresponds

precisely to the definition of topology given in Section 4.3, but at

a higher level, thus the name of super-topology, where the prefix

super- is to be understood in the Latin sense of “that stands above”.

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

FIGURE 11

Implementation of a Processor in SPAF.

FIGURE 12

Mapping topologies.

In the diagram of Figure 13, it is shown how to conceptually

realize a SPAF super-topology. It will be necessary to provide

“border” sources and sinks (shown in blue and yellow, respectively),

functioning as the input and outputs of the entire super-topology.

The processing (red) nodes of the super-topology will instead

correspond to a single SPAF application each, defining its own

Source and Sink, and will consist of a (currently, only linear)

Topology of Processors. Communication between nodes of

the super-topology, i.e., between the various SPAF applications, is

realized by way of appropriate message queues between node pairs

(these are represented by red arcs in the figure and exemplified on

the right). Obviously, each topology will have to be configured to

receive and send data to the right message queues, whether they

are “border” (in the example, topologies T1, T2, T4, and T5) or

“internal” (T3).

The use of super-topologies in SPAF opens up some interesting

scenarios:

• Each SPAF application, i.e., each node in the super-topology,

can be executed by a potentially different SPE, since each

application can in fact specify the desired SPAF provider

independently from the others.

FIGURE 13

Super-topologies in SPAF.

• It follows that each SPAF application, i.e., each node of the

super-topology, can potentially be executed on a cluster of

nodes by itself; for this, we previously used the term “highly

distributed” execution.

The first version of the SPAF framework does not allow super-

topologies to be managed at the API level. Rather, each application

is independent of the others and its lifecycle must be managed

by the programmer. The implementation of the illustrated scheme

thus requires a systemic effort aimed at setting up the clusters of

the various SPEs, the arrangement of the messaging systems, the

configuration of the connectors, and the coordinated startup of

the individual applications. As an interesting extension of SPAF,

we are considering the implementation of facilitator tools able of

automatically performing the above described tasks.

6. SPAF overhead

It is well known that, often, increased flexibility comes

at the price of reduced performance. In this section, we

investigate the impact of SPAF on performance of a MM stream

analysis application.

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

FIGURE 14

Class diagram for a connector provider descriptor (in the example, Kafka).

FIGURE 15

Definition of a Java annotation for specifying the degree of parallelism.

A SPAF application is essentially composed of several layers of

abstraction, which can be summarized as follows:

Application layer: This is the SPAF application code, defined

by the programmer, which consists mainly of the code defining

the Processors and the Topology.

Interpretation layer: It is the code of the SPAF framework,

consisting of the glue-code contained in the SPAF APIs and,

most importantly, the code of the mapping to the employed

SPE, translating the application in terms of the underlying

framework.

Execution layer: This is the code of the relevant underlying

SPE, made usable by the SPAF provider, which actually

executes the translated application.

The cost required to execute the application, both in terms

of used CPU and memory, can be broken down into three

components, based on the above layers.

The cost of execution of the Application Layer is totally

dependent on the logic of the application. The programmer has

total freedom in defining operations within Processors, and can

use any third-party library. This cost is therefore difficult to predict,

but it has to be paid in any case, thus the use of SPAF does not add

any extra complexity.

Clearly, the cost of the Execution Layer is also independent of

SPAF, and has to be paid in any case. As a matter of fact, one of the

original intents of RAM3S was to help the programmer to compare

performance of different SPEs in managing a stream processing

application. It is obvious that using SPAF does not increase costs.

It follows that the only cost component imputable to SPAF is

the one coming from the Interpretation Layer, translating the SPAF

application to an application of the underlying SPE. This cost is

clearly paid only once, when the SPAF application is started, and

it consists in:

(1) translating the application, written with SPAF concepts, using

concepts of the underlying SPE, and

(2) visiting the topology.

The first cost clearly is traded with the steepness of the learning

curve, as stated in Section 4.4. If we concur that writing an

application with SPAF is easier than using the original SPE, this

comes at the cost of translating concepts between frameworks. The

second cost is paid at runtime and can be further divided into

three steps:

(1) iterating through the topology,

(2) translating each visited Processor to the underlying SPE,

and

(3) executing the topology in the underlying SPE.

Steps 2 and 3 have a constant time complexity for each element,

while Step 1 has a linear time complexity (this is obvious for

linear topologies considered in this version of SPAF, but also

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

FIGURE 16

SPAF topology for an application of automatic suspect identification

from videos.

with DAG topologies if we exploit a Visitor pattern as stated in

Section 5). As to space complexity, since each topology component

needs translation, this is again linear in the number of nodes of

the topology.

7. Further developments

In this section, we discuss three further directions that we

are considering to include in next SPAF versions: support for

(1) JMS connectors, (2) configuration of the physical topology,

and (3) automatic code generation through a Domain Specific

Language (DSL).

7.1. JMS connectors

As we detailed in Section 3.1, RAM3S already included

support for different message brokers (namely, Apache Kafka and

RabbitMQ) and these have been inherited by SPAF in the Source

and Sink interfaces, providing descriptors for both connector

providers (see Figure 14 for details).

The difficult part in implementing a new connector in SPAF

lies mainly on the provider side, since this strongly depends on the

peculiarities of SPE, rather than on the message broker that one

wants to connect. Implementation of a connector descriptor, on

the other hand, is relatively straightforward, since it is essentially a

matter of deciding which configurations have to be made available

and how to represent such configurations as objects. With this in

mind, it becomes apparent that the implementation of connectors

for new message broker type systems can be an onerous task,

thus making SPAF difficult to extend on this side. One possible

TABLE 2 Comparison between RAM3S and SPAF (n denotes the number of

nodes in the topology).

Feature RAM3S SPAF

Creation of the

application

(boilerplate code, § 3.1) (boilerplate code, § 4.4)

Framework

independence

(SPE-dependent code

repeated over

applications, § 3.1)

(config file, § 4.4)

Connector independence

(connector-dependent

code in the Receiver,
§ 3.1)

(config file, § 4.4)

Topology shape

(single node topology) (linear topology,

extensible to DAG, § 7)

Statefulness of

computation

(single node topology) (stateless only, § 4.1)

Physical topology

(single node topology) (extensible, § 7.2)

Extension to new SPEs

(need to write code for

each app, § 4.4)

(SPE SPI, § 4)

Extension to new

connectors

(connector-dependent

code in the Receiver,
§ 3.1)

(connector SPI, § 4)

Time overhead O(1)

(single node topology)

O(n)

(once, § 6)

Space overhead O(1)

(single node topology)

O(n)

(§ 6)

way to drastically reduce the number of connectors to be realized,

of both descriptive and concrete types, is to exploit the JMS

[Jakarta (or Java) Messaging Service] abstraction framework.3 In

a nutshell, JMS is an abstraction framework for using message-

queue systems. To draw a parallel, we could say that SPAF stands

to SPEs as JMS stands to message-queue systems. Most of the

message-queue systems (including Apache Kafka and RabbitMQ)

implement the JMS provider; it follows that, by realizing a single

connector for JMS, SPAF would turn out to be potentially linkable

to any message-queue system. If the message broker one intends to

use does not include a JMS provider, it would be always possible

to autonomously implement such a provider, since JMS is an

open specification.

3 The JMS specification is available at https://javaee.github.io/jms-spec/.

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://javaee.github.io/jms-spec/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

7.2. Physical topology configuration

Anumber of SPEs (like Storm and Flink) allow the programmer

to control the degree of parallelism in the execution of the

logical topology. This allows to determine the structure of the

corresponding physical topology, in particular specifying the

number of physical nodes (tasks) to be provided for performing

the computation specified in a unique node of the logical topology

(the SPAF Processor). The degree of parallelism can be specified

at different levels of granularity, ranging from: system level

(for all applications), individual application level (for a single

Application), or individual operator (the single Processor).

In the current version of SPAF, implemented providers do

not allow to change the degree of parallelism at the level of

the individual operator. SPAF APIs do not allow to specify such

information, thus parallelism could only be set, in a totally arbitrary

manner, for all operators. A possible future development of SPAF,

which we are considering in order to allow fine tuning performance

of a stream processing application at runtime, would require to

expose the ability to specify the desired degree of parallelism for

eachSource,Sink, andProcessor, at the API level. A possible

means of implementation to realize this could be that of using

language metadata that can be inspected at runtime, like Java

Annotations (see Figure 15 for a possible example).

Such a defined annotation could be specified for each

Processor as in the following, where we illustrate the case of the

FaceRecognitionProcessor described in Figure 11.

@ExecutionHints(parallelism = 5)
public class FaceRecognitionProcessor implements

Processor<...> {
@Override
public void init() { ... }
@Override
public void process(...) { ... }

}

7.3. Automating the generation of
applications

In the current incarnation of SPAF, to create a new stream

processing application, it is necessary to manually perform a series

of tasks that are potentially repeated over different projects:

(1) writing the boilerplate code for the specific SPAF application,

(2) choosing the stream processing provider and connector

provider,

(3) creating the application configuration files, and

(4) deploying the whole application on the computing

infrastructure.

The open-source community has developed several tools

to automate the kinds of of tasks required to prepare a

new software project, like Archetypes in Maven (https://maven.

apache.org/archetypes/) or Yeoman Generators (https://yeoman.

io/generators/). However, these tools express their full power when

they are coupled with a language used to describe the project in

a declarative way. In practice, we are assuming the definition of a

Domain Specific Language (DSL) for the high-level description of

SPAF projects.

To illustrate this idea, we provide an example for the use

case of automatic suspect identification from videos introduced

in Section 2. The topology illustrated in Figure 16 represents an

evolution of the current application example for face recognition

(see Section 4.4). This new topology provides the possibility of

feeding, at runtime, the stream processing application with new

faces to be recognized (via the “Suspects Photos” Source); such

faces would be compared by the “Face Recognition” Processor

with images coming from cameras (“Input Photos” Source),

appropriately processed by the “Face Detection” Processor;

the output of this Processor is then used by two further

Processors, “Face Marking” (for drawing frames around

detected faces in the original image, coloring them differently

whether they were recognized or not, see Figure 2) and “Alert

Generator” (which would generate a suspicious detection alert); the

outputs of these two processors are then sent to two specific Sinks,

“Output Photos” and “Suspect Alerts”, respectively.

By using a prototypical idea of DSL, inspired by PlantUML

(https://plantuml.com/), which is the language used to define

several figures in this paper, this topology could thus be described

as follows:

source InputPhotos
source SuspectsPhotos

processor FaceDetection
processor FaceRecognition
processor FaceMarking
processor AlertGenerator

sink OutputPhotos
sink SuspectAlerts

InputPhotos --> FaceDetection
FaceDetection --> FaceRecognition
SuspectsPhotos --> FaceRecognition
FaceRecognition --> FaceMarking
InputPhotos --> FaceMarking
FaceMarking --> OutputPhotos
FaceRecognition --> AlertGenerator
AlertGenerator --> SuspectAlerts

An interpreter for such a language might take as input a

file containing the topology description and invoke the project

generator so that amore advanced boilerplate code can be produced

wrt the one usually generated with the current version of SPAF

(see Section 4.4). Clearly, in addition to the boilerplate code,

the generator will have to produce classes to accommodate the

implementation code of the Processors defined in the topology.

...

Topology topology = new Topology()
.addSource("InputPhotos", inputPhotosSource)
.addSource("SuspectsPhotos", suspectsPhotosSource)
.addProcessor("FaceDetection", new

FaceDetectionProcessor(), "InputPhotos")
.addProcessor("FaceRecognition", new

FaceRecognitionProcessor(config),
"SuspectsPhotos", "FaceDetection")

.addProcessor("FaceMarking", new
PersonFaceMarkingProcessor(), "InputPhotos",
"FaceRecognition")

.addProcessor("AlertGenerator", new
AlertGeneratorProcessor(), "FaceRecognition")

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://maven.apache.org/archetypes/
https://maven.apache.org/archetypes/
https://yeoman.io/generators/
https://yeoman.io/generators/
https://plantuml.com/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

.addSink("SuspectAlerts", suspectAlertsSink,
"AlertGenerator")

.addSink("OutputPhotos", outputPhotosSink,
"FaceMarking");

...

8. Conclusions

We introduced SPAF, a Stream Processing Abstraction

Framework, as an evolution of RAM3S. As common for

an abstraction framework, SPAF hides the working details

of subsystems conceived for stream processing (like Samza

and Storm), allowing reusability, interoperability, flexibility,

and extensibility.4 We believe that the use of SPAF could

effectively ease the development of multimedia stream data

mining applications in a distributed scenario. This is clearly

helpful to implement an application on top of a stream

processing Big Data platform (since the developer can abstract

the details specific to the framework) and also to compare

performance of different stream processing platforms for a

specific application, e.g., for benchmarking (Prakash, 2018). We

finally highlight advantages and current limitations of SPAF

by providing an analysis of its performance on a series of

features (variables) that we believe are important for a software

framework: These are described in Table 2, where we also provide

a comparison with RAM3S, i.e., SPAF predecessor and only

competitor. In this way, future versions of SPAF (and also future

competitors) could be mapped to this table, highlighting their pros

and cons.

4 Quoting David Wheeler: “All problems in computer science can be solved

by another level of indirection” (Spinellis, 2007).

Ethics statement

Written informed consent was obtained from the individual(s)

for the publication of any identifiable images or data included in

this article.

Author contributions

All authors equally contributed to the conception and design

of the study, the writing of the manuscript and its revision. All

authors contributed to manuscript revision, read, and approved the

submitted version.

Acknowledgments

The authors thank Nicolò Scarpa for implementing SPAF and

maintaining the github repository. Most of the figures, as well as the

analogy between SPAF and Virgil, have been created by Nicolò, and

elaborated by the authors.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.-C., Hueske, F., Heise, A., et
al. (2014). The Stratosphere platform for big data analytics. VLDB J. 23, 939–964.
doi: 10.1007/s00778-014-0357-y

Bartolini, I., and Patella, M. (2018). A general framework for real-
time analysis of massive multimedia streams. Multim. Syst. 24, 391–406.
doi: 10.1007/s00530-017-0566-5

Bartolini, I., and Patella, M. (2019). Real-time stream processing in social networks
with RAM3S. Future Internet 11, 249. doi: 10.3390/fi11120249

Bartolini, I., and Patella, M. (2021). The metamorphosis (of RAM3S). Appl. Sci. 11,
1158. doi: 10.3390/app112411584

Du, S., Ibrahim, M., Shehata, M., and Badawy, W. (2013). Automatic
license plate recognition (alpr): A state-of-the-art review. IEEE Trans.
Circ. Syst. Video Technol. 23, 311–325. doi: 10.1109/TCSVT.2012.22
03741

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).Design Patterns: Elements
of Reusable Object-Oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Łopatka, K., Kotus, J., and Czyżewski, A. (2016). Detection, classification and
localization of acoustic events in the presence of background noise for acoustic
surveillance of hazardous situations. Multim. Tools Applic. 75, 10407–10439.
doi: 10.1007/s11042-015-3105-4

Mu, C., Xie, J., Yan, W., Liu, T., and Li, P. (2016). A fast recognition algorithm
for suspicious behavior in high definition videos. Multim. Syst. 22, 275–285.
doi: 10.1007/s00530-015-0456-7

Noghabi, S. A., Paramasivam, K., Pan, Y., Ramesh, N., Bringhurst, J., Gupta, I., et al.
(2017). Samza: Stateful scalable stream processing at LinkedIn. Proc. VLDB Endowment
10, 1634–1645. doi: 10.14778/3137765.3137770

Persia, F., Bettini, F., and Helmer, S. (2017). “An interactive framework
for video surveillance event detection and modeling,” in Proceedings of the
2017 ACM on onference on Information and Knowledge Management, CIKM
2017 (New York, NY, USA: Association for Computing Machinery), 2515–2518.
doi: 10.1145/3132847.3133164

Piatov, D., Helmer, S., Dignös, A., and Persia, F. (2021). Cache-efficient sweeping-
based interval joins for extended allen relation predicates. VLDB J. 30, 379–402.
doi: 10.1007/s00778-020-00650-5

Prakash (2018). Spark Streaming vs. Flink vs Storm vs. Kafka Streams vs. Samza:
Choose your stream processing framework. Available online at: https://medium.com/
@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams-vs-samza-
choose-your-stream-processing-91ea3f04675b. (accessed May 22, 2023).

Roh, M., and Lee, S. (2015). Human gesture recognition using a simplified dynamic
bayesian network.Multim. Syst. 21, 557–568. doi: 10.1007/s00530-014-0414-9

Spinellis, D. (2007). “Another level of indirection,” in Beautiful Code: Leading
Programmers Explain How They Think, chapter 17, eds. A. Oram, and G. Wilson
(Sebastopol, CA, USA: O’Reilly and Associates), 279–291.

Tang, M., Pongpaichet, S., and Jain, R. (2016). “Research challenges in developing
multimedia systems for managing emergency situations,” in Proceedings of the 24th
ACM International Conference on Multimedia, MM ’16 (New York, NY, USA:
Association for Computing Machinery), 938–947. doi: 10.1145/2964284.2976761

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1007/s00530-017-0566-5
https://doi.org/10.3390/fi11120249
https://doi.org/10.3390/app112411584
https://doi.org/10.1109/TCSVT.2012.2203741
https://doi.org/10.1007/s11042-015-3105-4
https://doi.org/10.1007/s00530-015-0456-7
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.1145/3132847.3133164
https://doi.org/10.1007/s00778-020-00650-5
https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams-vs-samza-choose-your-stream-processing-91ea3f04675b
https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams-vs-samza-choose-your-stream-processing-91ea3f04675b
https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams-vs-samza-choose-your-stream-processing-91ea3f04675b
https://doi.org/10.1007/s00530-014-0414-9
https://doi.org/10.1145/2964284.2976761
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bartolini and Patella 10.3389/fdata.2023.1227156

Turk, M. A., and Pentland, A. (1991). “Face recognition using eigenfaces,” in IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1991
(IEEE), 586–591.

Viola, P., and Jones, M. (2001). “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001 (Los Alamitos, CA, USA: IEEE
Computer Society), 511.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010).
“Spark: Cluster computing with working sets,” in Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10 (New York, NY: USA:
USENIX Association), 10.

Zhang, J., Han, Y., and Jiang, J. (2016). Tucker decomposition-based
tensor learning for human action recognition. Multim. Syst. 22, 343–353.
doi: 10.1007/s00530-015-0464-7

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2023.1227156
https://doi.org/10.1007/s00530-015-0464-7
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	A stream processing abstraction framework
	1. Introduction
	2. Running example: face recognition
	3. Introducing RAM3S
	3.1. RAM3S: almost a framework

	4. From RAM3S to SPAF
	4.1. Simplifying assumptions
	4.2. SPAF architecture
	4.3. SPAF concepts
	4.4. Developing an application using SPAF

	5. Discussion
	6. SPAF overhead 
	7. Further developments
	7.1. JMS connectors
	7.2. Physical topology configuration
	7.3. Automating the generation of applications

	8. Conclusions
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


