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With the increasing utilization of data in various industries and applications,

constructing an e�cient data pipeline has become crucial. In this study,

we propose a machine learning operations-centric data pipeline specifically

designed for an energy consumption management system. This pipeline

seamlessly integrates the machine learning model with real-time data

management and prediction capabilities. The overall architecture of our

proposed pipeline comprises several key components, including Kafka, InfluxDB,

Telegraf, Zookeeper, and Grafana. To enable accurate energy consumption

predictions, we adopt two time-series prediction models, long short-term

memory (LSTM), and seasonal autoregressive integrated moving average

(SARIMA). Our analysis reveals a clear trade-o� between speed and accuracy,

where SARIMA exhibits faster model learning time while LSTM outperforms

SARIMA in prediction accuracy. To validate the e�ectiveness of our pipeline, we

measure the overall processing time by optimizing the configuration of Telegraf,

which directly impacts the load in the pipeline. The results are promising, as

our pipeline achieves an average end-to-end processing time of only 0.39 s

for handling 10,000 data records and an impressive 1.26 s when scaling up to

100,000 records. This indicates 30.69–90.88 times faster processing compared to

the existing Python-based approach. Additionally, when the number of records

increases by ten times, the increased overhead is reduced by 3.07 times. This

verifies that the proposed pipeline exhibits an e�cient and scalable structure

suitable for real-time environments.

KEYWORDS

energy consumption, MLOps-centric data pipeline, time-series forecasting, real-time

data pipeline, scalable pipeline

1 Introduction

With the growing utilization of data in various industries and applications,

the construction of efficient data pipelines becomes paramount. These pipelines are

responsible for designing the entire process from data collection to data services, ensuring

smooth and effective data management. In particular, real-time pipelines have the

capability to dynamically collect and process data from Internet of Things (IoT) sensors,

enabling them to provide instantaneous and up-to-date services (Gogineni et al., 2015;

Rathore et al., 2015; Kalsoom et al., 2020). As a result, real-time data pipelines have

gained significant traction in various industries (Gogineni et al., 2015; Rathore et al.,

2015; Kalsoom et al., 2020). However, conventional Python scripts commonly used for
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MLOps often exhibit relatively long processing times in the

overall pipeline. Moreover, they demonstrate a significant increase

in overhead as the number of records grows. Therefore, the

establishment of a real-time data pipeline is necessary to address

these challenges.

This study focuses on energy consumption management

systems, aiming to design an efficient data pipeline that covers

the entire process from data collection to time series prediction

models. The critical importance of energy management has

led many countries to adopt energy consumption prediction

models, which strive to optimize their performance (Ekonomou,

2010; Shapi et al., 2021). Machine learning (ML) has emerged

as a powerful approach to tackling complex challenges across

various industries, delivering effective solutions. To ensure the

seamless operation of ML models, all interconnected system

components, including data collection and management, must

work in harmony, not just for the ML model itself (Sculley

et al., 2014). In this context, machine learning operations

(MLOps) have arisen as a viable solution to design an efficient

system framework.

In this study, we introduce a specialized MLOps-focused

framework that seamlessly integrates the ML model with the data

pipeline for real-time energy consumption data management and

prediction. In the framework, energy consumption data is collected

from IoT sensors, undergoes preprocessing, and is then stored

in databases. To deal with real-time collected data without loss,

Kafka is employed for data ingestion, and Telegraf consumes the

data from Kafka and feeds them to the database. Finally, the

time-series prediction models, long short-term memory (LSTM)

and seasonal autoregressive integrated moving average (SARIMA),

are adopted.

To evaluate the performance of the models, we conducted

a comprehensive comparison using a substantial dataset

of electric power consumption. The results highlighted

the trade-off between speed and accuracy. SARIMA

exhibited a remarkable advantage in model learning

time, making it suitable for scenarios with strict real-

time requirements, while LSTM outperformed SARIMA in

prediction accuracy.

To validate the effects of the pipeline, we measured the

processing time of the overall pipeline by optimizing the

configuration of Telegraf. In particular, we showed that our pipeline

has an average end-to-end processing time of only 0.39 s to deal

with 10,000 data records at a time in the pipeline and only 1.26 s

when expanding it to 100,000 records. This indicates 30.69–90.88

times faster processing compared to the existing Python-based

approach. Additionally, when the number of records increases by

ten times, the increased overhead is reduced by 3.07 times. This

verifies that the proposed pipeline exhibits an efficient and scalable

structure suitable for real-time environments.

2 Related work

2.1 Data pipeline

Fu and Soman (2021) introduced a data infrastructure tailored

for handling real-time data generated by end-users in Uber. The

system employed Apache Kafka for real-time data ingestion and

Apache Flink for stream processing. By utilizing these tools, they

were able to effectively process and analyze the continuous flow

of real-time data, enabling prompt responses to user actions and

improving overall system performance. Similarly, Syafrudin et al.

(2017) proposed a real-time data processing framework specifically

designed for sustainability in the manufacturing sector. Their

framework integrated Apache Kafka for detecting data transmitted

from sensors, Apache Storm for real-time data processing, and

MongoDB for storing and managing the processed data. With

this setup, they were able to ensure timely data processing

and storage, facilitating efficient decision-making and resource

management in the manufacturing context. Both studies showcase

the significance of real-time data processing frameworks in various

industries. By leveraging powerful tools such as Apache Kafka,

Apache Flink, Apache Storm, and MongoDB, these frameworks

can handle large volumes of data in real-time, leading to improved

operational efficiency, better decision-making, and enhanced

user experiences.

2.2 Time series prediction model

Initially, various machine learning methodologies, such

as autoregressive integrated moving average(ARIMA)-based

statistical methods (Amjady, 2001; Chujai et al., 2013; Fard and

Akbari-Zadeh, 2014), support vector machine (SVM) (Mohandes,

2002; Fan et al., 2016), and decision tree (Huang et al., 2016;

Mayrink and Hippert, 2016), were commonly employed for

predicting energy consumption. These traditional techniques

provided valuable insights and paved the way for energy

consumption forecasting.

However, in recent years, the field of energy consumption

prediction has witnessed a significant shift toward the

application of deep learning models. Artificial neural networks

(ANN) (Gajowniczek and Zabkowski, 2014; Massana et al.,

2015), especially LSTM models (Kong et al., 2017; Kim

et al., 2018), which are capable of learning temporary gating

functions, have shown remarkable performance in this domain.

LSTM’s ability to handle sequential data and capture long-term

dependencies makes it well-suited for time series prediction

tasks. Therefore, there have been various research efforts

that utilize LSTM for predicting individual household energy

consumption (Yan et al., 2019), gas consumption (Laib et al.,

2019), and long-term energy consumption (Wang et al., 2020) have

been proposed.

Additionally, convolutional neural networks

(CNN) (Amarasinghe et al., 2017; Koprinska et al., 2018)

have also demonstrated outstanding results in energy consumption

prediction. CNNs excel at extracting local correlations between

power spectrums, making them highly effective in analyzing spatial

and temporal patterns in energy consumption data.

These deep learning models have revolutionized energy

consumption prediction, offering improved accuracy and more

robust predictions compared to traditional machine learning

methods. However, in practice, we need to consider their excessive

costs in an environment equipped with embedded devices such as

IoT sensors.
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3 Background

3.1 InfluxDB

InfluxDB is a renowned open-source time-series database,

developed by InfluxData. Its primary focus lies in efficiently storing

time-series data, offering fast processing and high availability for

both write and read operations. This makes it a popular choice

for applications that heavily rely on time information, such as

IoT sensors, smart factories, operation monitoring, and real-time

analysis. InfluxDB’s versatility, performance, and ease of use make

it a prominent tool in the time-series data management landscape.

3.2 Kafka

Kafka is a powerful open-source distributed event streaming

platform developed by Apache. Its primary purpose is to capture

data in real-time from various sources, including databases and

sensors, in the form of a continuous stream of events. The

architecture of Kafka revolves around three key components:

producers, consumers, and brokers. Producers are responsible for

publishing or writing the events into Kafka. Consumers, on the

other hand, subscribe to the events and read them from Kafka.

Brokers play a crucial role as mediators between producers and

consumers. They efficiently manage and group the events into

topics, which are essentially named streams of data.

3.3 Zookeeper

Zookeeper is a valuable open-source coordination service

developed by Apache. Its main purpose is to simplify the

implementation of various tasks in distributed environments,

including synchronization and master node selection. In the

context of Kafka, Zookeeper plays a crucial role in monitoring

the health of the servers and storing the status of topics for both

producing and consuming data. When new topics are created,

Zookeeper keeps track of their status and ensures that consumers

and producers are informed about the existence of these new topics.

Zookeeper works closely with Kafka brokers to maintain a reliable

and up-to-date system. It notifies consumers and producers about

the creation of new Kafka brokers and any potential failures that

may occur.

3.4 Telegraf

Telegraf is an open-source plugin developed by InfluxData,

designed to efficiently collect and deliver events from databases,

systems, and IoT sensors. One of the significant advantages of

Telegraf is its versatility, as it can be seamlessly integrated into

various server applications like InfluxDB and Kafka. This flexibility

allows Telegraf to be easily incorporated into existing data flows,

enabling users to leverage its capabilities without major disruptions

to their current setups. By acting as a powerful data collection and

delivery tool, Telegraf contributes to enhancing data management,

analysis, and real-time processing.

3.5 Grafana

Grafana is a powerful open-source toolkit developed by

Grafana Labs, specifically designed to offer a comprehensive

dashboard for visualizing time-series data. One of Grafana’s

key strengths lies in its compatibility with multiple databases,

including ElasticSearch, InfluxDB, and PostgreSQL. This enables

users to seamlessly connect their data sources and create

insightful visualizations. Grafana serves as an invaluable tool

for data visualization and monitoring, offering a user-friendly

interface and seamless integration with diverse data sources and

notification systems.

4 Proposed framework

4.1 Data ingestion pipeline

Figure 1 illustrates the overall architecture of the proposed

framework. The data ingestion pipeline is highlighted in blue,

while the time-series prediction model is highlighted in green. The

data ingestion pipeline consists of two main parts: data collection

and data ingestion. The data collection, which is the initial

stage of the architecture, involves gathering energy consumption

data from IoT sensors. The collected data is transmitted to the

central server. Subsequently, the Kafka source connector monitors

the specified path and sends the data to the Kafka brokers for

further processing. Once the data is in Kafka, it undergoes several

processing steps. The processing steps occur before the data is

transmitted to the main database, InfluxDB, after being consumed

by Telegraf from Kafka. These steps consist of (1) parsing, (2)

transformation, and (3) reconstruction. The parsing step involves

decoding the collected sensor data into a usable format. The

raw sensor data is encoded as a nested JSON in a single string,

containing a timestamp, identifier, and sensor measurement values.

To insert the encoded string data into the database, it is decoded

to the individual attributes. The transformation step converts

the decoded attributes from the parsing step into attribute types

defined in the database schema. For example, it performs the

conversion of a timestamp, initially formatted as a string, into a

Unix timestamp defined in the database. The reconstruction step

involves restructuring the original data for efficient data storage.

Storing a nested JSON value directly in the database can lead to

a degradation in query performance. Therefore, the nested data is

appropriately restructured into a more manageable format in the

database. For instance, sensor data incoming at the district level

is reconstructed at the household level. These processes enhance

the overall stability of the system, enabling efficient data storage

and queries.

To avoid an excessive accumulation of data in InfluxDB that

could result in a decline in query performance and resource

wastage, data older than a certain time threshold is compressed in

the Apache Parquet format. These compressed files can be accessed

and visualized in Grafana.
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FIGURE 1

The overall architecture of the proposed framework.

4.2 Time-series prediction model

To begin the prediction process, data is retrieved from both

the Parquet files and InfluxDB. The retrieved data then undergoes

extraction and preprocessing steps to prepare it for model training.

In the extraction step, the sensor data utilized for model

training is extracted from the entire dataset1 and is passed through

the process of model training. We read the target data used for

training from Parquet files and InfluxDB. The read data is loaded

into a Pandas dataframe, facilitating the training process. In the

preprocessing step, we perform preprocessing on the sensor data to

prepare it for model training. Three main processes are executed.

First, we fill out the missing values. Sensor data often contains

missing values, which can lead to degraded performance during

model training and prediction. We replace missing values with

the most recent value. Second, we adjust the time unit for model

prediction. Before conducting model training and prediction, it

is essential to adjust the time unit of the collected data to that

for model training and prediction. In this step, we aggregate the

collected sensor data to the time unit for prediction. For instance,

if the collected data is at a 1-min interval and the prediction unit is

at a 1-h interval, the collected data is aggregated into 1-h intervals.

Third, we structure the original data into sliding window units. For

time series prediction models, a sliding window configuration is

crucial for training and prediction. This process involves grouping

the continuous time series data for each time point into an array

format. For example, if there is time series data with a time sequence

from 1 to 15, and the sliding window size is 10, the sliding windows

would be structured as 1–10, 2–11, ..., and 6–15.

The chosen prediction models, SARIMA (Valipour, 2015) and

LSTM (Hochreiter and Schmidhuber, 1997), are trained using

preprocessed data. SARIMA incorporates seasonal components

1 Machine Learning Repository: http://archive.ics.uci.edu/dataset/235/

individual+household+electric+power+consumption.

in addition to ARIMA, often used to identify or impose regular

patterns in time series data, especially in data types with periodicity.

Temperatures are representative features with periodicity. Because

energy consumption is significantly correlated with temperature,

SARIMA is suitable for considering such seasonality. LSTM has

the ability to retain information for a period and is beneficial

for processing a long sequence. Because time series data is a

prominent example of sequence data, LSTM is a suitable candidate

for predicting time series data.

To monitor the models’ ongoing performance, the evaluation

metrics and prediction results are stored in the database. This

enables easy access to the historical performance of the models and

facilitates analysis and decision-making. The prediction process is

applied to predict energy consumption in real-time, allowing for

timely and informed management decisions. To capture recent

trends in the data and account for changes in the system,

the entire prediction process is periodically automated. This

periodic automation ensures that the models remain up-to-date

and can adapt to dynamic changes in the energy consumption

data. By integrating SARIMA and LSTM models within the

MLOps-based framework, the system can take advantage of

both statistical time-series modeling and deep learning-based

techniques. This comprehensive approach aims to optimize

prediction efficiency while targeting real-time service requirements

in energy management.

5 Performance evaluation

5.1 Experimental environments

For the experiments, we used a server equipped with Intel

Xeon Silver 4210R CPU 2.40 GHz, 32 GB of memory, and Nvidia

RTX A5000, where Ubuntu OS is installed. We use the following

versions of the software: Python 3.6.9, Kafka 5.5.0, Zookeeper 3.4.9,

InfluxDB 1.8.2, Telegraf, 1.19, and Grafana 7.2.0.
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FIGURE 2

Visualization of predicted results of LSTM and SARIMA. (A) LSTM and (B) SARIMA.

TABLE 1 Comparing model learning time and accuracy.

Model learning time RMSE MAE

SARIMA 1 min 19 s 0.5103 0.3592

LSTM 40 min 16 s 0.0825 0.1084

5.2 Experimental datasets and methods

The dataset (Hebrail and Berard, 2012) used in this study

was collected with a one-minute sampling rate over a period

between December 2006 and November 2010, encompassing a total

of 47 months. It is a multivariate time-series data consisting of

six independent variables, such as electrical quantities and sub-

metering values, along with a numerical dependent variable, i.e.,

global active power. The dataset contains a total of 2,075,259

observations. During preprocessing, the data was resampled to an

hourly frequency from the original one-minute sampling rate. The

first 3 years of data (36 months) were used for model training,

while the remaining data (11 months) were reserved for validation

purposes.

To measure the prediction accuracy of the models, two types of

metrics were employed: Mean Absolute Error (MAE) as shown in

Equation (1), and Root Mean Squared Error (RMSE) as shown in

Equation (2). MAE measures the average magnitude of the errors,

ei, in a set of predictions, without considering their direction. It is

the average over the test sample of the absolute differences between

prediction and actual observation where all individual differences

have equal weight. It is a suitable indicator when the loss increases

linearly. RMSE represents the standard deviation of the prediction

errors, ei. Since the error is squared, the larger the error, the higher

the weight accordingly is reflected.

MAE =
1

n

n
∑

i=1

|ei| (1)

RMSE =

√

√

√

√

1

n

n
∑

i=1

e2i (2)

For the hyperparameters of LSTM, ADAM (Kingma and Ba,

2014) was chosen as the optimizer, with a learning rate of 0.001,

and MAE was used as the loss function. ADAM is a learning

optimization algorithm that dynamically adjusts the learning rates

for individual parameters, striking a balance between the global

and local optima. It offers the advantage of relatively swift learning

rates and excellent optimization performance. As for the SARIMA

model, the ARIMA order was set as (1,1,1), and the seasonal order

was set as (1,0,1,24). These parameter settings were determined

based on the lowest Akaike Information Criterion (AIC) (Burnham

and Anderson, 2004), which is a measure of the relative quality

of statistical models for a given set of data. AIC represents the

similarity between actual data and predicted data, which tends to

be higher when there are more independent variables used in the

estimation. As for AIC, it increases when unnecessary parameters

are added to improve fitness, so a lower AIC suggests a better model

with fewer unnecessary parameters. It is important to note that

the results may vary depending on the chosen hyperparameters for
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both SARIMA and LSTM models. The presented hyperparameter

settings were specifically chosen for this study to provide insights

into the prediction accuracy of the models on the resampled data.

5.3 Experimental results for a prediction
model

Figure 2 shows the predicted results of the energy consumption

using SARIMA and LSTM. Table 1 presents the predicted results

of SARIMA and LSTM. Overall, in terms of accuracy, LSTM

outperforms SARIMA, but it is essential to highlight that SARIMA

still demonstrates acceptable accuracy. In regard to model learning

time, SARIMA shows a significant advantage over LSTM, being

∼30.58 times faster. This indicates that SARIMA could be a more

desirable choice when the prediction model needs to run on

resource-constrained IoT devices or when frequent updates of the

prediction model are required. On the other hand, LSTM proves to

be more desirable in scenarios where more accurate predictions are

needed and computational resources are less constrained, such as

server environments.

5.4 Experimental results for a data pipeline

To optimize the performance of the entire pipeline, Telegraf

plays a crucial role in consuming data from Kafka. To assess the

scalability of the data pipeline, we conducted tests by generating

artificial data at a rate of 500 records per second, randomly selected

from the real-world dataset. To observe the overall processing

time, we adjusted the flush interval of Telegraf from 10 to 1 s,

loading 10,000 data records. Figure 3 shows the results of the

overall processing time for the entire data pipeline of the proposed

framework. The results showed that the smallest flush interval

(1 s) yielded the fastest performance. Specifically, with a flush

interval of 10 s, the average end-to-end processing time was

35.33 s. This time decreased significantly to 12.84 and 0.39 s

when the flush interval was reduced to 5 and 1 s, respectively.

It is worth noting that these improvements reached a saturation

point. In this setup, even with an increased data load of 100,000

records, the processing time remained impressively low at only

1.26 s. This demonstrates the framework’s ability to efficiently

handle large volumes of data. For comparative experiments to

show the effectiveness of the proposed method, we implement

a Python-based script that performs the same function. The

Python script performs data loading and processing in the same

manner as the proposed pipeline. Specifically, it loads and parses

json files, performs transformation and reconstruction steps,

and then stores them in InfluxDB. The experiments using the

Python script with the same data show an average processing

time of 11.57 s for 10,000 records and 114.51 s for 100,000

records, respectively. This indicates that the proposed pipeline

processes data 30.69 times faster for 10,000 records and 90.88

times faster for 100,000 records compared to the Python script,

respectively. That is, with a tenfold increase in the number

of records, the average processing time for the Python script

FIGURE 3

Average processing time from data collection to database.

increases by 9.90 times, while the proposed pipeline increases

by only 3.23 times. This shows that the proposed pipeline is

a highly efficient pipeline suitable for real-time environments,

demonstrating superior scalability.

6 Conclusions

In this study, we presented a comprehensive data pipeline

that facilitates real-time data collection from IoT sensors, storage

in databases, and time-series prediction models. Through the

experiments, we showed the trade-off between the accuracy

and efficiency of the ML-based prediction models under the

proposed pipeline. Our pipeline showed 30.69–90.88 times

faster processing than the existing Python-based approach.

Additionally, when the number of records increased by ten

times, the increased overhead was reduced by 3.07 times. This

verifies that the proposed pipeline exhibits an efficient and

scalable structure suitable for real-time environments. Given

the limited research efforts in this domain, our proposed

framework showcases its effectiveness in energy consumption

management.

Based on the findings and insights gained from this study, we

have identified two future research directions for improving the

current framework. First, we need to enhance the coordination

and optimization of the components within the pipeline to handle

larger workloads more efficiently. As the system scales and deals

with increased data volumes, it becomes crucial to ensure seamless

interactions among different components and maximize resource

utilization, particularly for real-time applications. Second, in this

study, SARIMA and LSTM, which are simple yet effective predictive

models considering the real-time nature of the proposed pipeline,

were utilized. The proposed pipeline can also be extended with

state-of-the-art predictive models such as MTAD-GAT (Zhao et al.,

2020) and TFT (Lim et al., 2021). However, not only prediction

performance but also computational overheads such as model

training/inference time and resource usage should be considered.

By addressing the trade-off, we aim to choose the most appropriate

predictive model for a given environment.
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