
TYPE Original Research

PUBLISHED 31 October 2023

DOI 10.3389/fdata.2023.1292923

OPEN ACCESS

EDITED BY

Pavlos Papadopoulos,

Edinburgh Napier University, United Kingdom

REVIEWED BY

Mehran Moza�ari Kermani,

University of South Florida, United States

Christos Chrysoulas,

Edinburgh Napier University, United Kingdom

*CORRESPONDENCE

Lesia Mochurad

lesia.i.mochurad@lpnu.ua

RECEIVED 12 September 2023

ACCEPTED 10 October 2023

PUBLISHED 31 October 2023

CITATION

Mochurad L, Sydor A and Ratinskiy O (2023) A

fast parallelized DBSCAN algorithm based on

OpenMp for detection of criminals on

streaming services. Front. Big Data 6:1292923.

doi: 10.3389/fdata.2023.1292923

COPYRIGHT

© 2023 Mochurad, Sydor and Ratinskiy. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A fast parallelized DBSCAN
algorithm based on OpenMp for
detection of criminals on
streaming services

Lesia Mochurad*, Andrii Sydor and Oleh Ratinskiy

Department of Artificial Intelligence, Lviv Polytechnic National University, Lviv, Ukraine

Introduction: Streaming services are highly popular today. Millions of people

watch live streams or videos and listen to music.

Methods: One of the most popular streaming platforms is Twitch, and data from

this type of service can be a good example for applying the parallel DBSCAN

algorithmproposed in this paper. Unlike the classical approach to neighbor search,

the proposed one avoids redundancy, i.e., the repetition of the same calculations.

At the same time, this algorithm is based on the classical DBSCAN method with

a full search for all neighbors, parallelization by subtasks, and OpenMP parallel

computing technology.

Results: In this work, without reducing the accuracy, wemanaged to speed up the

solution based on the DBSCAN algorithmwhen analyzingmedium-sized data. As a

result, the acceleration rate tends to the number of cores of a multicore computer

system and the e�ciency to one.

Discussion: Before conducting numerical experiments, theoretical estimates of

speed-up and e�ciencywere obtained, and they alignedwith the results obtained,

confirming their validity. The quality of the performed clustering was verified using

the silhouette value. All experiments were conducted using di�erent percentages

of medium-sized datasets. The prospects of applying the proposed algorithm can

be obtained in various fields such as advertising, marketing, cybersecurity, and

sociology. It is worth mentioning that datasets of this kind are often used for

detecting fraud on the Internet, making an algorithm capable of considering all

neighbors a useful tool for such research.

KEYWORDS

OpenMP technology, clusterization, recommender systems, speed-up, e�ciency,

silhouette value

1. Introduction

The clustering of users of online or offline services is frequently used in marketing for

producing recommender systems and in cybersecurity for fraud detection (Zhang et al.,

2023). Additionally, in the realm of cybersecurity, it’s essential to consider various threats,

including side-channel attacks. One such side-channel attack worth mentioning is fault

attacks, which can compromise the security of clustering algorithms used to detect criminal

behavior on streaming services. Frequently clustering of users can be applied to data that

is transferred over the network. So to keep data secured it is necessary to apply ciphers to

it. As it is stated in the article (Kaur et al., 2022a) one of the options is to use lightweight

cryptography, which aims to provide an acceptable level of security at a low cost, particularly

in embedded systems with limited resources, such as the Internet of Things devices. One

notable cipher in this domain is WAGE, a 259-bit lightweight stream cipher designed

for hardware implementation, offering Authenticated Encryption with Associated Data

capabilities. However, there are other options to secure future analyzed data. The article

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1292923
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1292923&domain=pdf&date_stamp=2023-10-31
mailto:lesia.i.mochurad@lpnu.ua
https://doi.org/10.3389/fdata.2023.1292923
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1292923/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

(Kermani et al., 2016) discusses error detection approaches for

the Camellia block cipher, considering both its linear and non-

linear sub-blocks. These approaches can be tailored for different

S-box variants, enhancing security and reliability while maintaining

acceptable performance. The presented schemes are evaluated

through error simulations and ASIC implementations to assess

their efficiency. So this solution can highly enhance the security

and reliability of our data analysis. As another approach in the

article (Aghaie et al., 2017) we found that a lightweight block cipher

Midori prioritizes efficient performance and energy consumption,

but also this cipher has been enhanced with fault diagnosis

schemes to address both malicious and natural faults, improving

its reliability. The last option that we thought could be useful

to protect our data is the lightweight cryptographic block cipher

QARMA which is described in the article (Kaur et al., 2022b).

This cipher employs a substitution permutation network (SPN)

and error detection schemes, such as cyclic redundancy check,

to enhance reliability, with benchmarked performance on FPGA

hardware platforms. Using QARMA-64 or QARMA-128 variations

ensures data confidentiality and integrity during the transmission

of our user’s dataset.

Earning a clear understanding of the structural features of

a specific group of people and their characteristic features can

provide room for better business strategies. Also, such information

is a crucial tool for sociological research and can be used by

law enforcement agencies for crime control. Therefore, efficient

methods for solving this task remain a relevant area of research in

machine learning.

One of the most popular clustering algorithms is Density-

based spatial clustering of applications with noise (DBSCAN)

(Deng, 2020). Among its distinctive features are the absence of

assumptions about shapes of clusters and their number, the ability

to detect noise, and significantly lower sensitivity to the order of

processing elements. These characteristics have made DBSCAN

a helpful tool for data analysis in various fields, particularly

when dealing with data about people. Such an algorithm is often

considered computationally complex. Additionally, clustering a

set of user data requires analyzing a large amount of data and

conducting various computations. Therefore, there is a need

to investigate the efficiency of applying parallel computations

(Mochurad and Solomiia, 2020; Mochurad, 2021) to improve this

algorithm addressing all the mentioned problems.

This study aims to develop a parallel DBSCAN algorithm

variation for processing data of users of a streaming service using

parallel computations technique.

The main task of this research is to achieve fast clustering of

users of a streaming service by developing a parallel algorithm

based on DBSCAN that maintains its distinctive features and

demonstrates significant speed-up. As a result, we expect to receive

a function from the dataset and additional parameters that will

assign each element to a specific cluster by grouping points based

on the density of their spatial distribution in the data space.

As stated before, the main feature of DBSCAN is a

consideration of points density (Wang et al., 2020). Comparing

examples of the algorithm’s performance in a two-dimensional

space with the popular clustering algorithmK-means, an enormous

difference can be obtained (Figure 1). Each color represents a

separate cluster to which a point has been assigned. The original

set contains all elements in gray, meaning they are undefined. For

each example, the most likely resulting distribution is provided for

the corresponding algorithm. Analyzing the clusters, it seems that

K-means (Mohiuddin et al., 2020) divides the area rather than the

data itself. This is because this algorithm, unlike DBSCAN, does not

take into account the relations between neighboring points.

As known (Ester et al., 1996), the computational complexity

of the DBSCAN algorithm varies depending on how the nearest

neighbors are found. Popular implementations for neighbor search

operate data structures such as kd-trees (Shibla and Shibu, 2018),

ball-trees (Suchithra and Pai, 2020), RPO-trees (Blelloch et al.,

2020), or R-trees (Chen et al., 2010). Such data structures enable

faster search of nearby elements in space. By constructing the tree

once, time can be saved during the search for neighbor points. Of

course, using this approach can lead to a significant improvement

in complexity despite the costs of building such trees. However,

there are also disadvantages to consider. Firstly, these approaches

do not guarantee to find all neighbors, which may be critical

in certain cases considering the importance of the number of

neighbors for DBSCAN. Secondly, similar data structures may

not always meet the expected complexity, as in the worst-case

scenario, the complexity of constructing, for example, a kd-tree, can

reach the original complexity of O(n2) even in a two-dimensional

space. Thirdly, for small to medium-sized datasets, building and

using a tree may consume more time than can be saved during

the computations.

Certainly, there are various implementations of DBSCAN that

use more efficient data structures, but they do not guarantee the

same result as the classical algorithm (Hu et al., 2017, 2018; Song

and Lee, 2018; Jang and Jiang, 2019; Kim et al., 2019), although

they do provide significant speed-up. Additionally, they often

require a large amount of data and properly tuned parameters

(Wang et al., 2020) to achieve substantial efficiency or may grow

with quadratic complexity. Many of these algorithms use sampling

techniques that cannot guarantee precise results, although they

offer considerable acceleration.

The Dbscan distributed implementation is presented in the

work (Wu et al., 2022). The authors exploit hybridMPI+OpenMP

parallelization to take advantage of the resources of modern HPC

architectures. This paper presented the Hy-Dbscan algorithm to

perform clustering analysis on large-scale scientific data.

Our goal was to accelerate the DBSCAN algorithm without

sacrificing its characteristic cluster formation, which directly

depends on the correctness of finding neighbors. Therefore, we

decided not to use similar data structures or sampling approaches.

Such an approach can play a crucial role in clustering data from

datasets of various sizes since the number of neighbors found

within the eps radius is used to determine the point type in

the algorithm, directly affecting the process of merging elements

and, consequently, the shape of the resulting subsets. Hence, a

predictable and reliable algorithm for finding neighboring points

is crucial in this task.

Modern variations of advanced DBSCAN often sacrifice some

level of accuracy or are designed only for large datasets. The

proposed parallel version of the DBSCAN algorithm maintains

the distinctive features of resulting clusters, provides significant

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

FIGURE 1

A schematic comparison of the nature of clusters formed by the DBSCAN and K-means algorithms.

speed-up even with medium-sized datasets, and ensures the

consideration of all neighbors during its operation, thus achieving

high accuracy.

The main contribution of this article can be summarized

as follows:

1. A parallel DBSCAN algorithmwith a full search for all neighbors

was developed, which allowed to avoid redundancy, i.e., the

repetition of the same calculations;

2. The choice of the appropriate parallel computing technology is

substantiated, which allows to reduce the algorithm’s running

time in proportion to the number of cores used and to obtain

the maximum efficiency;

3. Theoretical performance indicators of the proposed

algorithm are calculated, which are confirmed by several

numerical experiments;

4. Clustering quality metrics are used to evaluate the accuracy of

the result of solving the task.

In this article, we will present the following sections:

Section 2 will introduce problem formulation, Section 3

will describe the proposed algorithm, the choice of the

appropriate parallel computing technology is justified, and

theoretical estimates of the performance indicators of the

proposed algorithm are calculated. Section 3 will present

the numerical experiments conducted to test the efficacy

of the proposed algorithm. Finally, in Section 5, we will

conclude our findings and discuss potential avenues for

future research.

2. Problem formulation

Let’s introduce the main notations used in this work: n-the

number of elements for analysis, d-the dimensionality of the

data space, labels-the resulting sequence of integers of length n,

DBSCAN-the function with four parameters: data-a sequence of

length n containing dataset rows, where the dataset row with

index i is denoted as data[i] (hereafter referred to as element

or point) and is a sequence of real numbers of length d,

each corresponding to a dimension of the dataset (the semantic

meaning of dimensions is not relevant for the algorithm, so

we omit this aspect), distanceFunction (hereafter referred to

as distance function)–the multidimensional Euclidean distance

between two elements in the data (1), eps-the minimum distance

that allows considering two points as neighbors, minElements-

the minimum number of elements that can be considered as

a cluster.

distance = distanceFunction(data, A, B) . (1)

where A and B-the indices of arbitrary points in the

dataset, distance-a real number that determines the distance

between them.

The classical implementation of DBSCAN involves an interface

described by Equation (2). The values in the sequence labels

correspond to the cluster numbers assigned to the points in the

dataset. For example, point i in the sequence data is assigned to the

cluster with number stored in labels[i]. Typically, these are integers

starting from −1. All positive numbers represent cluster numbers,

while the negative value of one is used to indicate points classified

as noise. Such points are considered to be located in the data space

in a way that they cannot be assigned to any of the clusters and are

considered to be outliers.

labels= DBSCAN
(

data, distanceFunction, eps,minElements
)

. (2)

The task of this research is to achieve fast clustering of users

of a streaming service by developing a parallel algorithm based on

DBSCAN that maintains its distinctive features and demonstrates

significant speed-up on medium-sized datasets. As a result, we

expect to receive a function from the dataset and additional

parameters that will assign each element to a specific cluster (3) by

grouping points based on the density of their spatial distribution in

the data space.

Y = DBSCAN(X, ...) (3)

where X-input dataset, Y-output sequence of labels, DBSCAN-the

function itself, . . . –additional parameters.

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

3. Problem solution

3.1. Proposed parallel algorithm description

In this work, we propose a parallel version of the DBSCAN

algorithm based on the classical method (Ester et al., 1996) with

a full search of all neighbors. The idea of our approach lies in

the utilization of a reliable parallelization solution, which will save

as much time as possible without sacrificing the accuracy of the

sequential algorithm.

Let’s divide the algorithm into tasks:

1) Calculation of the distance between points (1);

2) Search for the nearest neighbors (Figure 2);

3) Analysis of a point (Figure 3).

Let’s review the algorithm in more detail. The calculation of

distances between points should be delegated. We want to work

with a hidden implementation of the distance function (1). This

approach allows us to choose any method for determining the

closeness measure between points based on the specific problem

being solved by the user. In this work, we use a specific version of

this function which is multi-dimensional Euclidean distance.

The search for neighbors (Figure 2) takes the most time during

one iteration of the sequential DBSCAN algorithm since it involves

calculating the distances between points in a multi-dimensional

space. Processing or analyzing elements (Figure 3) takes slightly less

time and requires the result of the neighbors search. Despite this,

we consider it beneficial to separate these two tasks, allocating more

threads to the neighbors search than to the analysis task. As a result,

the waiting time for analyzing threads will tend to zero over time,

minimizing delays at the beginning of the algorithm’s execution.

Therefore, the proposed algorithm implies the presence of two

groups of threads:

1) Group for neighbors search;

2) Group for point analysis.

Let findNeighboursThreadsNum be the number of threads for

the neighbors search group, and–defineClustersThreadsNumbe the

number of threads for the point analysis group. Then, the total

number of threads, denoted by threadsNum, is determined as

follows (4).

threadsNum = findNeighboursThreadsNum

+ defineClustersThreadsNum (4)

The first group is responsible for finding subsets of neighbors

for each point in the dataset. The neighbors search order is

described in Figure 2. It is essential to note that the thread

distribution is already provided in this scheme. It is enough to

define the parameters start_value and step :

start_value = threadIndex;

step = findNeighboursThreadsNum;

Description of the algorithm from Figure 2:

1) Select the next starting point (according to the parameters

defined above);

2) For each point in the subsequence:

- find the distance to the starting point;

- if the distance is less than or equal to the parameter eps:

- add the index of the current point to the list of

neighbors of the starting point;

- enter the critical section;

- add the index of the starting point to the neighbors of

the current point;

- exit the critical section;

3) Find the number of neighbors for the starting point and

write it to the corresponding memory area in the vector of

neighbors counts;

4) Mark the point as processed;

5) Go to the beginning.

The proposed approach of neighbors search allows avoiding

redundancy, which occurs when processing points in the classical

order. For each next vertex, we need to process one less vertex than

in the previous iteration (as seen from Figure 2—i > j), achieved

by processing each pair only once. Additionally, we calculate the

number of neighbors for fully processed points to avoid performing

this operation multiple times. The marking of processed points is

used in the analysis algorithm, which we will consider next.

The second group of threads is responsible for determining

the membership of an element in one group or another. During

the element processing, we categorize points into core or noise

points. The classical algorithm undergoes minimal changes here

as it remains efficient (Figure 3). The thread distribution is also

provided in this scheme. It is enough to define the parameters

start_value and step :

start_value = threadIndex− findNeighboursThreadsNum;

step = defineClustersThreadsNum;

This defines the parameters for distributing the iterations

of processing the point i by the thread with index threadIndex

(it is guaranteed that only threads with numbers greater than

findNeighboursThreadsNum will enter this region).

Description of the algorithm from Figure 3:

1) Select the next unclustered point (according to the parameters

start_value and step);

2) Request neighbors of the point (there might be waiting since,

until the current point’s value in the vector of processed points

(shared among all threads) becomes true, we cannot guarantee

finding all neighbors);

3) If the number of neighbors is less than the minimum required

by the algorithm, label this point as noise and go to step 1;

4) Label the point as belonging to the next cluster;

5) For each neighbor, repeat steps 2–5 (for this, we use a queue);

6) Increment the value of the next possible cluster number by one;

7) Go to the beginning.

A flowchart of the NeighborsOfPoint function is shown in

Figure 4. This function is used in the algorithm of assigning the

label for point.

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

FIGURE 2

Flowchart of the algorithm for finding neighbors where neighbors[i], neighborsNumber[i] and neighborsFound[i]-sequence of indices of neighbor

elements, the number of neighbor elements, and value that represents whether the element was processed for element under index i;

start_value–the first element that will be processed by current thread, step–elements processing step.

3.2. Technology selection

Initially, for parallelizing the sequential version of the

DBSCAN algorithm was used the threading library of the Python

programming language. However, after conducting preliminary

experiments and analyzing the results, we noticed that the

difference in execution times between the sequential and parallel

approaches was practically negligible. This outcome referred to

the utilization of the CPython interpreter, which employs a global

lock mechanism, allowing only one thread to access shared data

structures at any given moment. Consequently, this constraint

hindered the effective implementation of true multithreading,

resulting in a mere illusion of parallel computation.

As an alternative approach, we attempted to utilize

multiprocessing in Python using the multiprocessing library.

However, this did not solve our problem either. The main

challenge arose from cluster assignment requiring information

about neighbors, which is computed in a separate process. This

presented challenges in implementing such a memory-sharing

format because interprocess memory sharing requires significantly

higher resources. Additionally, this could result in excessive time

overheads that could not be ignored due to the number of elements

in the dataset.

Therefore, we have concluded that we need to utilize

technologies where the programmer can fully manage the

control over threads. As a result, we conducted an experiment

implementing our algorithm using the OpenMP library (Yviquel

et al., 2022) in the C++ programming language. This combination

of technologies theoretically meets all our requirements, providing

a straightforward method to generate parallel threads and exert

control over them.

3.3. Estimation of computational
complexity and expected results

The complexity of the sequential DBSCAN algorithm under

worst-case conditions is O(n2), where n-the number of elements

in the dataset [actually often O(n2+n)]. This is partially our case

if we do not consider parallel computation, as the work utilizes

a complete traversal when searching for neighbors. However, our

neighbor-searching algorithm guarantees a complexity always less

than O(n2) by processing unique pairs of vertices only once.

Furthermore, if we appropriately select the number of threads, we

expect a uniform distribution with minimal waiting time. Hence,

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

FIGURE 3

Flowchart of algorithm of assigning the label for point.

we anticipate a complexity not exceeding O(n
2+n

c
), where c-the

number of cores.

Thus, the efficiency of our algorithm will approach

1 when the number of threads is appropriately chosen.

A proportion for efficiency improvement should be at

least 2:1. However, this ratio requires validation through

experimentation and depends on various factors, including

the dataset’s characteristics. The calculation of the expected

acceleration of the proposed algorithm will be determined by the

Equation (5).

S=
n2+n

n2+n
c

∼
n2

n2

c

= c, (5)

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

FIGURE 4

Flowchart describing the algorithm for finding neighbors of a point from parallel threads, where it is assumed that the sequences neighbors,

neighborsNumber and neighborsFound are shared among all threads.

where S-acceleration, n-the number of elements in the dataset and
c-the number of cores. The expected efficiency of the proposed

algorithm will be determined by the Equation (6).

E=
n2+n

n2+n
c

∗ c
∼

n2

n2

c
∗ c

= 1. (6)

In the research, to verify the correctness of the proposed

parallel algorithm, comparisons between the results of sequential

and parallel executions were conducted using the Euclidean norm.

This approach allows calculating the distance between two points

in an n-dimensional space. Initially, the difference between the

sequential and parallel results is computed. Then, the Equation for

the Euclidean norm is applied to this difference vector. Therefore,

if the clustering results for each data sample are identical, meaning

the difference vector consists of zeros, the Euclidean norm will also

be equal to zero.

In addition, we used the silhouette score described by Equation

(7) to evaluate the accuracy of the clustering. In article (Ogbuabor

and Ugwoke, 2018), it is mentioned that this score measures how

similar a specific data sample is to its cluster compared to others.

The silhouette score ranges from−1 to 1. A silhouette score close to

1 indicates that an object fits well into its cluster. In other words,

the overall accuracy of the clustering depends on how close the

silhouette score is to 1.

S
¯
=

∑n
i=1

b(i)−a(i)
max(a(i), b(i))

n
, (7)

where a(i)-the average distance between object “i” and all other

points within the same cluster; b (i)-the average distance between

object “i” and all other points in the nearest neighboring cluster;

max(a (i) , b(i))-maximum value between a (i) and b(i); n-number

of objects in the dataset.

In the research, the results’ validity was verified using

the sklearn library. The function sklearn.cluster.DBSCAN was

imported and used to compare the custom parallel implementation

of DBSCAN. The clustering results were saved in separate files

for different dataset sizes. To assess the reliability of the custom

implementation, we calculated the Euclidean norm of the difference

between the results from pairs of files with the same dataset

size. This comparison provided insights into the validity of

the custom implementation compared to the sklearn DBSCAN

function results.

4. Results

The research task involves applying the proposed algorithm

to a normalized dataset containing information about individual

Twitch channels of the most prominent streamers in the

gaming industry. The objective is to identify objects with similar

characteristics and group them into separate clusters for further

analysis of the results.

Among the research objectives, the following can

be highlighted:

1. Utilizing the proposed parallel DBSCAN algorithm for

clustering based on similar feature characteristics of the dataset.

2. Analyzing the results, including both analytical and graphical

approaches. In the analytical part, it is necessary to determine

the execution times of the sequential and parallel algorithms

with different numbers of threads. Parameters such as parallel

speedup and efficiency should be computed, along with finding

the Euclidean norms of the differences between the results.

Additionally, it is essential to investigate the accuracy of

clustering and verify its reliability.

We used the “Top Streamers on Twitch (n.d.)” dataset to get

further numerical experiment results. This dataset comprises 1,000

rows and 11 columns. Each row provides information about a

specific Twitch channel, with features such as Channel, Watch time

(Minutes), Stream time (Minutes), Peak viewers, Average viewers,

Followers, Followers gained, Views gained, Partnered, Mature,

and Language.

Description of features:

1. Channel-Twitch channel name;

2. Watch time (Minutes)-Total viewing time in minutes;

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

3. Stream time (Minutes)-Total duration of live broadcasts

in minutes;

4. Peak viewers-Maximum simultaneous viewers during a

live stream;

5. Average viewers-Average viewership during live streams;

6. Followers-Total number of channel subscribers;

TABLE 1 Execution time of the sequential and proposed parallel

algorithms with varying thread counts on a 2-core processor, s.

Percentage of
analyzed data, %

Sequential
execution

Threads

4 8 10

30 3.684 2.779 1.969 1.931

50 15.45 12.655 9.072 8.46

80 63.665 52.983 37.93 34.496

100 126.029 99.861 70.609 66.669

TABLE 2 Execution time of the sequential and proposed parallel

algorithms with varying thread counts on a 4-core processor, s.

Percentage of
analyzed data, %

Sequential
execution

Threads

4 8 10

30 9.841 5.305 2.936 2.531

50 39.564 20.769 11.622 10.173

80 162.632 95.723 46.733 42.096

100 311.629 178.98 86.351 81.49

7. Followers gained-Number of new followers gained in a specified

period (usually a year);

8. Views gained-Total number of views received on the

channel’s content;

9. Partnered-Boolean value indicating partnership status

with Twitch;

10. Mature-Boolean value indicating mature content presence;

11. Language-Language used in the channel’s broadcasts.

It is initially necessary to preprocess the input dataset to

operate the clustering algorithm effectively. The data needs

to be brought into a uniform format, as some features

are categorical, and normalization is performed. Therefore,

the columns Partnered, Mature, and Language are initially

transformed into a numerical form. Subsequently, normalization

is applied to the entire investigated dataset, meaning all data

is scaled to a single range. Additionally, all Null values and

the Channel column are removed, as it is not essential for

cluster analysis.

The dimensionality of our normalized dataset has become 1,000

rows by 10 columns, all of which are numerical values. We preserve

the obtained dataset in a file, which we will load and utilize in the

main program block during experiments.

After executing the algorithm on the normalized dataset, the

output consists of an array containing the clustering results. This

array has the exact dimensions as the number of rows in the

analyzed dataset. Each element of this array corresponds to an

object within the dataset. If the value of an array element is −1,

the object does not belong to any cluster and is considered noise.

Values within the range [0, + ∞) denote the index of the cluster

to which the specific object belongs. The resulting array enables us

FIGURE 5

Plot illustrates the execution time dependency of the algorithm on the percentage of analyzed data on a 2-core processor (sequential execution and

parallel execution with 4, 8, and 10 threads).

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

FIGURE 6

Plot illustrates the execution time dependency of the algorithm on the percentage of analyzed data on a 4-core processor (sequential execution and

parallel execution with 4, 8, and 10 threads).

TABLE 3 Acceleration and e�ciency metrics of the proposed parallel

algorithm (on 2-core and 4-core processors).

Percentage of
analyzed data,
%

2-core processor 4-core processor

S E S E

30 1.90782 0.9539 3.8889 0.972

50 1.82624 0.9131 3.8891 0.9723

80 1.84558 0.9228 3.8634 0.96584

100 1.8905 0.9452 3.8241 0.956

to determine the accuracy of clustering and assess the reliability of

the outcomes.

Considering that the dataset consists of 1,000 rows, the study

involves examining how well algorithms perform with different

amounts of data from this dataset. In other words, we will analyze

and compare how long it takes for the algorithms to run on subsets

that contain 30, 50, 80, and 100 percent of the dataset.

Two implementations of DBSCAN are compared (see

Tables 1, 2):

1) Sequential execution;

2) Parallel execution with a specified number of threads.

The computer configurations used for testing are as follows:

1) AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx, 2,100

MHz, 4 cores, 8 logical processors.

2) Intel (R) Core (TM) i5-6200U CPU, 2,300 MHz, 2 cores, 4

logical processors.

Figures 5, 6 visually represent the results of the proposed

algorithm and its comparison with the sequential execution.

Table 3 also includes acceleration (S) and efficiency (E) metrics

for the proposed parallel DBSCAN algorithm on corresponding

portions of the investigated dataset. These metrics are visually

represented in Figures 7, 8, respectively.

Final results were compared with main DBSCAN

implementations (see Table 4).

Moreover, we compared our best results with our classical

DBSCAN implementation (contains no additional improvements),

our sequential DBSCAN and our best result achieved in this paper.

The results of this comparison can be obtained in Table 4. It can be

easily seen that our parallel algorithm is way faster than the original

DBSCAN. From the table it is possible to make the conclusion that

we improved it not only using parallel technologies but also with

sequential tools.

It is also important to note that after performing the

experiments, all Euclidean norms of differences between sequential

and parallel executions across various processor counts are equal

to zero. This indicates the complete preservation of the behavioral

characteristics of the original algorithm, which was one of our

primary requirements. The evaluation of the silhouette score for

different data portions to investigate the accuracy of the proposed

parallel DBSCAN algorithm and other clustering algorithms is

shown in Table 5.

According to the results stated in Table 5, we can observe

that our DBSCAN algorithm managed to conduct high silhouette

scores compared to the other clustering algorithms applied to the

same dataset. The k-means algorithm provided the best scores at

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

FIGURE 7

Graph shows the comparison of parallel algorithm acceleration (on 2-core and 4-core processors).

FIGURE 8

Graph shows the comparison of parallel algorithm e�ciency (on 2-core and 4-core processors).

TABLE 4 Execution time of the classical, sequential and proposed parallel

algorithms for a certain percentage of data on a 2-core processor, s.

Percentage
of analyzed
data, %

Classical
DBSCAN

Sequential
DBSCAN
(our)

Parallel
DBSCAN
(our)

30 13.599 3.684 1.931

50 56.612 15.451 8.464

80 265.771 63.665 34.496

100 589.908 126.029 66.669

30 and 80% but lower results than DBSCAN at 50 and 100% of

the dataset.

To validate our findings, we computed the Euclidean norms of

differences between the outcomes of the sklearn.cluster.DBSCAN

function from the sklearn library and our custom implementation

across various dataset dimensions. These norms all yielded

zero values. Additionally, we calculated silhouette scores for

the clustering results using the sklearn.cluster.DBSCAN function.

These scores matched those presented in Table 4. Thus, based

on the obtained and analyzed results of the proposed parallel

DBSCAN, we achieved a significant acceleration of the sequential

algorithm without compromising accuracy. Additionally, the

earlier theoretical estimates regarding acceleration and efficiency

have been confirmed. Table 2 illustrates that acceleration depends

on the number of cores, as it was close to 2 on the 2-core processor

and close to 4 on the 4-core processor. Furthermore, an indicator

that the algorithm has been correctly parallelized is that both on the

2-core and 4-core processors, the parallel efficiency was quite close

to 1, as precalculated in the theoretical indicators.

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

TABLE 5 Silhouette score evaluation for di�erent percentage data quantities from the dataset to investigate the accuracy of the proposed parallel

DBSCAN algorithm comparing to other clustering algorithms like K-means, a�nity propagation, mean shift, HDBSCAN.

Silhouette score,

Percentage of
analyzed data, %

Our parallel
DBSCAN

K-means
(Mohiuddin
et al., 2020)

A�nity
propagation (Frey
and Dueck, 2007)

Mean shift
(Carreira-Perpinan,

2012)

HDBSCAN
(Campello et al.,

2013)

30 0.517 0.535 0.206 0.447 0.172

50 0.562 0.558 0.193 0.436 0.242

80 0.595 0.601 0.191 0.404 0.289

100 0.605 0.601 0.192 0.425 0.322

Based on the conducted experiments, a significantly greater

number of threads should be dedicated to the neighbor-finding

stage rather than the cluster-type determination stage. The lowest

parallel execution time and the best parallel efficiency were

achieved when utilizing 10 threads, with 8 threads dedicated to

neighbor-finding, while two threads were used for cluster type

determination. Therefore, the experimentally determined ratio

should be ∼4:1, though this value is specific to our case. The

ratio may vary depending on the dataset size and the subject area

under research.

5. Conclusions and future works

During our research, we enhanced the classical version of the

DBSCAN clustering algorithm. We proposed and implemented

parallelization, achieving the expected speedup and efficiency on

a dataset of streaming service users. Furthermore, our suggested

solution enables significant acceleration, which approaches the

number of cores of the computational system, without lowering

the accuracy of the result. As the development of multi-core

architecture becomes increasingly relevant (Hentosh et al., 2023),

the obtained speedup can be significantly improved accordingly.

In this work, we also improved the approach to selecting and

proportioning the number of parallel threads and task partitioning,

enhancing the algorithm’s overall performance.

Finally, we achieved a remarkable efficiency of 0.9539

on a dual-core device and 0.9723 on a quad-core one with

appropriately chosen thread generation proportions. Our

experiments demonstrated substantial speedup when the

number of threads for neighbor computation exceeded the

number of analyzing threads. We highly recommend utilizing

our algorithm based on these findings, as it offers significant

performance improvements.

The modification of DBSCAN proposed by us has proven that

it is theoretically and practically efficient for clustering datasets of

relatively small sizes, particularly concerning user data. However,

despite its significant effectiveness, our version of DBSCAN suffers

from the drawback of nearly quadratic time increase depending on

the volume of data. This drawback arises from the capability of our

algorithm to guarantee the discovery of all nearest neighbors, which

is one of its advantages. Consequently, this leads us to conclude that

further research should be directed toward analyzing methods to

scale the algorithm efficiently, seeking ways to obtain better overall

processing time for handling massive datasets. By achieving this,

the algorithm can become competitive in big data analysis, making

it a valuable tool for processing extensive datasets effectively.

In this paper, we presented a parallel modification of classical

DBSCAN that is faster and saves original features. Although we

demonstrate a way of reaching significant speedup, it is still possible

to find methods of improving the results.

We aimed our research at demonstrating the possibility of using

parallelism to enhance the DBSCAN algorithm and attempting to

integrate such a method as efficiently as possible into the context

of the problem. However, at this stage, we consider it advisable

to direct future research toward the analysis and comparison of

parallel computing tools in order to achieve even better results.

The choice of technologies in the field of parallel computing plays

an important role, as it affects the percentage of effective use

of computer resources. Recently, frameworks that use GPU for

achieving better efficiency are becoming more popular due to their

ability to perform some operations faster than CPU. Therefore,

we consider it is possible for our algorithm to take advantage of

modern technologies like CUDA.

Also, a crucial stage of our research was the task of thread

distribution. As mentioned in previous sections, to achieve our

best results, we had to distribute threads unevenly among tasks.

But maybe it is possible to avoid such considerations. Automatic

determination or adaptation of threads’ distribution can save a

reasonable amount of time. That’s why we consider it promising

to focus future research on studying this issue, for example, using

dynamic parallelization methods.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

LM: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Writing–

original draft, Writing—review & editing. AS: Resources,

Software, Supervision, Visualization, Writing—review & editing.

OR: Funding acquisition, Validation, Visualization, Software,

Writing—review & editing.

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Mochurad et al. 10.3389/fdata.2023.1292923

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work

was supported by the scientific direction Analysis of big data of

the National University Lviv Polytechnic of the Department of

Artificial Intelligence Systems.

Acknowledgments

The authors would like to thank (1) the Armed Forces of

Ukraine because this paper has become possible only because of

the resilience and courage of the Ukrainian Army; (2) the reviewers

for the correct and concise recommendations that helped present

the materials better; (3) LM for their excellent technical support.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Aghaie, A., Mehran, M. K., and Azarderakhsh, R. (2017). Fault diagnosis schemes
for low-energy block cipher midori benchmarked on FPGA. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 25, 1528–1536. doi: 10.1109/TVLSI.2016.2633412

Blelloch, G. E., Gu, Y., Shun, J., and Sun, Y. (2020). Parallelism in randomized
incremental algorithms. J. ACM 67, 127. doi: 10.1145/3402819

Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013). “Density-based clustering
based on hierarchical density estimates,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining (Berlin, Heidelberg: Springer Berlin Heidelberg).
doi: 10.1007/978-3-642-37456-2_14

Carreira-Perpinan, M. A. (2012). A review of mean-shift algorithms for clustering.
IEEE Transac. Knowledge Data Eng. 24, 209–219. doi: 10.1109/TKDE.2010.232

Chen, M., Gao, X., and Li, H. (2010). “Parallel DBSCAN with priority R-tree,” in
2010 2nd IEEE International Conference on Information Management and Engineering
(Chengdu), 508511.

Deng, D. (2020). “DBSCAN clustering algorithm based on density,” in 7th
International Forum on Electrical Engineering and Automation (IFEEA) (Hefei), 949-
953. doi: 10.1109/IFEEA51475.2020.00199

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). “A density-based algorithm
for discovering clusters in large spatial databases with noise”, in Proceedings of the
2nd International Conference on Knowledge Discovery and Data Mining (Portland, OR:
AAAI Press), 226–231.

Frey, B. J., and Dueck, D. (2007). Clustering by passing messages between data
points. Science. 315, 972–976. doi: 10.1126/science.1136800

Hentosh, L., Tsikalo, Y., Kustra, N., and Kutucu, H. (2023). “ML-based approach for
credit risk assessment using parallel calculations,” in Proceedings of the 3rd International
Workshop on Computational and Information Technologies for Risk-Informed Systems
(CITRisk 2022) co-located with XXII International scientific and technical conference on
Information Technologies in Education and Management (ITEM 2022), Online Event
(Neubiberg), 161–173.

Hu, X., Huang, J., andQiu,M. (2017). “A communication efficient parallel DBSCAN
algorithm based on parameter server,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management (CIKM ’17) (New York, NY: Association
for Computing Machinery), 2107–2110.

Hu, X., Liu, L., Qiu, N., Yang, D., and Li, M. (2018). A mapreduce-based
improvement algorithm for DBSCAN. J. Algorithms Comput. Technol. 12, 53–61.
doi: 10.1177/1748301817735665

Jang, J., and Jiang, H. (2019). “DBSCAN++: towards fast and scalable density
clustering,” Proceedings of the 36th International Conference on Machine Learning
PMLR, Vol. 97, 3019–3029.

Kaur, J., Kermani, M. M., and Azarderakhsh, R. (2022b). Hardware constructions
for lightweight cryptographic block cipher QARMA with error detection mechanisms.
IEEE Transac. Emerg. Topic Comput. 10, 514–519. doi: 10.1109/TETC.2020.3027789

Kaur, J., Sarker, A., Kermani, M. M., and Azarderakhsh, R. (2022a). Hardware
constructions for error detection in lightweight welch-gong (WG)-oriented
streamcipher WAGE benchmarked on FPGA. IEEE Transac. Emerg. Topic Comput.
10, 1208–1215. doi: 10.1109/TETC.2021.3073163

Kermani, M. M., Azarderakhsh, R., and Xie, J. (2016). “Error detection reliable
architectures of Camellia block cipher applicable to different variants of its substitution

boxes,” in IEEE AsianHardware-Oriented Security and Trust (AsianHOST) (Yilan), 1–6.
doi: 10.1109/AsianHOST.2016.7835560

Kim, J.-H., Choi, J.-H., Yoo, K.-H., and Nasridinov, A. (2019). AA-DBSCAN:
an approximate adaptive DBSCAN for finding clusters with varying densities. J.
Supercomput. 75, 142–169. doi: 10.1007/s11227-018-2380-z

Mochurad, L. (2021). “Optimization of regression analysis by conducting parallel
calculations,” in COLINS-2021: 5th International Conference on Computational
Linguistics and Intelligent Systems (Kharkiv), 982–996.

Mochurad, L., and Solomiia, A. (2020). “Optimizing the computational modeling of
modern electronic optical systems,” in Lecture Notes in Computational Intelligence and
Decision Making, ISDMCI 2019. Advances in Intelligent Systems and Computing, Vol.
1020, eds V. Lytvynenko, S. Babichev, W. Wójcik, O. Vynokurova, S. Vyshemyrskaya,
and S. Radetskaya (Cham: Springer).

Mohiuddin, A., Seraj, R., and Islam, M. S. S. (2020). The
k-means algorithm: a comprehensive survey and performance
evaluation. Electronics 9, 1–12. doi: 10.3390/electronics9
081295

Ogbuabor, G., and Ugwoke, F. N. (2018). Clustering algorithm for a healthcare
dataset using silhouette score value. Int. J. Comput. Sci. Inform. Technol. 10, 27–37.
doi: 10.5121/ijcsit.2018.10203

Shibla, T. P., and Shibu, K. B. (2018). “Improving efficiency of DBSCAN
by parallelizing kd-tree using spark,” in 2018 Second International Conference
on Intelligent Computing and Control Systems (ICICCS) (Madurai), 1197–1203.
doi: 10.1109/ICCONS.2018.8663169

Song, H., and Lee, J.-G. (2018). “RP-DBSCAN: a superfast parallel DBSCAN
algorithm based on random partitioning,” in SIGMOD ’18: Proceedings of the 2018
International Conference on Management of Data (New York, NY: Association for
Computing Machinery), 1173–1187.

Suchithra, M. S., and Pai, M. L. (2020). “Data Mining based geospatial
clustering for suitable recommendation system,” in 2020 International Conference
on Inventive Computation Technologies (ICICT) (Coimbatore), 132–139.
doi: 10.1109/ICICT48043.2020.9112562

Top Streamers on Twitch (n.d.). Available Online at: https://www.kaggle.com/
datasets/aayushmishra1512/twitchdata (accessed August 10, 2023).

Wang, Y., Gu, Y., and Shun, J. (2020). “Theoretically-efficient and practical parallel
DBSCAN,” in Proceeding of SIGMOD’20 (Portland, OR), 1–17. doi: 10.1145/3318464.3
380582

Wu, G., Cao, L., Tian, H., and Wang, W. (2022). HY-DBSCAN: a hybrid
parallel DBSCAN clustering algorithm scalable on distributed-memory
computers. J. Parallel Distrib. Comput. 168, 57–69. doi: 10.1016/j.jpdc.2022.
06.005

Yviquel, H., Pereira, M., Francesquini, E., Valarini, G., Leite, G., Rosso, P., et al.
(2022). “The OpenMP cluster programming model,” in Workshop Proceedings of the
51st International Conference on Parallel Processing, 111.

Zhang, C., Huang, W., Niu, T., Li, G., and Cao, D. (2023). Review
of clustering technology and its application in coordinating vehicle
subsystems. Automot. Innov. 6, 89–115. doi: 10.1007/s42154-022-0
0205-0

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2023.1292923
https://doi.org/10.1109/TVLSI.2016.2633412
https://doi.org/10.1145/3402819
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1109/TKDE.2010.232
https://doi.org/10.1109/IFEEA51475.2020.00199
https://doi.org/10.1126/science.1136800
https://doi.org/10.1177/1748301817735665
https://doi.org/10.1109/TETC.2020.3027789
https://doi.org/10.1109/TETC.2021.3073163
https://doi.org/10.1109/AsianHOST.2016.7835560
https://doi.org/10.1007/s11227-018-2380-z
https://doi.org/10.3390/electronics9081295
https://doi.org/10.5121/ijcsit.2018.10203
https://doi.org/10.1109/ICCONS.2018.8663169
https://doi.org/10.1109/ICICT48043.2020.9112562
https://www.kaggle.com/datasets/aayushmishra1512/twitchdata
https://www.kaggle.com/datasets/aayushmishra1512/twitchdata
https://doi.org/10.1145/3318464.3380582
https://doi.org/10.1016/j.jpdc.2022.06.005
https://doi.org/10.1007/s42154-022-00205-0
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	A fast parallelized DBSCAN algorithm based on OpenMp for detection of criminals on streaming services
	1. Introduction
	2. Problem formulation
	3. Problem solution
	3.1. Proposed parallel algorithm description
	3.2. Technology selection
	3.3. Estimation of computational complexity and expected results

	4. Results
	5. Conclusions and future works
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

