Check for updates

OPEN ACCESS

APPROVED BY Frontiers Editorial Office, Frontiers Media SA, Switzerland

*CORRESPONDENCE Allison McCarn Deiana ☑ adeiana@smu.edu Nhan Tran ☑ ntran@fnal.gov

RECEIVED 25 September 2023 ACCEPTED 26 September 2023 PUBLISHED 16 October 2023

CITATION

Deiana AM, Tran N, Agar J, Blott M, Di Guglielmo G, Duarte J, Harris P, Hauck S, Liu M, Neubauer MS, Ngadiuba J, Ogrenci-Memik S, Pierini M, Aarrestad T, Bähr S, Becker J, Berthold A-S, Bonventre RJ, Müller Bravo TE, Diefenthaler M, Dong Z, Fritzsche N, Gholami A, Govorkova E, Guo D, Hazelwood KJ, Herwig C, Khan B, Kim S, Klijnsma T, Liu Y, Lo KH, Nguyen T, Pezzullo G, Rasoulinezhad S, Rivera RA, Scholberg K, Selig J, Sen S, Strukov D, Tang W, Thais S, Unger KL, Vilalta R, von Krosigk B, Wang S and Warburton TK (2023) Corrigendum: Applications and techniques for fast machine learning in science. Front. Big Data 6:1301942 doi: 10.3389/fdata.2023.1301942

COPYRIGHT

© 2023 Deiana, Tran, Agar, Blott, Di Guglielmo, Duarte, Harris, Hauck, Liu, Neubauer, Ngadiuba, Ogrenci-Memik, Pierini, Aarrestad, Bähr, Becker, Berthold, Bonventre, Müller Bravo, Diefenthaler, Dong, Fritzsche, Gholami, Govorkova, Guo, Hazelwood, Herwig, Khan, Kim, Klijnsma, Liu, Lo, Nguyen, Pezzullo, Rasoulinezhad, Rivera, Scholberg, Selig, Sen, Strukov, Tang, Thais, Unger, Vilalta, von Krosigk, Wang and Warburton. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Corrigendum: Applications and techniques for fast machine learning in science

Allison McCarn Deiana^{1*}, Nhan Tran^{2,3*}, Joshua Agar⁴, Michaela Blott⁵, Giuseppe Di Guglielmo⁶, Javier Duarte⁷, Philip Harris⁸, Scott Hauck⁹, Mia Liu¹⁰, Mark S. Neubauer¹¹, Jennifer Ngadiuba², Seda Ogrenci-Memik³, Maurizio Pierini¹², Thea Aarrestad¹², Steffen Bähr¹³, Jürgen Becker¹³, Anne-Sophie Berthold¹⁴, Richard J. Bonventre¹⁵, Tomás E. Müller Bravo¹⁶, Markus Diefenthaler¹⁷, Zhen Dong¹⁸, Nick Fritzsche¹⁴, Amir Gholami¹⁸, Ekaterina Govorkova¹², Dongning Guo³, Kyle J. Hazelwood², Christian Herwig², Babar Khan¹⁹, Sehoon Kim¹⁸, Thomas Klijnsma², Yaling Liu²⁰, Kin Ho Lo²¹, Tri Nguyen⁸, Gianantonio Pezzullo²², Seyedramin Rasoulinezhad²³, Ryan A. Rivera², Kate Scholberg²⁴, Justin Selig²⁵, Sougata Sen²⁶, Dmitri Strukov²⁷, William Tang²⁸, Savannah Thais²⁸, Kai Lukas Unger¹³, Ricardo Vilalta²⁹,

¹Department of Physics, Southern Methodist University, Dallas, TX, United States, ²Fermi National Accelerator Laboratory, Batavia, IL, United States, ³Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States, ⁴Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, United States, ⁵Xilinx Research, Dublin, Ireland, ⁶Department of Computer Science, Columbia University, New York, NY, United States, ⁷Department of Physics, University of California, San Diego, San Diego, CA, United States, ⁸Massachusetts Institute of Technology, Cambridge, MA, United States, ⁹Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States, ¹⁰Department of Physics and Astronomy, Purdue University, West Lafayette, IN, United States, ¹¹Department of Physics, University of Illinois Urbana-Champaign, Champaign, IL, United States, ¹²European Organization for Nuclear Research (CERN), Meyrin, Switzerland, ¹³Karlsruhe Institute of Technology, Karlsruhe, Germany, ¹⁴Institute of Nuclear and Particle Physics, Technische Universität Dresden, Dresden, Germany, ¹⁵Lawrence Berkeley National Laboratory, Berkeley, CA, United States, ¹⁶Department of Physics and Astronomy, University of Southampton, Southampton, United Kingdom, ¹⁷Thomas Jefferson National Accelerator Facility, Newport News, VA, United States, ¹⁸Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States, ¹⁹Department of Computer Science, Technical University Darmstadt, Darmstadt, Germany, ²⁰Department of Bioengineering, Lehigh University, Bethlehem, PA, United States, ²¹Department of Physics, University of Florida, Gainesville, FL, United States, ²²Department of Physics, Yale University, New Haven, CT, United States, ²³Department of Engineering and IT, University of Sydney, Camperdown, NSW, Australia, ²⁴Department of Physics, Duke University, Durham, NC, United States, ²⁵Cerebras Systems, Sunnyvale, CA, United States, ²⁶Birla Institute of Technology and Science, Pilani, India, ²⁷Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States, ²⁸Department of Physics, Princeton University, Princeton, NJ, United States, ²⁹Department of Computer Science, University of Houston, Houston, TX, United States, ³⁰Department of Physics, Universität Hamburg, Hamburg, Germany, ³¹Department of Physics and Astronomy, Iowa State University, Ames, IA, United States

KEYWORDS

machine learning for science, big data, particle physics, codesign, coprocessors, heterogeneous computing, fast machine learning

A corrigendum on

Applications and techniques for fast machine learning in science

by Deiana, A. M., Tran, N., Agar, J., Blott, M., Di Guglielmo, G., Duarte, J., Harris, P., Hauck, S., Liu, M., Neubauer, M. S., Ngadiuba, J., Ogrenci-Memik, S., Pierini, M., Aarrestad, T., Bähr, S., Becker, J., Berthold, A.-S., Bonventre, R. J., Müller Bravo, T. E., Diefenthaler, M., Dong, Z., Fritzsche, N., Gholami, A., Govorkova, E., Guo, D., Hazelwood, K. J., Herwig, C., Khan, B., Kim, S., Klijnsma, T., Liu, Y., Lo, K. H., Nguyen, T., Pezzullo, G., Rasoulinezhad, S., Rivera, R. A., Scholberg, K., Selig, J., Sen, S., Strukov, D., Tang, W., Thais, S., Unger, K. L., Vilalta, R., von Krosigk, B., Wang, S., and Warburton, T. K. (2022). *Front. Big Data 5:787421*. doi: 10.3389/fdata.2022.787421

In the published article, there was an error regarding the affiliation for author Anne-Sophie Berthold. Instead of having affiliation 25 (Cerebras Systems, Sunnyvale, CA, United States) they should have 14 (Institute of Nuclear and Particle Physics, Technische Universität Dresden, Dresden, Germany).

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.