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Introduction: Urban mobility patterns are crucial for e�ective urban and

transportation planning. This study investigates the dynamics of urbanmobility in

Brno, Czech Republic, utilizing the rich dataset provided by passivemobile phone

data. Understanding these patterns is essential for optimizing infrastructure and

planning strategies.

Methods: We developed a methodological framework that incorporates

bidirectional commute flows and integrates both urban and suburban commute

networks. This comprehensive approach allows for a detailed representation of

Brno’s mobility landscape. By employing clustering techniques, we aimed to

identify distinct mobility patterns within the city.

Results: Our analysis revealed consistent structural features within Brno’s

mobility patterns. We identified three distinct clusters: a central business district,

residential communities, and an intermediate hybrid cluster. These clusters

highlight the diversity of mobility demands across di�erent parts of the city.

Discussion: The study demonstrates the significant potential of passive mobile

phone data in enhancing our understanding of urban mobility patterns. The

insights gained from intraday mobility data are invaluable for transportation

planning decisions, allowing for the optimization of infrastructure utilization.

The identification of distinct mobility patterns underscores the practical utility

of our methodological advancements in informing more e�ective and e�cient

transportation planning strategies.

KEYWORDS

commute patterns, suburban commute, city delineation, mobile phone data, intraday

commute patterns

1 Introduction

City planning relies on a comprehensive understanding of commute patterns, given

its substantial impact on decision-making regarding transportation infrastructure, public

transport services, and urban development. To predict commute flows, current models

are built upon the spatial structure of cities as a foundational framework. The widely

employed approach is the four-step transportation model (McNally, 2007). Comprising

four sequential steps, namely trip generation, trip distribution, mode choice, and trip

assignment, this model facilitates a comprehensive understanding of urban transportation

dynamics. Initially, trips are generated through the integration of population and

household data. Subsequently, the model establishes linkages between trip origins and

destinations by leveraging commute patterns.

The commute patterns are often modeled using variations of the gravity model (Zipf,

1946), which predicts the flow of people between two locations based on their respective

masses (population, economic activity, etc.). Another alternative is the radiation model

(Simini et al., 2012), which considers the characteristics of neighboring nodes. Brockmann

et al. (2006) studied human mobility based on the circulation of bank notes in the United

States. All these models work with static data and do not describe commute dynamics.
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Comprehending intraday commute patterns has broad

implications for transportation planning, urban development,

emergency preparedness, and public health (Gao et al., 2019).

In exploring intraday commute patterns, the research is

constrained by the limited availability of hourly datasets. Previous

endeavors have predominantly focused on specific mobility flows,

such as bicycle commuting in Melbourne (Smith and Kauermann,

2011), taxi trips in New York City (Buchholz, 2015) and bus

trips in Fortaleza, Brazil (Ponte et al., 2021). Social media check-

in data is another great source of mobility data (Cho et al.,

2011; Wu et al., 2014). In addition to the location, the check-in

data often contains information on the user’s motivation to visit

a particular place. However, social media usage is inconsistent

across age, online experience, and socioeconomic status (Hargittai,

2015).

The utilization ofmobile phone data has proven to be successful

in various aspects of understanding urban dynamics. Notably, it has

been employed to study city structure based on population density

(Xinyi et al., 2015), analyze mobility patterns (Yu et al., 2020; Zhang

et al., 2022), investigate their relation to socioeconomic status (Xu

et al., 2018, 2019), delineate urban park catchment areas (Guan

et al., 2020), and examine changes in the average distance between

individuals (Louail et al., 2014). Despite these achievements, the

full potential of mobile phone data in comprehending intraday

commute patterns remains largely untapped, highlighting the need

for further research in this area.

The challenge of defining city and district boundaries has

been acknowledged in previous studies (Bettencourt et al., 2010;

Bettencourt, 2013). Prior attempts to define district signatures and

employ them for district clustering were predominantly based on

datasets from municipal requests (Wang et al., 2017), financial

activities (Sobolevsky et al., 2014), and mobile call records (Ratti

et al., 2010; Pei et al., 2014; Xu et al., 2017). However, these events

are only generated in response to specific activities, resulting in

limited coverage.

In our previous work (Bogomolov et al., 2023), we proposed an

approach harnessing intraday mobility patterns data from mobile

phones to establish distinct signatures for urban locations and

subsequently apply them to urban zoning. Delineated city zones

were spatially cohesive and had distinct commute patterns. The

paper is based on the commute data in the city of Brno. However,

the rapidly rising urban sprawl (Behnisch et al., 2022) requires

considering suburban commute. Big urban areas attract people

from other areas: about 20% of the 4.7 million employees working

in New York City live outside the city (Planning, 2019), and more

than 20% of Europeans commute at least 90 min daily (Worx,

2018).

This paper presents a significant advancement in our

methodology, tailored to combine data across multiple commute

networks. We delineate city districts based on the intraday

commute patterns of people who commute to Brno from the

suburban area in addition to Brno residents. The combination of

intercity and suburban commute patterns provides better insights

into transportation needs, which can be used for urban and

transportation planning.

2 Materials and methods

2.1 Data

In the realm of mobile phone datasets, two primary types

exist: active and passive. Active datasets involve records of specific

actions, such as phone calls or text messages. Notably, every

phone maintains communication with the mobile phone network

at least two times per hour, thereby facilitating the capture of

passive datasets. Based on that, passive datasets offer superior

coverage for studyingmobility patterns and population density. For

our research, we rely on using the passive mobile phone dataset

provided by a local company.

Building on our prior work (Bogomolov et al., 2023),

where we relied on hourly origin-destination flow data from

a mobile phone company covering one week in October 2019

and capturing movements of residents of 48 districts in Brno.

It’s essential to note that the initial dataset lacked information

on suburban commuters. In the current study, we enhance our

approach by incorporating a significantly more comprehensive

origin-destination flow dataset encompassing the entire South

Moravian Region. This expansion proves particularly valuable

given the considerable number of commuters traveling to and

from Brno.

The South Moravian Region, with a population of

approximately 1,200,000 individuals, presents a marked contrast

to the 380,000 inhabitants within the city of Brno. As a regional

capital and a pivotal transportation hub, Brno acts as a focal point,

drawing in commuters across the entire South Moravian Region.

This regional attractiveness is further heightened by an extensive

transportation network facilitating access to remote areas. For

instance, the town of Znojmo can be reached within an hour

from Brno via public transportation. Including these suburban

commuting patterns in our updated dataset provides a more

holistic understanding of the dynamic flows within the region.

Based on the dataset, 23% of Brno commuters traveled from

South Moravia, which aligns with the 20% out-of-city commuters

estimates in EU cities (Worx, 2018) and New York (Planning,

2019). The dataset contains aggregated origin-destination flows for

32 thousand Brno and South Moravia residents.

Due to data sensitivity, the dataset does not contain

any individual information and does not provide district-level

granularity for suburban areas. However, it still showed the

destination district for commuters to Brno, allowing us to aggregate

all incoming and outgoing flows from the South Moravian Region.

To study intraday commute patterns, we compute four vectors for

every city district:

1. Incoming city hourly flow.

2. Outgoing city hourly flow.

3. Incoming suburban hourly flow.

4. Outgoing suburban hourly flow.

Each vector has 168 components (the number of hours within

1 week), where each component represents the number of people

departing from or arriving at the given city district.
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FIGURE 1

The visual depicts the hourly commute ratios (the ratio of weekly commute observed within a given hour) in three Brno districts. The first five data

days illustrate weekdays, whereas the final two days depict the weekend. The vertical dashed lines emphasize surges in commuting activity, aligning

with 8 am and 5 pm during weekdays.

2.2 Data processing and clustering

The four vectors for each district are normalized using the

total sum of all vector components and concatenated into one

signature vector with 168 × 4 = 672 components. Please note

that vector dimensionality does not depend on the number of

commuters or trips. In our dataset, we had 3 million commute

records, and they were aggregated on a single machine. However,

the same approach can be applied to process billions of trip

records. The node-level inflow/outflow data aggregation can

be done using standard distributed computing tools. While

downstream processing steps work only with condensed district

signature vectors.

The analysis of the resulting commute vectors revealed patterns

that align with the expected daily and weekly rhythms, as seen in

Figure 1. Notably, one can observe that:

• Weekends exhibit distinct patterns.

• Weekdays follow another set of patterns, while Friday

commute numbers typically deviate from the other four days.

• Correlation exists between urban and suburban

inflow/outflow components.

We applied PCA (Principal Component Analysis) to reduce

vectors’ dimensionality, reduce the impact of repeating patterns,

and concentrate on the orthogonal elements. We used 7-

component PCA vectors that explain 81.82% of cumulative

variance in the 672-component input vectors.

Figure 1 demonstrates that some districts have consistent

patterns across all four timelines. Using K-Means with three

clusters (decided based on the elbow method for the within-cluster

sum of squares) provides a city delineation based on the similarity

of commute patterns.

2.3 Cluster probability visualization

Visualization methods facilitate the interpretation of

complex datasets by converting raw information into visually

comprehensible representations. Through graphs, charts, and

maps, intricate patterns and trends within urban data become

more accessible to city planners.

Wewanted to highlight city districts that share traits of different

clusters. To achieve that goal, we compute the cluster probability

(pij) for every district i and cluster j based on the distance

between district vectors and cluster centers using a Gaussian kernel

(Equation 1):

pij =

exp

(

−
d2ij

2σ 2
i

)

∑3
k=1 exp

(

−
d2
ik

2σ 2
i

) (1)

where dij is the Euclidean distance between vector xi and cluster

centroids cj, and σ
2
i is the minimum squared distance for each

data point among its distances to all cluster centroids. The district

color code is computed as the weighted sum of red, green, and blue

colors, using cluster probabilities as color weights (Equation 2):

RGBi = (pi1 × Red)+ (pi2 × Green)+ (pi3 × Blue) (2)
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FIGURE 2

Brno delineation based on the combination of urban and suburban incoming and outgoing hourly mobile phone-based commuter patterns. Blue

color represents the residential cluster, orange is used for the central cluster, and green highlights the hybrid cluster.

FIGURE 3

Comparison of the building and resident profiles for resulting clusters. The ratio of (A) municipal buildings among all district buildings and (B)

single-family home residents among all residents within each district, including 95% confidence intervals to display the range of these percentages

among various locations within the zone. (A) Municipal building ratio. (B) Single family home resident ratio.
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FIGURE 4

Probability-weighted clustering visualization of Brno districts. We used red to depict the residential cluster, green for the central cluster, and blue for

the hybrid cluster. The district color code is computed as a linear combination of red, green, and blue colors based on clustering probabilities of the

underlying clusters.

This formula computes the mixed color by weighting each RGB

component based on the normalized probabilities of each color.

3 Results

Figure 2 demonstrates the clustering results based on

the combination of urban and suburban hourly commute

timelines. The clusters are spatially cohesive, and they form

structural patterns:

• The city center cluster.

• Residential communities.

• And a hybrid cluster in-between with traces of both patterns.

The delineated urban zones have distinctive socio-economic

profiles: the municipal home ratio and the ratio of residents living

in single-family homes between the clusters are different by at least

200% between the clusters. Refer to Figure 3 for more details.

Given the same structure of the clusters, we performed a

quantitative comparison of clustering results with the previous

approach (Bogomolov et al., 2023). We received a Surprisingly,

93.75% of districts belong to the same cluster, while previously

considered commute timeline signature vector components

correspond to only 25% of the proposed signature vector. The new

clusters have the same or lower average variance values of census-

based urban metrics (the ratio of municipal buildings and single-

family home residents), representing a higher district similarity

within clusters.

The probability-based visualization approach (see Figure 4)

reveals more information about the city commute patterns. In

particular, we identified two city districts in the northern part

of Brno that belong to the hybrid cluster and have different

cluster probabilities (see Figure 5). To better understand the results,

we compared four commute timelines for both districts (see
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FIGURE 5

Both highlighted Brno districts belong to the hybrid cluster. The color-encoded cluster probabilities reveal traces of alternative commute patterns:

the highlighted district at the top (Mokra Hora) has 43% hybrid cluster classification probability and 37% central cluster classification probability (the

color is dominated by blue and green). While the highlighted district on the right side (Lesna) has 57% hybrid cluster classification probability and 41%

residential cluster classification probability (the combination of blue and red results in purple).

Figure 6). The districts have similar commute patterns across all

four timelines, which is expected from timelines from the same

cluster. But district Mokra Hora (with code 611701) has stronger

features of the central cluster, like a big spike in the suburban

incoming traffic in the morning.

Mokra Hora has a 37% classification probability of the central

cluster, which is an anomaly for the remote parts of the city:

for comparison, the second highlighted district has only a 2.5%

classification probability of the central cluster. After looking at the

socioeconomic profile of the district, we found that Mokra Hora

hosts one of the two largest shopping centers in the city (Kunc

et al., 2012). Large shopping centers attract residents of the city and

suburban areas starting in the morning and emphasize the central

district commute patterns.

Overall, the combined timeline approach leads to a 6% increase

in the number of central districts (compared to the previous

approach). Job opportunities in European Union (EU) cities are

generally concentrated in central urban areas (Smit et al., 2020),

which explains why districts closer to the city center are more

likely to be labeled as the central cluster when we use the suburban

commute timelines, compared to the urban outflow timelines.

4 Discussion and conclusions

The European Parliament Resolution of December 2, 2015, on

Urban Mobility [2014/2242 (INI)] contemplates the demographic

forecast that by 2050, up to 82% of EU citizens will reside in urban

areas other than their workplaces (Giménez-Nadal et al., 2022).

The increasing ratio of suburban commuters becomes important

in urban and transportation planning. In addition, the spatial

and temporal distribution of suburban commute patterns may

differ from the urban commute patterns. However, until recently,

researchers did not have granular data to study intraday mobility

patterns.

In addition to the limited availability of intraday mobility

data, popular alternative sources, including smart card tracking in

public transport (Ponte et al., 2021), taxi trips (Buchholz, 2015),

and social-media check-in data (Wu et al., 2014) have additional

challenges for suburban areas:

• Limited data coverage due to boundaries between

administrative units.

• Longer commutes have an increased probability of transitions

between different transportation systems.

• Suburban and residential areas attract fewer check-ins and

other types of social media activities.

Our approach to studying intraday commutes is based on the

passive communication between cell phones and cell towers, which

makes our approach applicable to any modern city. The mobile

phone data is already available to mobile phone companies, and it is

a great source of data to study generic commute patterns (compared

to specific datasets, like taxi or subway data). While our dataset

covered only three million commute records, we explained how to

scale the same approach to tens or hundreds of records.

In conclusion, the combination of urban and suburban hourly

commute timelines yielded distinct and spatially cohesive clusters

in Brno. These clusters revealed structural patterns delineating the

city center, residential communities, and a hybrid cluster exhibiting
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FIGURE 6

Commute timelines for the two Brno districts highlighted in Figure 5: Mokra Hora (code 611701) and Lesna (code 610887). Both districts belong to

the hybrid cluster, with similar morning and evening spike patterns. Mokra Hora has a higher ratio of incoming commutes in the morning and a

higher ratio of outgoing commutes in the evening. Both observations are common for central districts, attracting people in the morning.

characteristics of both. Notably, the resulting clusters displayed

considerable differences in urban profiles, such as the municipal

home ratio and the proportion of residents in single-family homes,

varying by at least 200% among the clusters. This comprehensive

approach was further validated through a quantitative comparison,

demonstrating a substantial 93.75% match with a previous method

while sharing only 25% of the previously considered commute

timeline signature vector components. Moreover, the new clusters

exhibited similar or reduced average variance values in census-

based urban metrics, indicating higher district homogeneity within

clusters. The probability-based visualization method provided

additional insights, uncovering discrepancies within identified

clusters and highlighting anomalous districts like Mokra Hora.

Further analysis revealed that Mokra Hora’s atypical classification

probability toward the central cluster stemmed from hosting a

major shopping center, influencing commuter patterns resembling

those of central districts. This study’s combined timeline approach

led to a 6% increase in the number of districts identified as

identification of central districts, aligning with the concentration

of job opportunities in central urban areas within European

Union cities, as previously observed in related literature (Smit

et al., 2020). Understanding commute patterns is instrumental

in aiding urban planners and policymakers in optimizing

infrastructure development and employment distribution strategies

to accommodate the diverse socio-economic characteristics and

commuting patterns within urban areas.
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