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Sparse and Expandable Network
for Google’s Pathways

Charles X. Ling*, Ganyu Wang and Boyu Wang

Department of Computer Science, Western University, London, ON, Canada

Introduction: Recently, Google introduced Pathways as its next-generation

AI architecture. Pathways must address three critical challenges: learning one

general model for several continuous tasks, ensuring tasks can leverage each

other without forgetting old tasks, and learning from multi-modal data such as

images and audio. Additionally, Pathways must maintain sparsity in both learning

and deployment. Current lifelongmulti-task learning approaches are inadequate

in addressing these challenges.

Methods: To address these challenges, we propose SEN, a Sparse and

Expandable Network. SEN is designed to handle multiple tasks concurrently by

maintaining sparsity and enabling expansion when new tasks are introduced.

The network leverages multi-modal data, integrating information from di�erent

sources while preventing interference between tasks.

Results: The proposed SEN model demonstrates significant improvements

in multi-task learning, successfully managing task interference and forgetting.

It e�ectively integrates data from various modalities and maintains e�ciency

through sparsity during both the learning and deployment phases.

Discussion: SEN o�ers a straightforward yet e�ective solution to the limitations

of current lifelong multi-task learning methods. By addressing the challenges

identified in the Pathways architecture, SEN provides a promising approach

for developing AI systems capable of learning and adapting over time without

sacrificing performance or e�ciency.
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1 Introduction

The past decade has seen significant growth in the capabilities of artificial intelligence.

Deep learning in particular has archived great successes in medical image recognition and

diagnostics (Litjens et al., 2017; Shen et al., 2017), tasks on natural language processing

(Devlin et al., 2019; Radford et al., 2019), and learning to play difficult games at the expert

level (Silver et al., 2017). However, as pointed out recently by Google (Dean, 2023), current

deep learning models are often trained from scratch for each new task. The individually

trainedmodels cannot leverage each other to improve their performance. If the samemodel

is trained on additional tasks in sequence, the previous ones would likely be forgotten and

their performances can degrade greatly.

Several lines of research have been published to overcome these weaknesses. Multi-

task learning (Caruana, 1997) considers how to learn multiple tasks and concepts at

the same time such that they can leverage the knowledge learned from each other. The

related field of transfer learning (Pan and Yang, 2009) assumes that some tasks have been

previously learned and aim to transfer their knowledge assisting in learning new tasks.

Few-shot learning (Fei-Fei et al., 2006) focuses on the scenario where only a small number

of labeled data are available. Lifelong learning (Thrun., 1995; Thrun, 1998), also known

as continual (Parisi et al., 2019) or sequential learning (McCloskey and Cohen, 1989),

considers how to learn and transfer knowledge across long sequences of tasks without

catastrophic forgetting. More recently, Peng and Risteski (2022) presents a formalization
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of continual learning through feature extraction, proposing an

efficient gradient-based algorithm, DPGrad, for linear features that

maintains performance across environments without catastrophic

forgetting, and demonstrates that similar approaches for non-

linear features face fundamental limitations. Wang et al. (2022)

introduces SparCL, a novel framework for efficient continual

learning on edge devices that enhances training speed and accuracy

through task-aware dynamic masking, dynamic data removal, and

dynamic gradient masking, significantly improving upon existing

methods in resource-limited scenarios.

However, most previous approaches can only demonstrate

subsets of the properties of multi-task and lifelong learning often

by different complex mechanisms. For example, existing lifelong

learning techniques tend to use one or more of three types of

mechanisms, each of which comes with its own drawbacks and

hurdles (De Lange et al., 2019). These mechanisms are respectively

based on replay, regularization, and dynamic architecture. See

Section 2 for a brief review. It would be extremely useful if we

could have one general deep learning model that can learn new

tasks continuously without forgetting and can leverage and transfer

knowledge between tasks in improving their learning.

This is exactly what was proposed recently by Google (Dean,

2023) to construct the so-called Pathways as its next-generation AI

architecture. Google’s Pathways is one general model for learning

many tasks continuously without catastrophic forgetting and with

knowledge transfer between tasks. Pathways also need to be sparse,

and able to handle multi-modality of data. Though posted as a

blog, these requirements have long been recognized as challenges

for machine learning and AI.

We first describe the three challenges of Google’s Pathways in

more detail.We add our own formulation tomake themmore clear.

1.1 Challenge 1: continual learning of one
general model for many tasks

In Google’s Pathways, it is assumed that the tasks

{(T1,D1), (T2,D2), ...} are given in sequence, where Di is the

data of task Ti. Instead of constructing separate models for each

task, Ti, one general (deep learning) model must be built by

increasingly introducing more new tasks. However, the model

must be able to provide reliable predictions at any time for previous

tasks; thus, one cannot trivially wait to gather all data of all tasks to

build one deep learning model at the end. It is also required that

when the new task TN is learned from DN , the data of previous

tasks (i.e., {Di}i≤N−1) should not be used.

Assuming T1,T2, ...,TN have been learned, Pathways must

exhibit several fundamental properties of lifelong learning when

learning a new task TN+1:

• No catastrophic forgetting: this is the ability to avoid a

dramatic loss in performance on Ti (i ≤ N) when learning

TN+1 from DN+1 (McCloskey and Cohen, 1989).

• Forward transfer: This is the ability to learn a new task

TN+1 easier (with fewer training examples to achieve the

same or higher predictive performance) by leveraging the

knowledge from earlier learned tasks {Ti}i≤N . This is also

known as knowledge transfer (Pan and Yang, 2009). Achieving

sufficient positive forward transfer makes it possible for few-

shot learning on the new tasks.

• Backward transfer: this is knowledge transfer from Tj to Ti

where i < j, the opposite direction as forward transfer. When

learning a task Tj after Ti, Tj may in turn help to improve the

performance of an earlier talk Ti. This is like a “review” before

a final exam after the materials of all chapters have been taught

and learned. Later materials can often help better understand

earlier materials.

1.2 Challenge 2: learning tasks with
multiple modalities

As outlined in Dean (2023), Pathways should enable multi-

modality models that encompass vision, auditory, and language

understanding simultaneously. “So whether themodel is processing

the word ‘leopard’, the sound of someone saying “leopard” or a

video of a leopard running the same response is activated internally:

the concept of a leopard.” Most current deep-learning models

cannot easily handle data from multiple modalities.

1.3 Challenge 3: sparsity in learning and
predicting

Another major issue pointed out in Dean (2023) is that most

current deep learning models are dense, which means the whole

neural network would activate to accomplish a task. A dense

network is certainly very computationally and energy inefficient,

especially for very large models.

Although no formal measurement of the sparsity is given, we

use the percentage of the network weights that are activated during

training and testing as an indication of the network sparsity.

1.4 Contributions

In this paper, we propose SEN, Sparse and Expandable

Network, which utilizes and integrates with several previous works

in a novel way. SEN is actually simple, yet it effectively answers the

three challenges of Google’s Pathways. The main contributions of

our work are:

1. We introduce a novel task dispatcher, a classifier that learns

from the task data and makes the whole network sparse. The

dispatcher can also exploit the relevance of the tasks, and fulfill

the knowledge transfer among them in an effective fashion. See

Section 3.1.

2. When learning a new task, SEN freezes the current network so

forgetting of previous tasks will not happen. It then expands

the network to learn the new task, which can be in a different

modality. We combine the ideas of weight regularization

(Kirkpatrick et al., 2016; Li and Hoiem, 2017; Zenke et al., 2017;

Chaudhry et al., 2018; Ritter et al., 2018; Zhang et al., 2020) and
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dynamic architecture (Rusu et al., 2016; Xu and Zhu, 2018; Yoon

et al., 2018) with our modifications. See Section 3.2 for details.

3. After the dispatcher finds relevant tasks that can be leveraged,

forward and/or backward transfer links between tasks are

enabled and initiated, ready to be learned from the data. Thus,

only the weights of the relevant tasks are trained and updated.

In this way, the knowledge between tasks is transferred yet the

activation in the network is still sparse.

4. Though our experiments are relatively small in scale, we

demonstrate that SEN can, in principle, effectively meet all of

the three challenges in Google’s Pathways. SEN also outperforms

baseline models by a wide margin with small training datasets

and exhibits many important properties of lifelong multi-task

learning.

2 Related works

Previous work on lifelong machine learning and continual

learning tend to fall into three categories, and they can often only

demonstrate subsets of properties proposed in Google’s Pathways.

The first category, replay (or generative replay), commonly works

by storing (or generating) previous task data and training on it

alongside new task data (Rebuffi et al., 2017; Isele and Cosgun, 2018;

Chaudhry et al., 2019; Wu et al., 2019). As a result, its data and

computation efficiency is prohibitively low for the Pathways.

The second category is regularization. This mechanism,

examplified by Elastic Weight Consolidation (EWC), works by

restricting weight changes (making them less “flexible”) so that

learning new tasks does not significantly affect previous task

performance (Kirkpatrick et al., 2016; Li and Hoiem, 2017; Zenke

et al., 2017; Chaudhry et al., 2018; Ritter et al., 2018; Zhang et al.,

2020; Yang et al., 2023). We use a special version of the weight

regularization in our model SEN. More specifically, we propose

to use weight regularization more strategically by simply freezing

weights for all non-forgetting tasks. This eliminates forgetting

while also reducing network sparsity and computation on weight

updating. Note however, we do allow relevant tasks to leverage

each other by initiating trainable weights for forward and backward

knowledge transfer.

The third category is dynamic architecture (Rusu et al.,

2016; Xu and Zhu, 2018; Yoon et al., 2018; Kang et al., 2022).

They commonly work by adding new units and weights for

each task and may only allow parts of the weights to be

tuned. This reduces forgetting while also allowing knowledge

transfer. However, without a task dispatcher as in our model, the

network activity is always at 100%. In our model, the network

architecture is dynamically expanded, and with the dispatcher

and selective forward and backward transfer links, we can

efficiently achieve both sparsity and knowledge transfer within the

network.

Very recently Google published a system-level design for

asynchronous distributed dataflow for the Pathways (Barham

et al., 2022). However, it does not deal with machine learning

tasks specifically. There are no experiments or discussions on

how continual and multi-task learning, non-forgetting, forward

and backward transfer, and sparsity are achieved. Google further

introduces a novel routing algorithm called Expert Choice

(EC) (Zhou et al., 2022) that addresses load imbalance and

under-utilization in mixture-of-experts (MoE) models, achieving

significant improvements in training efficiency and downstream

performance compared to traditional methods.

3 Sparse and Expandable Network

In this section, we propose a Sparse and Expandable Network

(SEN), which is quite simple yet effective in meeting the basic

challenges of Google’s Pathways.

Google’s original Pathways description misses one crucial

component: when a new task needs to be predicted by the Pathways,

which input model or models should it be sent to? Some previous

work assumes that this information is given (Rusu et al., 2016; Li

and Hoiem, 2017; Mallya and Lazebnik, 2018). This assumption

is certainly not realistic for Pathways, as Pathways itself needs to

decide which model(s) the input task should be sent to.

In our model SEN, we add this crucial component, a dispatcher

classifier or “job router,” which itself is learned progressively from

the data of the tasks. The dispatcher will identify and activate a

small number of task-specific models so that the whole network

is sparse in its activity. See Figure 1 for the SEN model with the

dispatcher.

3.1 Dispatcher classifier

The dispatcher classifier is trained from the data D1,D2, ...,DN

of the related tasks T1,T2, ...,TN in the continual learning fashion.

The process is the same as learning a new task as in Section 3.2. As

an example, assume thatT1 is a 10-way classification of the Fashion-

MNIST (Xiao et al., 2017), and T2 is a 10-way classification of the

MNIST. If the new task T3 is to classify 26 hand-written letters from

“a” to “z,” then the dispatcher learns a three-way image classification

of Fashion, MNIST, and lower letters, using the corresponding

training data. For the new task T3, a new binary classificationmodel

for T3 is learned from the data of T3, and it becomes a part of the

dispatcher. If there are both image and audio inputs, the dispatcher

may directly classify them by the data type of the input data.

3.2 Learning new tasks in SEN

Figure 2 illustrates how SEN is expanded and learned with the

new tasks without forgetting previous tasks. The pseudo-code in

Algorithm 1 describes how to learn a new task TN+1 in the SEN

framework after previous tasks T1, ...TN have been learned.

Non-forgetting is guaranteed by construction with weights of

the previous tasks T1, ...,TN frozen while training the new pathway

for the new task TN+1. Sparsity is also guaranteed by the dispatcher;

it only activates a small number of task models during training and

testing, making the network computationally efficient.
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FIGURE 1

The SEN framework with the dispatcher classifier.

FIGURE 2

Learning a new task in the SEN framework.
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// Given SENN which has been learned from tasks

T1, ...,TN , new task TN+1 and data DN+1

1 Initialize a new model for TN+1 // Expanding the

network

2 Update the Dispatcher for TN+1 // From DN+1

3 If the Dispatcher finds an earlier task Ti

“relevant” to TN+1, create and initialize

weights from Ti to TN+1 // See the green links

in Figure 2 . This is for forward transfer.

4 Freeze all weights within SENN // No forgetting

for T1, ...,TN

5 Minimize the loss for TN+1 with the data

DN+1// Data of previous tasks are not used;

learning is sparse as only weights of the new

model and forward-transferred links are

updated.

6 Output SENN+1

Algorithm 1. Continual Learning of new tasks in SEN.

3.3 Forward and backward knowledge
transfer

As we have seen in Figure 2, when the Dispatcher finds an

earlier task Ti relevant to new task TN+1, forward transfer links

from Ti to TN+1 will be created and initialized, ready to be trained

by minimizing the loss function on TN+1. The relevancy of Ti and

TN+1 is determined by the similarity of the two tasks; that is, similar

tasks can assist each other in both forward and backward transfer.

This is analogous to real-life human learning. For example, driving

a car can assist in learning to drive a truck as they are similar,

but usually not for cooking steaks as driving and cooking are very

different.

In our work, the similarity is measured by how well (with a

predefined threshold, 0.7 in SEN) the previous task model can

classify a subclass of the new task data. Let us use a concrete

example to explain this. If Ti is the 10-way classification of MNIST

digits, and TN+1 is the 26-way classification of handwritten capital

English letters. Then, when training data of the class “O” in TN+1

are presented to the dispatcher, it may predict that it can be Ti (with

a probability over the threshold 0.7), because Ti has a class “0” (the

digit zero), which is highly similar to “O.” The links from task “0” to

“O” are initiated as forward transfer links, so that the representation

learned in “0” can be leveraged in learning “O.” In particular,

the output layer weights of “0” can be forward-transferred and

initiated to be the output weights of “O.” In this case, the training

of new class “O” in TN+1 would achieve higher accuracy compared

to without such forward transfer links, even with a few training

examples of “O.” Similar cases can happen between “1” and “I,” “2”

and “Z.” Of course this does not always happen as the similarity is

determined by the particular training data and the threshold. See

our Experiment section for details.

Likewise, backward transfer can happen from Tj to Ti (i < j)

when Tj and Ti are similar enough. Backward-transfer inks from

FIGURE 3

An illustration of SEN for multi-modality tasks.

Tj to Ti will be created and imitated, and Ti is fine-tuned (or re-

trained) with the links from Tj. This can improve the accuracy of Ti

with the knowledge of Tj. Note that during training of Ti, weights

of all other tasks will be frozen to prevent forgetting of other tasks.

3.4 Learning with multi-modality data

One major challenge posed in Dean (2023) and for current

machine learningmodels is that learning frommulti-modality data,

such as vision, auditory, and language understanding, cannot be

handled simultaneously and effectively.

Learning with multi-modality data can be easily implemented

in SEN. This is because SEN creates a new task-specific model

for each new task, and the new model can be a CNN, LSTM, or

even SVM or random forests. Figure 3 shows such amulti-modality

SEN, with one pathway for image classification of animals including

the leopard, and another pathway for audio classification of words

including “leopard.” These pathways are trained simultaneously by

images and audio signals when the image of “leopard” is shown

and the word “leopard” is spoken. As these are two different data

types (i.e., images and audio), the dispatcher can easily classify

them, and send the right training data to the right pathways. In the

output nodes, the label “leopard” is shared in both tasks of image

and audio classifications, and the training can happen in the image

and audio pathways in parallel. This is essentially multi-modality

learning studied previously (Nawaz et al., 2019; Gallo et al., 2020).

In our experiments, we use MNIST digits and EMNIST letters

for the imaging modality, and Audio-MNIST (Jackson, 2016) of

spoken digits as the audio modality to conduct our experiments.
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3.5 Sparsity of SEN

As we have seen, during training in SEN, we choose to transfer

from at most one previous task to learn the new task. To maintain

sparsity during testing, the dispatcher also only selects one or two

most likely pathways to activate. Assume that a total ofN tasks have

been learned in SEN. As SEN only activates at most two pathways

for the learning and testing, only 2/N of the whole network weights

are activated at any phase, assuming each task model consumes

the same number of weights. When N is large, such as 1,000, at

most 0.2% of the weights are activated. This allows SEN tomaintain

sparsity yet still facilitate knowledge transfer between task models.

Clearly, if without any forward and backward transfer between

task models, tasks would be trained individually, which must be

avoided. On the other extreme, if we allow a task model to transfer

back and forth to all other task models, the whole network would

become a fully connected dense network, in which the sparsity

cannot be achieved. Thus, a good trade-off balance between sparsity

and the amount of knowledge transfer is needed in SEN by the

setting of model parameters (e.g., the number of tasks in knowledge

transfer, which is 1, and the similarity threshold, which is 0.7, in our

work).

3.6 Network pruning and graceful
forgetting in SEN

One potential concern with SEN is that the total size of the

network grows linearly with the number of tasks. There are two

popular approaches to alleviate this issue. The first one is network

pruning, studied previously (Mallya and Lazebnik, 2018), to free up

units in each task model without affecting much its performance.

The second approach is the so-called graceful forgetting. Instead of

freezing the weights of previous tasks, the weights of some previous

tasks can be allowed to be trained with the new task. This results

in gradual forgetting (or deterioration) of the performance of the

previous tasks but it allows the new task to be learned with fewer

new units (Bohn et al., 2021).

Notice that even if SEN may become large as the number of

tasks grows, the activation in SEN is always sparse, as we have

discussed.

4 Experiments

In this section, we will describe the experimental results of the

comparison with SEN and other baseline models on learning a

sequence of classification tasks with different modalities.

4.1 Sequence of tasks

In the experiments, five classification tasks are selected as the

sequence of learning tasks. We utilize a task-incremental setting,

where the task index is provided to the model. These five tasks are:

Task 1: Fashion-MNIST (Xiao et al., 2017). A 10-way

classification of gray-scale images of fashion clothes, with the image

size 28 by 28. It contains a training set of 60,000 and a testing set

of 10,000 images. As we will compare different models with few-

shot learning, random sampling from the original training set is

performed to form our own training set.

Task 2: MNIST (Deng, 2012). A dataset of gray-scale images of

hand-writing digits from “0” to “9.” The size of each image is also 28

by 28. It contains 60,000 training images and 10,000 testing images.

Task 3: LOWER. This is to learn to classify 26 hand-written

lowercase English letters from “a” to “z.” It is extracted from

EMNIST (Cohen et al., 2017), thus each image is also 28 by 28

gray-scaled. This task contains 163,939 images of lowercase letters.

Task 4: UPPER. This is similar to Task 3 except it consists of

26 classes of hand-written uppercase letters from “A” to “Z.” This

task contains 188,958 images of uppercase letters extracted from the

EMNIST dataset.

Task 5: Audio-MNIST. Free Spoken Digit Dataset (FSDD)

(Jackson, 2016) is a dataset with a collection of spoken digits,

containing 2,500 recordings of 10 digits from five speakers (50

samples of each digit per speaker). This is used as Task 5 for testing

the multi-model ability of the SEN.

As Task 1 to Task 4 are all gray-scale images with the same

size, the dispatcher must learn to distinguish and classify them with

task data. Task 5 has a completely different representation thus the

dispatcher can distinguish images from audio from data types.

4.2 SEN and baseline methods

For image models in SEN, we use simple two-layer MLP

(Multilayer perceptron) for Tasks 1 to 4. There are 128 units in

the first layer and the activation function is ReLU. The size of the

second layer is adapted to the task; that is, the number of units

in this layer depends on the number of classes in the task. The

activation function is Softmax. Note that although the SEN’s task

models for images are very simple, we use the same MLP base

model in comparing other baseline methods.

Task 5 is Audio-MNIST. We first pad the data to the same

length and convert it to Mel spectrum with the number of Mel

spectrum of 64. The model for this task is an LSTM of 500 units,

with an average on the time step axis, followed by three-layer MLP

with 128, 64, and 10 units. The first two layers use ReLU as the

activation function and the last layer uses the Softmax activation

function.

Several baselines for comparison are:

• Multi-task (seq): a non-expanding multi-task model which

learns all tasks sequentially. It is expected that forgetting

previous tasks would occur, and forward transfer is weak.

• Single-task: single-task models which are separate and trained

by individual tasks. It is expected that forgetting will not

happen, but no knowledge will be transferred betweenmodels.

• PNN: Progressive Neural Network proposed in Rusu et al.

(2016), with the same base model as SEN. PNN uses dynamic

architecture for lifelong multi-task learning.

• EWC: Elastic Weight Consolidation, a regularization method

proposed in Serrà et al. (2018), with the same number of

hidden units as the other baseline models.
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FIGURE 4

The accuracy for training four tasks sequentially. Note that Task 5 is audio-MNIST and is not trainable in other models. SEN can train Task 5 with an

independent LSTM model, thus no forgetting happens in the previous tasks.

4.3 Catastrophic forgetting

We train SEN and other baselines with the five tasks

sequentially. Figure 4 shows the predictive accuracy for each task

when the model is sequentially trained with more tasks. The result

clearly shows that forgetting does not happen in SEN, PNN, and

Single networks. This is expected as non-forgetting is inherent

when constructing the models. We can also see that catastrophic

forgetting still happens in EWC, and ismost severe in themulti-task

(seq) models.

4.4 Knowledge transfer between tasks

When learning new tasks, SEN may detect a previous similar

task, and transfer the relevant knowledge to the new task, as

described in Section 3.2. Table 1 shows the details of such forward

transfer from a previous task to a new one. Tasks 1 and 2 (Fashion-

MNIST and MNIST) are the first two tasks. As they are quite

dissimilar, no transfer occurs.

When learning Task 3 (lowercase letters), we see transfers

happen from Task 2, though not every transfer is desired or robust,

as the similarity is detected from the training data. For example, “5”

in MNIST is transferred to “s” and “2” is transferred to “z.” We set

the similarity threshold to be 0.7.

The most interesting and powerful transfer occurs in learning

Task 4 (upper case letters). Many reasonable transfers from Task 3,

and a few from Task 2, are observed, as many lowercase letters are

similar to uppercase letters. This kind of knowledge transfer assists

in learning of new tasks, improving predictive accuracy even with a

small number of training data.

The comparison of the predictive accuracy of SEN and the

baselines are shown in Table 2. We can draw the following

interesting conclusions:

Zero-shot learning: All baseline models perform similarly as

random guesses without any training data, as expected. However,

as Task 3 and especially Task 4 have leveraged from the previously

learned similar tasks, their predictive accuracy by SEN, even before

seeing any data, is much higher than other baselines. For Task

4, the random guessing accuracy is only 1/26 or around 3.8%.

However, SEN can achieve a very high accuracy of 53.3%, due to

the knowledge transfer from the lowercase letters to the uppercase

letters. To make an analogy, after learning to drive cars, an adult

can usually drive a truck quite well even without being trained to

drive trucks, due to the similarity between cars and trucks.

Few-shot learning: With only five or 10 training examples

for each class, SEN achieves much higher predictive accuracy

than other baselines for Task 4, where much forward transfer

has been detected and utilized. This shows the effectiveness of

forward transfer, especially with a few training data. This is crucial

in many real-world applications where labels are expensive to

obtain. Human can often learn a new task based on a few training

data.

All-sample training: SEN and other baseline methods perform

similarly in all-sample training. The reason could be that, since SEN

and other baseline methods use the same base models, when they

are fully trained with a large dataset, all models are fully explored

and acquire a similar performance.

Many previous machine-learning algorithms are trained with

large-scale datasets [such as ImageNet (Deng et al., 2009)] with

complex modeling and other means such as data augmentation

to achieve SOTA (state-of-the-art) results. The difference of such

SOTA results is often very small. Our results suggest that it

would be more important to compare results under the same

setting with small training datasets, and such differences can be

huge. Our comparisons among different baseline methods clearly

show the power of SEN when only a small amount of data

is available.

4.5 Multi-modality data

In addition to the four tasks in the visual modality, we also

introduce an audio-based classification task with the Audio-MNIST

dataset as Task 5. The performances of SEN on this auditory task are

also shown in Table 2. Other models cannot handle multi-modality

data, but SEN has no problem of constructing an independent

LSTM model for Task 5. There is no forward transfer links from
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TABLE 1 Details of knowledge transfer between tasks.

Task 1 (Fashion) Task 2 (MNIST) Task 3 (LOWER) Task 4 (UPPER) Task 5 (Audio)

Transfer details No transfer No transfer 0→ o: 0.936 z→ Z: 0.912 No transfer

1→ l: 0.907 s→ S: 0.897

5→ s: 0.840 4→H: 0.857

2→ z: 0.764 o→ O: 0.855

t→ T: 0.855

v→ V: 0.838

m→M: 0.837

f→ F: 0.836

u→ U: 0.821

x→ X: 0.815

c→ C: 0.768

w→W: 0.753

k→ K: 0.752

0→ D: 0.743

p→ P: 0.735

1→ I: 0.715

l→ I: 0.709

The number is the probability that the target class is predicted as the source class in the source pathway, which indicates the similarity between the source task and the target class. In our work,

we set the similarity threshold to be 0.7.

TABLE 2 Test accuracy of SEN and baselines methods.

Few shot-training Task 1 (Fashion) Task 2 (MNIST) Task 3 (LOWER) Task 4 (UPPER) Task 5 (Audio)

Random guessing accuracy 10.0 10.0 3.8 3.8 10.0

0-sample

Single 11.1± 1.7 11.2± 1.7 2.5± 2.2 3.5± 1.1 -

EWC 1.1± 1.1 11.6± 1.5 3.9± 0.5 1.9± 0.5 –

PNN 9.8± 2.7 8.4± 2.7 1.7± 1.2 3.7± 4.5 –

SEN 9.1± 2.6 10.4± 1.6 13.2± 1.8 53.3± 6.1 9.9± 0.5

5-sample

Single 69.2± 0.3 63.4± 0.5 50.4± 1.0 53.5± 0.3 –

EWC 66.9± 2.0 40.9± 3.2 15.3± 5.3 21.0± 3.4 –

PNN 67.8± 1.4 61.1± 2.6 48.7± 1.3 51.8± 1.6 –

SEN 69.4± 0.3 64.0± 0.6 50.6± 1.3 69.2± 2.1 45.8± 0.2

10-sample

Single 71.4± 0.1 68.9± 0.6 56.8± 0.3 61.7± 0.6 –

EWC 71.4± 0.4 54.8± 2.4 34.0± 5.8 34.1± 4.3 –

PNN 71.2± 0.7 69.2± 0.1 56.1± 1.6 61.9± 0.1 –

SEN 71.6± 0.4 69.0± 0.4 56.6± 1.1 73.6± 1.1 57.6± 0.7

All-sample

Single 86.4± 0.9 96.5± 0.3 91.5± 2.3 93.5± 0.5 -

EWC 86.9± 0.4 96.2± 0.1 89.3± 0.4 93.1± 3.8 -

PNN 81.1± 1.0 91.3± 0.9 87.9± 1.2 92.1± 0.4 -

SEN 87.0± 0.5 96.5± 0.4 90.5± 0.3 93.2± 0.2 86.0± 1.9

The bold values indicates higher score than other Algorithms.

image tasks to Task 5. However, if there were other audio tasks, then

similarity between audio tasks may be detected, just like similarity

between images of lower and upper case letters. In this case, forward

transfer may assist the learning process of new audio tasks.

4.6 Sparsity

After all of the five tasks have been sequentially learned, we

calculate the percentages of activated weights in predicting the five
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tasks as 6.7%, 6.7%, 13.6%, 13.8%, and 72.8% respectively. These

numbers do not add up to 100% as for some tasks, two task models

may be activated due to forward transfer from another task. In any

case, only a small portion of SEN is activated for Tasks 1–4. If there

were 1,000 tasks, each of which has the same number of weights, the

model is highly sparse as only 0.1%–0.2% of the network weights

are activated. Depending on how SEN is implemented, it can be

more energy and computationally-efficient than most current deep

learning models.

5 Discussions and conclusions

Google recently introduced Pathways as its next-generation

AI architecture, which needs to address three major challenges

simultaneously. These challenges have also been long-standing in

the current lifelong multi-task learning. We propose a simple yet

effective Sparse and Expandable Network (SEN) to meet these

challenges. Experiments compared with other popular baseline

models show the effectiveness of SEN when trained with very

small training data. Much machine learning research attempts to

reach or outperform SOTA trained on very large datasets using

complex models and other means such as pre-training and data

augmentation. The difference in such SOTA results is usually very

small. Our work hopes to offer a different insight with simplicity

and clarity.

In our future work, we plan to study SEN on a much larger

scale with different learning tasks such as classification, regression,

and reinforcement learning, with multiple data modalities such

as audio, images, videos, and so on. In addition, our quantitative

measure of similarity for knowledge transfer opens a way to study

negative transfer. If the similarity is too low but the transfer is

forced, it may do more harm than good. This is analogous to

someone struggling to drive on the left side of the road after

learning to drive on the right side.
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