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With the popularization of big data technology, agricultural data processing

systems have become more intelligent. In this study, a data processing method

for farmland environmental monitoring based on improved Spark components

is designed. It introduces the FAST-Join (Join critical filtering sampling partition

optimization) algorithm in the Spark component for equivalence association query

optimization to improve the operating e�ciency of the Spark component and

cluster. The experimental results show that the amount of data written and read

in Shu	e by Spark optimized by the FAST-join algorithm only accounts for 0.958

and 1.384% of the original data volume on average, and the calculation speed is

202.11% faster than the original. The average data processing time and occupied

memory size of the Spark cluster are reduced by 128.22 and 76.75% compared

with the originals. It also compared the cluster performance of the FAST-join

and Equi-join algorithms. The Spark cluster optimized by the FAST-join algorithm

reduced the processing time and occupied memory size by an average of 68.74

and 37.80% compared with the Equi-join algorithm, which shows that the FAST-

join algorithm can e�ectively improve the e�ciency of inter-data table querying

and cluster computing.
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1 Introduction

In the application of the Internet of things, technology in agricultural greenhouses,

sensors, Zigbee, cameras, and other devices are widely used. For real-time monitoring

and requirements, these devices will set the collection frequency very high, resulting in a

rapid increase in the amount of collected data, and these data also need to be calculated

and analyzed, which requires high timeliness of data processing. Traditional agricultural

data processing techniques are increasingly unable to meet the technical requirements. The

integration and extraction of agricultural big data based on the Internet of things require big

data technology support (Tao et al., 2020; Mourtzis et al., 2021). Therefore, one of the current

agricultural big data research directions is how to quickly process and analyze the massive

redundant and low-value farmland environmental monitoring data.

To this end, some scholars have researched the application of agricultural big data

and achieved good results (Cheng and Zhang, 2019). Lamrhari et al. (2016) processed

and analyzed the collected environmental data to build an effective agricultural big data

architecture to assist manufacturers and consulting companies make decisions, improve
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agricultural productivity and monitoring capabilities, and achieve

better results. Dean and Ghemawat (2004), aiming at the data

status of the agricultural Internet of things, proposed a cloud

mobile architecture based on distributed storage based on data

dispersion and discontinuity characteristics. Gabriel (2016), based

on the long-term and dynamic monitoring of soil information, etc.,

built a soil model database based on the above data and applied

it in actual production. Xiangbao et al. (2014) proposed a SMART

agricultural big data system framework in 2014, expounded on

the leading technologies, related resources, and main application

scenarios of agricultural big data, and developed an agricultural big

data platform based on intelligent analysis. Xiufeng et al. (2014)

proposed to establish a visual interactive system in the interactive

technology of agricultural big data services, which provides users

with multi-level network data services. Wensheng and Leifeng

(2015) and Leifeng (2016) summarized the big data available in each

period according to the characteristics of agricultural development

and provided detailed guidance on the acquisition of data sources,

complex environmental factors in farmland, crop agronomic

parameters, etc. The pre-arrangement provided technical method

support. Yang et al. (2011) proposed aHadoop-based large file block

storage method and a massive agricultural data resource retrieval

method, which support realizing the efficient organization and

management of massive agricultural data resources.

However, many scholars focus on the application and model

construction of big data in agriculture and rarely address the

massive data processing methods and processes of big data in

agriculture. In addition, as most of the research is based on the

Hadoop ecosystem, efficient Spark Structured Query Language

(SQL) and other relatedmechanisms have not been introduced, and

the processing efficiency needs to be improved. Apache Spark is

an open-source, distributed, high-performance, and massive data

processing engine (Weihua et al., 2020). Although Flink performs

better in real-time computing, its development history is far shorter

than Spark. Its integration with Hadoop ecosystem components is

far inferior to Spark, and Spark also supports offline computing

and offline computing tasks in big data queries. The running

proportion of offline computing tasks is much higher than that of

real-time computing tasks. At the same time, Spark also supports

machine learning modeling, and its support for algorithm models

is much stronger than that of Flink. Therefore, this study proposes

a data processing method for farmland environmental monitoring

based on improved Spark components. The Spark component

is optimized and applied to the data processing process of the

farmland environmental monitoring to perform rapid calculation

and analysis on farmland environmental monitoring data with

massive redundancy and low data value density.

2 Spark optimization method design

2.1 Spark component optimization

In Spark computing, the most important function is tables’

equivalent join and statistical operation. The core of the table

association operation is the Join Key operation (Jun et al., 2015),

which is usually partitioned according to the Join Key, and all

records with the same key value are equivalently connected in

each partition. Table equivalence join operations are many, and the

problem of Join Key data skew is prone to occur, which will produce

Shuffle. It will move data among nodes in different clusters, which

is a time-consuming and resource-consuming operation, affecting

the efficiency of data queries.

To this end, this study introduces the FAST-Join (Join Key

filtering sampling partition optimization) algorithm. Through the

generated BloomFilter filter (Khan et al., 2022), the data tables to

be joined are sorted and deduplicated in advance, and the data

that does not meet the connection conditions are filtered out to

reduce the amount of data in the Shuffle stage, thereby reducing

network transmission volume and disk read and write overhead

and optimizing the execution efficiency of Join operations. The

FAST-Join algorithm proposed in this study mainly has three

parts: Connection property handling, Join Key sampling, and Data

table splitting.

2.2 Connection property handling

This algorithm extracts two data tables, RDD_a and RDD_b,

which are extracted to get the Join Key after the Join operation.

Then it obtains two new RDDs (Join Key_a and Join Key_b) and

obtains the duplicate set of Join Key_a and Join Key_b through the

deduplication operation. It uses the BloomFilter of the Spark class

library to analyze the data. The data sets of Join Key_a and Join

Key_b are calculated to obtain two bit arrays, BFA and BFB. Finally,

the And operation is performed on BFA and BFB to generate the

final filtered bit array, BF. Figure 1 shows the connection property

handling process. Table 1 show the symbols of the algorithms.

2.3 Join Key sampling

This algorithm extracts Join Key operations on the two filtered

partitions RDD_a_f and RDD_b_f, which can obtain two sets of

Join Key_a_f and Join Key_b_f (Song et al., 2018). It uses the sample

operator on the two RDDs of Join Key_a_f and Join Key_b_f to

sample the Join Keys of the two RDDs to obtain Join Key_a_s

and Join Key_b_s (the sampling rate is set to 0.2). The statistical

methods of the Spark Statistics library are used to analyze and

compare the two sample sets. Finally, it gets the skew of data in

the single RDD, the total amount of data corresponding to the Key

in the single table, and the data distribution of the same Key value

in two partitions. Figure 2 shows the Join Key sampling process.

2.4 Data table split

Split the two data tables according to sampling analysis results,

divide them according to the distribution and inclination of

the data of the connection attributes, and use the principle of

converting reduced side join into map join as much as possible

and reduce the data volume of Shuffle operation aggregation

(Chunhui, 2015), which associates the degree of inclination with

the distribution. The splitting criteria are as follows:
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FIGURE 1

The connection property handling process.

TABLE 1 The symbols of the algorithms.

Name Value

RDD_a Data table a

RDD_b Data table b

Join Key_a Connection properties of RDD_a

Join Key_b Connection properties of RDD_b

BFA BloomFilter bit array of RDD_a

BFB BloomFilter bit array of RDD_b

BF BloomFilter bit array

RDD_a_f Partitioned RDD_a

RDD_b_f Partitioned RDD_b

RDDai RDD_a split partition

RDDbi RDD_b split partition

Tai Data volume of RDDai estimation

quantization value

Tbi Data volume of RDDbi estimation

quantization value

T Data volume estimation

quantization value array

OSk Join Key corresponding data

volume estimate

OS Broadcastable data amount

quantification threshold

• The number of RDD_a split partitions cannot exceed the

configured number of splits;

• For Keys with serious data skew in RDD, split them

out directly;

• After splitting out the Key with serious data skew in the RDD,

the split partition starts with the smaller Key in the sample that

FIGURE 2

The Join Key sampling process.

is sampled in a single RDD. The OSk of the Key superposes

OSk, which is compared with OS every superposition. If it is

bigger than the OS, the split mark is the previous Key, and the

superposition variable is reset to the OSk of the current Key.

• Split the sampled key separately, and split it forward according

to the split mark in the number of remaining splits.

According to the estimated value Ti and T of the aggregated

data table RDDai scale, the splitting mentioned above action

will be completed. According to the judgment result, if RDDai is

small-scale data, then perform BroadcastJoin on RDDai and

its corresponding RDDbi, otherwise perform Hash (Roller and

Sukhbaatar, 2021) or Sort MergeJoin (Papaphilippou and Pirk,

2019); T is the threshold of data size, and there are three values

corresponding to small, medium, and large scale. According to

the above judging rules, join RDDaiand RDDbi sequentially until

all split partition joins are completed, and perform Union on all

results. Finally, the data is processed by Spark and stored in the
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FIGURE 3

The data table split process.

FIGURE 4

The homepage of the environmental monitoring cloud platform.

database Mysql for user query and visual display. Figure 3 shows

the data table split process.

3 Experimental design and results

3.1 Research object introduction

This study takes the data cloud platform of a farm in

Malaysia as the experimental object. The system comprises the

farmland environmental monitoring platform and management

functions such as roles, plots, sensors, operations, and agricultural

information. It can conduct comprehensive statistical analysis on

all environmental monitoring-related information involved in the

system. It manages 40 rice planting plots at the farm. Each plot

has two high-definition cameras, four sets of sensor equipment for

environmental monitoring, and one intelligent irrigation pump.

The sensor equipment monitors the temperature, humidity, and

wind direction of the plot, and wind speed, rainfall, evaporation, air

pressure, nitrogen fertilizer content, potassium fertilizer content,

sampling soil depth, soil type, and other parameters, and transmits

data to the cloud platform through a Zigbee wireless sensor
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TABLE 2 The configuration parameters of the server.

Name Value

Number of CPU cores 2

Memory 2 G

Hard disk 50 G

Network 50 Mbps

Operating system CentOS 7.4

Java version 1.8.4

Spark 2.1.1

Grafana 8.4.0

Kafka 2.12.1

HBase 2.5.0

Mysql 7.5.0

network (Chakraborty, 2021) and network router every minute.

The log data is consumed by Kafka and transmitted to the

Spark cluster for processing, and the data is displayed on the

cloud platform after data processing and statistical summary. Its

underlying component is Spark (Independent mode deployment)

and other supporting components (Flume, Kafka, Mysql, Grafana,

etc.) (Jose, 2020; Kaicheng et al., 2020; Xiaoxian et al., 2020).

Figure 4 shows the homepage of the environmental monitoring

cloud platform.

3.2 Experimental cluster design

This study’s farmland environmental monitoring platform is

carried out on the Aliyun server. Each server uses the environment

of CentOS 7, running independently (Table 2 shows the server’s

configuration parameters). There are a total of 20 nodes. These

nodes are divided into groups A and B, each with 10 nodes;

Group B deploys the improved Spark components of the FAST-

join algorithm (Spark table equivalence connection processing

optimization). Group A deploys the default Spark component

(Zidong and Yanbin, 2019), which is the large-scale RDF data based

on SPARK. Finally, it compares the component performance and

cluster performance.

3.3 Experimental data

The farmland environmental monitoring platform involves a

lot of data, which have mainly three aspects, such as the image

recognition of diseases and insect pests, farmland environmental

monitoring, and operating equipment feedback, and the forms of

each type of data are quite different. The statistical time range is

from 1 June 2022 to 30 May 2023, a whole year, and the data range

is temperature, humidity, wind direction, wind speed, rainfall,

evaporation, air pressure, nitrogen fertilizer potassium content,

potash content, sampling soil depth, soil type, and other indicators.

The average data of each period of each day are counted daily T
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TABLE 4 The simulation parameters.

Data set Data_A Data_B

RDD_a 4.7 G 5.4 G

RDD_b 5.1 G 6.7 G

TABLE 5 Shu	e write data volume.

Cluster name Data_A Data_B

Group A 264.8 M 356.1 M

Group B 2.53 M 3.37 M

TABLE 6 Shu	e read data volume.

Cluster name Data_A Data_B

Group A 231.9 M 314.2 M

Group B 3.17 M 4.4 M

TABLE 7 Runtime comparison of groups A and B under di�erent data sets.

Cluster name Data_A Data_B

Group A 48.2 min 63.9 min

Group B 15.7 min 21.5 min

(farmland environmental monitoring data are sent to the data

processing system by polling every minute). Table 3 shows the daily

average of the environmental monitoring data of a certain plot at

the farm for the first 12 days of May 2023.

3.4 Experimental result

3.4.1 Spark component performance
In the statistical analysis of Spark components, most scenarios

are equivalent joins of large tables, the core of which is the

Join Key operation (Zidong and Yanbin, 2019). Shuffle will be

generated during the Join process, and Shuffle will cause data skew

during the Spark calculation process. The operating capability and

resource consumption of the cluster and the processing of Shuffle

are important indicators to measure the performance of Spark

components. In this study, the default Spark cluster and improved

Spark cluster are designed to deal with shuffle experiments. In

order to compare the component performance of the two groups

of clusters, A and B, this study exported part of the original data

(the farmland environmental monitoring data) as a text file and

copied it into two files (Data_A and Data_B). Data_A was used

as a set of data sets, and Data_B was written with specific and

skewed data as another set of size, so the different data sets have the

different data skew. The two data sets to be joined in each group

were RDD_a and RDD_b (Zhichao et al., 2022). Table 4 shows the

simulation parameters.

In this experiment, Group A (the default Spark component)

and Group B (Spark component improved by the FAST-join

algorithm) were used to test the above two sets of data sets, and

two query statistics experiments were carried out and compared

FIGURE 5

The running time of Spark components before and after

improvement.

separately. These two groups of Spark clusters perform the Join

Key operation on the data set 1/2, which generates Shuffle, and

the size of the Shuffle directly affects the cluster computing time

and resource consumption. The smaller the Shuffle, the shorter the

cluster computing time and the resource consumption. The degree

of consumption is denpended on the computing time and resource

consumption of the cluster. So the experimental results take the

Shuffle read, write, and running time as comparison indicators

(Singh et al., 2020), and each group of experiments is carried out

three times, and the results are averaged. The experimental results

are shown in Tables 5, 6.

Tables 6, 7 shows that the amount of data written and read

by Shuffle in the two connection methods in the two groups of

experiments changes significantly. Group B has much less than the

data volume of Group A, whether read or written in Shuffle. The

data volume of Group B accounts for only 0.958% of the Shuffle

write and 1.384% of the Shuffle read data volume of Group A on

average. The main reason is that the FAST-join algorithm performs

BloomFilter filtering on unsatisfied connection conditions and

redundant data before the connection, which reduces the overall

Shuffle data volume during the connection. Table 7 shows

the Runtime comparison of groups A and B under different

data sets.

Figure 5 shows the running time of Spark components before

and after improvement. For each group of experiments, the running

time of Group B is significantly better than Group A (Raj and

Ramesh, 2021). The average running time of Group B is only

33.11% of Group A’s, and the calculation speed is 202.11% faster

than that of Group A. The execution time of the FAST-Join

algorithm is relatively smooth, while the two execution times of

Spark’s Join operation show a relatively large increase. The data

skew is more serious.

3.4.2 Spark cluster performance
Processing time and occupied memory size are important

indicators to measure the overall performance of the Spark cluster,

so this study used data of different magnitudes to test Group A
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TABLE 8 Processing time of groups A and B under di�erent levels of data.

Data volume
(100,000 pieces)

Group A (ms) Group B (ms)

1 15,907 6,945

2 20,376 9,528

3 25,958 10,737

FIGURE 6

Processing time of groups A and B under di�erent levels of data.

FIGURE 7

Occupied memory size of groups A and B under di�erent levels of

data.

and Group B and obtain the corresponding processing time and

occupied memory size. In this experiment, 600,000 pieces of data

were randomly selected, and three sets of data sets were generated,

100,000, 200,000, and 300,000 pieces, respectively.

The first test was for processing time, which compares the

processing time of Group A (the cluster composed of improved

Spark components based on FAST-join algorithm) and Group

B (the cluster composed of default Spark components). After

experimental testing, the average data processing time of Group

B was only 43.93% of that of Group A, an average reduction of

128.22% compared with Group A (Table 8 shows the validity test

experimental data), which shows that the data processing efficiency

of Spark optimized by the FAST-join algorithm is greatly improved

TABLE 9 The occupied memory size of groups A and B under di�erent

levels of data.

Data volume
(100,000 pieces)

Group A (Mb) Group B (Mb)

1 15.70 11.25

2 31.12 17.48

3 47.74 22.46

FIGURE 8

Processing time of groups B and C under di�erent levels of data.

FIGURE 9

Occupied memory size of groups B and C under di�erent levels of

data.

compared with unoptimized Spark. Figure 6 and Table 8 show the

processing time of groups A and B under different levels of data.

The second test was for occupied memory size; the test and the

processing time test are of the same proportion of data magnitude

(100,000, 200,000, and 300,000 pieces). After monitoring by using

Spark’s built-in monitoring tool, the average data processing time

of Group B only accounts for 58.28% of Group A’s, an average

reduction of 76.75% compared with Group A, which shows that

the occupied memory size of Spark optimized by the FAST-join

algorithm is significantly reduced compared with unoptimized

Spark. Figure 7 and Table 9 show the occupied memory size of

groups A and B under different levels of data.
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3.5 Experimental extension

In order to further evaluate the performance of the FAST-

join algorithm, this article also introduces the Spark component

optimized by the Equi-join algorithm (Haoqiong et al., 2014)

(another large table equivalent join optimization algorithm), and

deploys it separately as cluster C under the same configuration.

It also compares the processing time and memory size of the

cluster for 100,000, 200,000 and 300,000 pieces of data. Figures 8,

9 show the processing time and memory size of clusters A and C,

respectively. After experimental testing, the average data processing

time of Group B was only 59.37% of that of Group C, an average

reduction of 68.74% comparedwithGroupC. The average occupied

memory size of Group B only accounts for Group A’s 73.23%, an

average reduction of 37.80% compared to Group C. This shows that

the processing time and occupied memory size of Spark optimized

by the FAST-join algorithm is significantly reduced compared with

the Equi-join algorithm.

4 Conclusions

In this study, a data processing method for farmland

environmental monitoring based on improved Spark components

was designed. The FAST-join algorithm is introduced to optimize

Spark’s association query (shuffle processing capacity) and cluster

computing. After experimental testing, the results showed that

the improved Spark has an excellent performance in data table

query and cluster computing and can efficiently process farmland

environmental monitoring data, which can effectively improve the

efficiency of inter-data table querying and cluster computing.

We envisage applying this farmland data processing method

to more data types, such as images of farmland pests and

diseases, videos, and data from various intelligent operating

equipment. These data types are quite different from farmland

environmental monitoring data, such as images and video,

and the amount of data is relatively large, which requires the

introduction of Spark’s compression mechanism to compress

these data and the use of corresponding algorithms to convert

unstructured data into structured data, to realize real-time and

rapid monitoring of farmland by the cloud platform of pest

and disease situation. Through these follow-up in-depth studies,

the scope of application of this data processing method will

be expanded, and the applicability of this method in farmland

monitoring will be improved.
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