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As the volume and velocity of Big Data continue to grow, traditional cloud

computing approaches struggle to meet the demands of real-time processing

and low latency. Fog computing, with its distributed network of edge devices,

emerges as a compelling solution. However, e�cient task scheduling in

fog computing remains a challenge due to its inherently multi-objective

nature, balancing factors like execution time, response time, and resource

utilization. This paper proposes a hybrid Genetic Algorithm (GA)-Particle Swarm

Optimization (PSO) algorithm to optimize multi-objective task scheduling in fog

computing environments. The hybrid approach combines the strengths of GA

and PSO, achieving e�ective exploration and exploitation of the search space,

leading to improved performance compared to traditional single-algorithm

approaches. The proposed hybrid algorithm results improved the execution time

by 85.68% when compared with GA algorithm, by 84% when compared with

Hybrid PWOA and by 51.03% when compared with PSO algorithm as well as

it improved the response time by 67.28% when compared with GA algorithm,

by 54.24% when compared with Hybrid PWOA and by 75.40% when compared

with PSO algorithm as well as it improved the completion time by 68.69% when

compared with GA algorithm, by 98.91%when compared with Hybrid PWOA and

by 75.90% when compared with PSO algorithm when various tasks inputs are

given. The proposed hybrid algorithm results also improved the execution time

by 84.87% when compared with GA algorithm, by 88.64% when compared with

Hybrid PWOA and by 85.07%when comparedwith PSO algorithm it improved the

response time by 65.92% when compared with GA algorithm, by 80.51% when

comparedwithHybrid PWOAand by 85.26%when comparedwith PSO algorithm

as well as it improved the completion time by 67.60% when compared with GA

algorithm, by 81.34% when compared with Hybrid PWOA and by 85.23% when

compared with PSO algorithm when various fog nodes are given.
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1 Introduction

1.1A new era of big data and its impact on
computing

The pace of data generation is increasing rapidly due to

the widespread use of IoT sensors and devices, as well as

people’s increasing reliance on online services and social media

(Chandra and Verma, 2023; Mortaheb and Jankowski, 2023). The

phenomenon known as Big Data has had a significant impact on

several aspects of modern life, such as healthcare, finance, and

transportation (Mohanty, 2015; Fanelli et al., 2023).

1.2 Challenges and opportunities of big
data

There are substantial obstacles to overcome, despite the fact that

Big Data has enormous potential for insight and innovation:

Data Volume: Innovative storage methods and scalable

computer infrastructure are necessary for managing and storing

huge datasets (Kim et al., 2023; Wang and Yin, 2023).

Data Velocity: In order to derive useful insights from data

streams in real-time as they are being created, high-performance

computing skills are required (Bharany, 2023; Olawoyin et al.,

2023).

Data Variety: Flexible processing methods and sophisticated

analytics approaches are required due to the different nature of

data sources, which might range from structured databases to

unstructured social media postings (Khang et al., 2023; Qi et al.,

2023).

1.3 The emergence of fog computing: a
paradigm shift in data processing

Big Data is highly challenging for the conventional cloud

computing architecture, which relies on centralizing data and

processing it in distant data centers, to effectively manage (Rosati

et al., 2023; Sheng et al., 2023). A unique method to data processing

is necessary because of the excessive latency, poor scalability, and

security concerns that have been raised against it. At this time, fog

computing, which is a paradigm switcher, comes into being.

Computing in the fog pushes the computational capabilities

of the cloud closer to the edge of the network (Bebortta et al.,

2023; Hornik et al., 2023). Fog computing is used when data is

produced and consumed at the network’s peripheral. The ability

of fog computing to process data locally on a network of devices

that have restricted capabilities (fog nodes) is one of the many

benefits that fog computing provides. Some of these advantages

includes the amount of latency that an application experiences is

significantly reduced when it processes data locally as opposed to

forwarding it to faraway cloud servers (Hussein et al., 2023). This

is because the amount of delay that an application experiences is

reduced greatly. This is a very important piece of information,

particularly for real-time applications that need rapid replies and

opportunities for decision. The Internet of Things (IoT) is able to

effectively handle enormous amounts of data and expand without

encountering any challenges as the network grows. This is made

possible by distributed processing, which is made possible by fog

computing (Fazel et al., 2023).

The processing of sensitive data locally decreases the quantity of

data that is transferred to distant servers, which in turn promotes

both security and privacy (Raj, 2023). This results in enhanced

security. Furthermore, this is particularly helpful for applications

that deal with information that is of crucial importance.

Offloading workloads to fog nodes may help you decrease the

operating expenses that are connected with cloud infrastructure

and maximize the utilization of other resources (Das and Inuwa,

2023; Mohamed et al., 2023). When you do this, you can also lower

the costs associated with cloud infrastructure.

1.4 Multi-objective task scheduling:
orchestrating tasks in the fog with big data
considerations

Despite the fact that fog computing offers a number of benefits

for the processing of large amounts of data, one of the most

significant challenges is still the discovery of an efficient method

to schedule operations within the network. This involves allocating

work to appropriate fog nodes, taking into consideration the

many objectives that are being pursued is Minimizing Execution

Time. Rapid response and customer satisfaction are of the

utmost importance in real-time applications due to the potentially

disastrous effects of delays. Finding the most efficient way to do

things is the key to achieving this goal.

Customers anticipate prompt responses while interacting with

apps. Making the most efficient use of time is crucial. Particularly

in interactive situations, minimizing reaction time is crucial for

ensuring a satisfying user experience and avoiding disappointment.

An important factor in assessing the system’s overall efficacy and

efficiency is the sum of all job completion times. Reducing the

completion time is of the utmost importance. Finding the sweet

spot for job completion times is critical for avoiding network

bottlenecks and ensuring effective task processing.

By reducing the amount of data transported over unsecure

networks, processing data near to its origin helps to alleviate

network congestion and enhances data privacy. To do this, data

is used to its fullest extent when it is located close to its point of

origin. The vast majority of the time, these goals are diametrically

opposed. A job that is prioritized based on execution time may

see an increase in response time owing to network congestion or

queueing if it is assigned to a strong fog node. The purpose of

this is to show how the execution time may be prioritized. Finding

the sweet spot for task schedule optimization inside the Big Data

framework requires a multi-objective strategy. Using this approach

well requires thinking about all of these goals at once and finding

the best middle ground.

For efficient Big Data management in fog, a hybrid GA-PSO

algorithm seems to be a viable option. This is because it overcomes

the shortcomings of previousmethods and effectively deals with Big

Data. Effective multi-objective task scheduling in fog computing

settings is the goal of this approach, which combines the strengths

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2024.1358486
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Saad et al. 10.3389/fdata.2024.1358486

FIGURE 1

The task scheduling architecture in the fog environment.

of genetic algorithm (GA) with particle swarm optimization (PSO).

The two methods work together to achieve this goal. The fog

computing environment’s task scheduling mechanism is shown in

Figure 1.

This study aims to enhance task scheduling in fog computing

for big data applications, motivated by the need to overcome

resource constraints in fog settings while meeting the rigorous

demands of large data processing. We provide a hybrid GA-PSO

method that utilizes the collective advantages of global exploration

and rapid convergence to effectively manage the inherent trade-

offs in multi-objective optimization. Our objective is to explore

the fundamental element of fog computing in order to fully use

its potential in various applications, improve user satisfaction, and

optimize energy consumption, eventually creating a more robust

and environmentally friendly large data processing environment.

The remaining portions of the article are divided into the following

sections for your convenience: In Section 2, we will conduct a

review of the most current research that has been conducted in

this area. In the third section, the structure of the algorithm that

is used to schedule jobs as well as its definitions are discussed.

The performance assessment of the multi-objective task scheduling

problem in a fog environment is discussed in Section 4, which has

a wealth of information on the subject. In addition to the data

obtained from the experiment, this section also includes a summary

of the results obtained from the experiment. In Section 5, a synopsis

of the work that will be carried out in the future is offered.

2 Literature review

Several researchers have proposed various approaches to

address the multi-objective task scheduling problem in fog

computing for Big Data applications. These approaches can be

broadly categorized as follows:

2.1 Heuristic-based algorithms

These rely on domain-specific knowledge and heuristics to

assign tasks to fog nodes. Simple and easy to implement, but

often struggle to adapt to diverse scenarios and may not find

optimal solutions. Examples: Greedy algorithm, First-Come First-

Serve (FCFS).

2.2 Single-objective optimization
algorithms

These focus on optimizing only one objective, typically

execution time or resource utilization. May not consider other

important objectives and may not lead to optimal solutions when

considering multiple conflicting objectives. Examples:

Shortest Job First (SJF), Round-Robin scheduling.

2.3 Metaheuristic algorithms

These are population-based optimization algorithms inspired

by natural phenomena. Can handle complex search spaces

and explore diverse solutions effectively. Examples: Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO).
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2.4 Hybrid algorithms

Combine the strengths of different optimization algorithms

to achieve better performance. Can leverage the exploration

capabilities of GA and the exploitation strengths of PSO for a more

balanced and comprehensive search. Examples: PSOWOA.

Here we provide a literature review of job scheduling

algorithms that make use of one of these methods. A Multi-

Objectives Grey Wolf Optimizer (MGWO) algorithm hosted on

the fog broker to optimize both delay and energy consumption

was presented by Saif et al. (2023). Simulation results show

MGWO’s effectiveness compared to existing algorithms in reducing

both objectives.

Combining fog computing with cloud computing allows

processing near data production sites for faster speeds and

reduced bandwidth needs, especially beneficial for real-time

IoT applications. However, limited resources in fog nodes

necessitate efficient task scheduling to meet dynamic demands.

This survey analyzes existing techniques, categorized into machine

learning, heuristic, metaheuristic, and deterministic approaches,

evaluating them based on execution time, resource utilization,

and various other parameters is presented by Hosseinzadeh

et al. (2023). It reveals that metaheuristic-based methods are

most common (38%), followed by heuristic (30%), machine

learning (23%), and deterministic (9%). Energy consumption is

the most addressed objective (19%). A number of future options

for enhancing fog computing job scheduling are highlighted

in the conclusion of the paper. These future avenues include

responding to dynamic situations, adding security and privacy,

and leveraging improvements in artificial intelligence and machine

learning applications.

An approach known as a hybrid meta-heuristic optimization

algorithm (HMOA) was published by Jakwa et al. (2023) for

the purpose of scheduling tasks in fog computing in an energy-

efficient manner. HMOA combines MPSO with deterministic

spanning tree to overcome the drawbacks of separate methods. The

hybrid MPSO-SPT allocates and manages resources, while MPSO

schedules user tasks across fog devices. HMOA uses resources

and energy better than state-of-the-art algorithms. The usage and

evaluation of iFogSim permitted this. Future hybrid experiments

will investigate execution time. This article addresses multi-

objective scheduling in fog computing, where remote resources and

unexpected demands are prevalent. Dai et al. (2023) design a multi-

objective optimizationmodel that maximizes time delay and energy

use after proposing a dynamic priority adjustment methodology for

task offloading. Amodel that optimizes priority adjustment follows.

Due to its ability to manage complicated Pareto fronts and reduce

reaction time and energy consumption, the M-E-AWA algorithm

(MOEA/D with adaptive weight adjustment) may be useful for fog

task scheduling.

The goal of this project is to schedule scientific activities in

fog computing while conserving energy. HDSOS-GOA is a new

hybrid approach proposed in this study. Symbiotic Organisms

Search (SOS) and Grasshopper Optimization Algorithm (GOA)

algorithms are used with learning automata for dynamic selection.

Mohammadzadeh et al. (2023) use the HEFT heuristic and

DVFS methodology to optimize energy usage and job scheduling.

Provided this way HDSOS-GOA surpasses rival scheduling

algorithms in energy use, makespan, and completion time,

according to extensive testing. Thus, it may be a low-power fog

computing option.

To efficiently manage requests from the Internet of Things

(IoT) in a cloudy environment, this study proposes the Electric

Earthworm Optimization technique (EEOA), a novel multi-

objective job scheduling approach. EEOA, a hybrid of the

Earthworm Optimization Algorithm (EOA), and the Electric

Fish Optimization Algorithm (EFO), enhances EFO’s exploitation

capabilities. Kumar and Karri (2023) implement EEOA, which is an

attractive approach to cloud-fog job scheduling that is both efficient

and economical. Significant gains in contrast to current techniques

are shown in simulations utilizing real-world workloads like CEA-

CURIE and HPC2N. Gains in efficiency of up to 89%, reductions in

energy usage of 94%, and savings of 87% in overall cost are all part

of these enhancements.

The explosive growth of IoT data creates a burden on the

cloud, hindering QoS. To address this, fog computing extends

computing capabilities to the network edge. Scheduling tasks

in fog environments faces challenges due to heterogeneous

fog nodes and dynamic user demands. This article presents

a comprehensive literature review, classifying task scheduling

algorithms by approach, highlighting frequently used parameters,

comparing available simulation tools, and identifying open issues

and challenges to guide future research efforts in fog computing

task scheduling is written by Saad et al. (2023).

Due to the explosive growth of IoT and its high data demand,

cloud computing struggles to support real-time applications

with low latency. Fog computing emerges as a solution,

enabling data processing near edge devices for faster response

times. Scheduling tasks effectively on fog nodes with limited

resources is crucial. This article proposes EETSPSO, an energy-

efficient task scheduling algorithm based on Particle Swarm

Optimization. EETSPSO outperforms existing algorithms like BLA

and MPSO by minimizing makespan (6.39%−4.71%), reducing

energy consumption (9.12%−11.47%), and decreasing execution

time (9.83%−6.32%) and this is work is carried by Vispute and

Vashisht (2023).

Fog computing helps improve the quality of service (QoS) for

IoT applications by enabling task offloading near data sources.

However, reducing delay remains challenging due to resource

limitations and workload imbalance. To address these issues, this

article proposes a dynamic collaborative task offloading (DCTO)

approach that dynamically derives the offloading policy based on

fog device resources is presented by Tran-Dang and Kim (2023).

Tasks can be executed by one or multiple fog devices through

parallel subtask execution to reduce delay. Extensive simulations

show that DCTO significantly reduces average delay in systems

with high request rates and heterogeneous fog environments

compared to existing solutions. Additionally, DCTO’s low

computational complexity allows for online implementation.

Extending cloud computing, fog computing offers lower latency

and resource utilization improvements for IoT devices. Task

scheduling in fog maps tasks to appropriate fog nodes to optimize

resource usage and reduce IoT device costs. This article focuses on

scheduling offloaded tasks for multiple users.
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Formulating the problem as a combinatorial optimization, the

article proposes an improved integer particle swarm optimization

method for efficient solution. Compared to the traversal method,

the He and Bai (2023) proposed algorithm achieves 90%

faster runtime while still finding an approximate optimal

solution, demonstrating its effectiveness for fog computing task

scheduling optimization.

This article addresses the challenge of dynamic workflow

scheduling in fog computing, where existingmethods only consider

cloud servers and ignore mobile and edge devices. A new problem

model and simulator are presented that consider all three types

of devices as a single system for task execution. A novel Multi-

Tree Genetic Programming (MTGP) method is proposed by

Xu et al. (2023) to automatically evolve scheduling heuristics

for real-time decision-making at routing and sequencing points.

Experiments show that MTGP significantly outperforms existing

methods, achieving up to 50% reduction in makespan across

different scenarios.

The increasing number of IoT devices using cloud services

has led to latency issues. Fog computing, which places processing

resources closer to users at the network edge, emerges as a

solution to reduce latency and improve user experience. However,

minimizing latency without increasing energy consumption

requires a powerful scheduling solution. In order to strike a

compromise between energy usage and response time, Khiat

et al. (2024) introduce GAMMR, a new genetic-based method

for job scheduling in fog-cloud situations. Simulations on

different datasets show that GAMMR achieves an average 3.4%

improvement over the traditional genetic method.

Workflow scheduling in cloud-fog settings is the difficult

subject of this study. Bansal and Aggarwal (2023) designed a novel

hybrid approach called the Particle Whale Optimization Algorithm

(PWOA) to overcome the drawbacks of earlier algorithms like PSO

and WOA. Combining the best features of PSO and WOA, PWOA

enhances exploration and exploitation capabilities. Simulation

results demonstrate that, across a range of scientific processes,

PWOA minimizes both the total execution time and cost more

effectively than PSO and WOA. It might be a good substitute

for efficient workflow scheduling because of this. For application

in fog-cloud computing settings, this article introduces a novel

scheduling method called PGA. When optimizing task execution,

the PGA algorithm considers not only energy consumption and

deadline compliance but also the processing capability of the cloud

and the resource limits of fog nodes. To achieve this goal, it

uses a genetic algorithm in conjunction with job prioritization to

distribute tasks to the right nodes in the cloud or fog. Hoseiny

et al. (2021) conduct thorough simulations to show that PGA

outperforms current techniques. Several researchers have used

varying numbers of goals in an effort to solve the multi-objective

optimization issue in workflow applications. For efficient resource

allocation in workflows, this research suggests a hybrid meta-

heuristic GA-PSO method. The suggested strategy leverages the

characteristics of diverse jobs and nodes to achieve three objectives:

reduce execution time, minimize reaction time, and lower overall

completion time.

The article by Walia et al. (2023) provides a thorough

examination of the most advanced solutions available, including

both AI and non-AI approaches. It includes detailed discussions

on related quality of service measures, datasets, constraints,

and issues. Each categorized resource management problem is

accompanied with mathematical formulas, which introduce a

quantitative aspect to the examination. The study concludes by

highlighting potential areas for future research, advocating for

the incorporation of advanced technologies such as Serverless

computing, 5G, Industrial IoT (IIoT), blockchain, digital twins,

quantum computing, and Software-Defined Networking (SDN)

into existing Fog/Edge paradigms. This integration aims to improve

business intelligence and analytics in IoT-based applications. In

summary, the article provides a thorough examination, analysis,

and plan for tackling obstacles in managing Fog/Edge resources for

IoT applications.

Kumar et al. (2023a) discuss the shortcomings of the

cloud model in fulfilling the latency requirements of Industrial

IoT (IIoT) applications. This article presents a new AI-based

framework designed to optimize a multi-layered integrated cloud-

fog environment. The system especially focuses on making real-

time choices on offloading tasks. The framework integrates a

fuzzy-based offloading controller and employs an AI-based Whale

Optimization Algorithm (WOA) to increase decision-making for

enhanced Quality-of-Service (QoS) parameters. The experimental

findings reveal substantial improvements, such as a 37.17% drop in

the time taken to complete a task, a 27.32% reduction in the amount

of energy used, and a 13.36% decrease in the cost of executing

the process, when compared to the standard reference methods.

In summary, the proposed framework demonstrates the capacity

of AI-driven solutions to enhance resource management in IIoT

applications inside a fog computing environment.

Kumar et al. (2021) provide ARPS, a system that enables

autonomous allocation and organization of resources on cloud

platforms. ARPS is a system that aims to effectively allocate cloud

services to fulfill the Quality of Service (QoS) needs of different

end-users. It focuses on optimizing both execution time and cost

at the same time. By using the Spider Monkey Optimization (SMO)

method, this system tries to address a multi-objective optimization

issue. Through rigorous simulation study using Cloudsim, it has

been shown to outperform four other current mechanisms. On

summary, ARPS offers a proficient approach to enhance resource

allocation and scheduling on cloud platforms.

Kumar et al. (2023b) presents a system for predicting workload

and allocating resources in fog-enabled Industrial Internet of

Things (IoT). By using a sophisticated autoencoder model, the

system predicts workloads and adjusts the number of fog nodes

(FNs) accordingly. Additionally, it incorporates the crow search

algorithm (CSA) to find the most effective FN. By conducting

simulation study, the suggested scheme demonstrates superior

performance compared to current models in terms of execution

cost, request rejection ratio, throughput, and response time. This

architecture provides a very effective approach for strategically

positioning FNs to execute dynamic industrial IoT workloads with

maximum efficiency.

The study focuses on the pressing issue of resource scheduling

in cloud computing, which arises from the increasing need for on-

demand services and the diverse characteristics of cloud resources

(Kumar et al., 2019). Cloud services encounter inefficiencies
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when scheduling mechanisms are unable to effectively balance

resource utilization, resulting in either a decline in service

quality or resource waste. The main objective of scheduling

algorithms is to evenly divide various and intricate jobs across

cloud resources, while minimizing imbalance and optimizing

crucial performance characteristics like as reaction time, makespan

time, dependability, availability, energy consumption, cost, and

resource utilization. The literature review categorizes current

scheduling algorithms, including heuristic, meta-heuristic, and

hybrid methods, emphasizing their strengths and weaknesses. The

work seeks to function as a methodical and all-encompassing

reference for novice researchers in the cloud computing domain,

promoting more advancement in scheduling methodologies.

This article tackles the complex scheduling of real-time

tasks on multiprocessors using a new algorithm called mohGA

(Yoo and Gen, 2007). Combining GA and SA’s strengths,

mohGA efficiently finds near-optimal schedules while optimizing

conflicting objectives like tardiness and completion time.

Simulation results show mohGA outperforms existing methods,

making it a promising approach for real-time task scheduling in

various applications.

“Network Models and Optimization: Multiobjective Genetic

Algorithm Approach” provides a thorough and up-to-date

examination of the use of multi-objective genetic algorithms

in solving diverse network optimization issues in numerous

fields (Gen et al., 2008). The extensive scope of algorithms

and applications covered in this resource, which includes basic

principles such as shortest route issues and complex situations

like airline fleet assignment, is suitable for both individuals

seeking knowledge and professionals in the field. This book is

a wonderful resource for anyone who want to comprehend and

apply sophisticated network optimization approaches employing

multi-objective genetic algorithms.

The author in his book (Gen and Yoo, 2008) examines the

use of Genetic Algorithms (GA) in scheduling soft real-time jobs

on multiprocessors. The objective is to minimize tardiness while

reducing the complexity associated with conventional approaches.

The benefit of GA stems from its multifaceted approach that

integrates principles and heuristics, providing more intricate

solutions for this NP-hard issue. The chapter offers a complete

method to effective job scheduling with decreased complexity by

addressing continuous, homogeneous, and heterogeneous real-

time systems.

The outcomes produced by algorithms based on the GA

algorithm are, in essence, preferable to those produced by other

algorithms when the total number of process repetitions exceeds

a specifically defined threshold. Conversely, as the number of

iterations of the process increases, the GA-based meta-heuristic

algorithmwill require an extended duration to generate the optimal

solution. In addition, PSO-based meta-heuristic algorithms exhibit

superior performance in a reduced time period in comparison to

alternative approaches. Due to the rapid convergence of PSO-based

algorithms toward a solution, however, the results’ dependability

may be compromised. This rapid convergence could cause the

algorithms to become stuck in the solution that is locally optimal.

As a result, the suggested algorithm differentiates itself by using

the qualities that are associated with both the GA and the PSO

algorithms. When compared to previous algorithms with the same

goals, it is anticipated that the Hybrid GA-PSO method would

functionmuch quicker with a wider variety of workflow application

sizes. In addition, the Hybrid GA-PSOmethod does not necessarily

become stuck in the locally optimum solution since it makes use of

the hybrid approach as it combine the GA with other optimization

algorithms, such as local search methods (PSO), to leverage their

respective strengths, which increases the precision of the answers

provided and stops the algorithm from becoming trapped in the

solution that is optimum for the local environment.

3 Problem statement

Current scheduling methods often fail to adequately handle

important factors in fog computing, such as response time, energy

cost, and resource utilization. We need a more advanced and

adaptable task scheduling solution since fog settings are dynamic,

with different workloads and different hardware capabilities.

The two main ideas in genetic algorithms (GAs) that stand

for the harmony between finding new solutions and improving

old ones are exploration and exploitation (Gen and Lin, 2023a).

In order to find superior answers in other areas, exploration

must extensively explore the search space. Taking use of what

is already known about potential solutions allows you to boost

their efficiency. An algorithm that puts too much emphasis on

exploration runs the risk of squandering time and energy looking

in fruitless corners of the search space. On the other side, if the

algorithm starts focusing on exploitation too soon, it might end up

convergent to a local optimum before it ever starts looking for a

better solution.

In extreme cases of natural selection, it is advantageous

to reproduce individuals with high fitness levels. This means

other, perhaps more productive areas of the search space can be

overlooked when the space rapidly converges on a local limit. The

current state of the population should inform how the selection

pressure is adjusted. Here we may find a happy medium between

exploiting and exploring. There are a few drawbacks to be mindful

of, such premature convergence, but the genetic algorithm (GA) has

proved effective in solving many optimization problems. The GA

stops looking for potential productive regions of the search space

because it becomes stuck at a local optimum. Genetic algorithms’

(GAs) primary drawback is the possibility of over-convergence,

which prevents them from exploring the search space for optimal

solutions and instead keeps them stuck in a local optimum. The

GA’s effectiveness is diminished, leading to frequent poor results.

It is possible to avoid early convergence in GA by using hybrid

techniques. To get the most out of GA, try combining it with

other optimization techniques, including local search approaches.

Both the GA and local search algorithms can work together

to improve GA-found solutions; the GA can even provide new

genetic material to sidestep local optima. The benefits of GA-

PSO, a combination of genetic and particle swarm optimization,

outweigh those of employing either approach alone. An improved

search process and maybe superior solutions are the results of

the hybrid strategy, which merges GA’s exploration skills with

PSO’s exploitation characteristics (Shami et al., 2023). In order
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to effectively explore the search space, GA makes use of its

mutation and crossover operators. Based to its information-sharing

mechanism and velocity updates, PSO efficiently uses promising

portions of the search space to quickly converge toward locally

optimum solutions.

4 The proposed algorithm

4.1 Key components of the proposed
algorithm

Chromosome representation: incorporate critical data like

task priority, execution timings, fog node assignments, and other

relevant information into an efficient chromosomal representation

that encodes task scheduling solutions.

Genetic algorithm (GA) components: utilize genetic operators

such as mutation and crossover to provide a diverse set of solutions

for job assignment. Build a comprehensive fitness function that

considers all relevant metrics, including resource utilization, energy

usage, response time, and more.

Particle swarm optimization (PSO) components: use particles

to represent potential solutions to the assignment’s challenge. Using

location and velocity updates, you may guide particles toward the

optimal solutions in the solution space.

Hybridization strategy: by combining the strengths of GA and

PSO, you can speed up the exploration process and get closer to the

best possible answers.

Dynamic adaptation: it may be difficult for the traditional

task scheduling approaches to adapt the dynamic and diverse

distributed systems in the fog computing settings. Create dynamic

methods that the algorithm may use to adapt to changes in the fog

environment, such changes in workload, network condition, and

resource availability.

Expected outcomes: the proposed Blended GA-PSO algorithm

anticipates providing a highly adaptive and efficient task scheduling

solution for fog computing environments. The outcomes are

expected to include improved system performance, reduced

response times, and enhanced resource utilization.

Figure 2 illustrates the primary operations involved in the

GAPSO algorithm. The GA-PSO method begins by producing a

random population (Mortaheb and Jankowski, 2023), and one of

the parameters of the algorithm is a certain number of iterations

that must be completed before the process may proceed. The

population demonstrates that there is more than one approach to

solving the issue of workflow tasks, and each approach is a method

for allocating all of the workflow jobs to the VMs that are now

accessible. The GA algorithm is run on the initialized population

for the initial number of iterations. The total iterations are set to

(n), then the GA algorithm and PSO algorithmwill be executed half

times of n. Iteration of the form (n/2) was chosen since it makes

the suggested algorithm to improved performance compared to

using either GA or PSO alone. GA excels at exploration, while

PSO shines at exploitation. By allocating equal time, the hybrid

algorithm leverages both capabilities effectively simpler to grasp,

which is why it was used.

Experiments demonstrated that the GA-PSO algorithm

functioned most effectively when the number of iterations was

divided between the GA algorithm and the PSO algorithm in an

equal manner. Additionally, it is well knowledge that the GA and

the PSO need a great deal of function evaluations.

This is due to the fact that each has to consider the objective

of each individual participant in the population represented by

the current illustration. As a result, reducing the population

size in a genetic algorithm or particle swarm optimization is a

popular technique for keeping the GA or PSO’s performance from

deteriorating in terms of how accurate the findings are and how

quickly the rate of reduction is.

Pareto optimality is a state in which a group of solutions

exists where no individual solution can be enhanced without

causing a deterioration in another solution (Gen and Cheng,

2000; Zhang et al., 2022; Gen and Lin, 2023b). Task scheduling

involves the identification of schedules that optimize many

goals concurrently, such as minimizing makespan and resource

utilization. The proposed Hybrid GAPSO algorithm can be

customized to identify Pareto optimum solutions using the

following methods: Creating several fitness functions that

reflect distinct aims, Employing multi-objective selection

procedures that prioritize solutions that provide compromises

among goals.

Within the framework of the genetic algorithm (GA), also

known as the genetic algorithm, the solutions are referred to

as chromosomes. These chromosomes are enhanced with each

iteration of the algorithm by making use of GA operators

including selection, crossover, and mutation (Gen and Lin,

2023a). These GA operators are all part of the genetic algorithm.

The generated chromosomes are what is sent into the PSO

algorithm after the first half of the set number of iterations

has been finished. In the PSO method, chromosomes are

referred to as particles, and with each iteration of the PSO

algorithm (Shami et al., 2023), these particles go through a

process that results in a little but noticeable improvement.

In order to accurately reflect the answer to the workflow

task issue, the particle that has the lowest fitness value has

been chosen.

4.2 Initializing population

The search for a solution at the beginning of the iteration

is carried out in a random fashion. Upon completion of the

first cycle, a number of new populations are generated, and

then those populations are recursively improved by making use

of the previously found solutions to provide a collection of

proposed solutions.

Chromosome is the term used to refer to the population in

the GA method. The number of workflow jobs is proportional

to the length of the chromosomes, and the genes that make up

each chromosome are meant to stand in for the various virtual

machines. The chromosomes that were created at random serve

as the input for the GA-PSO method that was just developed.

These solutions will be chosen based on the performance of the

GA algorithm. Algorithm 1 provides a visual representation of the

whole initialization population phase.
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FIGURE 2

Workflow of GA-PSO Algorithm.

4.3 Utilizing the GA algorithm

Applying the GA to the whole population that has been

created for (n/2) of the specified iterations is the first stage

in the procedure. In order to solve the scheduling issue, it is

required to develop the best answer possible from all of the

alternatives. For the next (n/2) rounds of the specified procedure,

the PSO is applied to the whole population that the GA algorithm

generates. The PSO approach, which retains both the best and

worst solutions in memory, may be useful for attaining quick

convergence on the optimum solution when the GA algorithm

yields inadequate outcomes.

The total number of workflow jobs is equivalent to the

number of chromosomes that are utilized as symbols for the

answers provided by the genetic algorithm (GA), which define

the scheduling solution for our issue. Each chromosome has a

number of genes that stand in for the hosts’ virtualmachines (VMs).

During each cycle of the GA, the chromosomes are passed via three

distinct operators: the crossover, mutation, and selection operators.

The selection operator is the GA algorithm’s initial operator. In
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Algorithm: InitializePopulationAndParticles

Input: Population size (popSize), Number of

tasks

(numTasks), Number of fog nodes

(numFogNodes)

1. InitializePopulation(popSize, numTasks,

numFogNodes):

For each individual in the population:

Generate a chromosome with random task

assignments to fog nodes.

2. InitializeParticles(popSize, numTasks,

numFogNodes):

For each individual in the population:

Create a particle with a position

equal to

the chromosome and a random velocity.

Algorithm 1. The initializing population.

order for the algorithm to generate the succeeding generation of

chromosomes, this operator is in responsible of picking various

options from the pool of already-existing chromosomes in order

to solve the problem.

4.4 Selection operator

In the genetic algorithm known as the GA, each iteration does

not include the evolution of all of the produced chromosomes

via the GA operators. As a result, the chromosomes go through

a process known as the tournament selection in order to

choose the most advantageous chromosome from among a set of

chromosomes. After the completion of a number of competitions

involving a small number of chromosomes, the function chooses

an id at random. The chosen ids each stand for an index that

refers to one particular chromosome out of a larger collection of

chromosomes. According to Algorithm 2, the best chromosome in

the group is chosen to be the crossover operator. This decision is

based on the chromosome’s overall fitness.

4.5 Fitness function

The primary objective of task scheduling in a fog computing

environment is to minimize the amount of time required to

complete a given activity, respond to a task, and finish a

task. Algorithm 3 provides a visual representation of the whole

fitness function.

The task execution time, shows how long it takes task i to run

on virtual machine j, based on the following Equation 1.

Ect
(

i, j
)

=
tlength(i,j)

vmcomp(i,j)
(1)

Where tlength(i,j) is the duration of the job necessary to execute

the instruction, vm represents the computational capacity of the

Algorithm: TournamentSelection

Input: Population, Tournament

size (tournamentSize)

1. DividePopulationIntoGroups(Population,

tournamentSize):

//Divide the population into groups of

equal size

(tournament size)

For each group in the population:

GroupMembers =

RandomSubset(Population,

tournamentSize)

2. For each group in the

divided population:

//Choose the individual with the best

fitness as the winner

of the tournament

Winner = SelectWinner(GroupMembers)

3. Return two tournament winners

for crossover:

TournamentWinners =

RandomSubset(Winners, 2)

Return TournamentWinners

Algorithm 2. The selection operator (tournament selection).

Algorithm: CalculateFitness

Input: Chromosome, Fog Node Capabilities,

Task Assignments

1. For each chromosome in the population:

//Calculate execution time, response

time, and

completion time based on task

assignments and fog

node capabilities

CalculateExecutionTime(chromosome,

fogNodeCapabilities, taskAssignments)

CalculateResponseTime(chromosome,

fogNodeCapabilities, taskAssignments)

CalculateCompletionTime(chromosome,

fogNodeCapabilities, taskAssignments)

//Calculate fitness as the inverse of

the sum of

execution time, response time, and

completion time

Fitness =

CalculateFitnessValue(executionTime,

responseTime, completionTime)

2. Return fitness value.

Return Fitness

Algorithm 3. The fitness function.

vmcomp(i,j) virtual machine based on the following Equation 2.

vmcomp(i,j) = vm∗pesNumber(i,j)vmmips(i,j) (2)
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Where vmpesNumber(i,j) is the number of CPUs in virtual machine

j, vmmips(i,j) represents the processing power of virtual machine j.

RT
(

i, j
)

= FT
(

i, j
)

− ST
(

i, j
)

(3)

Where RT
(

i, j
)

is the response time of all jobs i executing on

resources j. FT
(

i, j
)

is the task’s completion time and ST
(

i, j
)

is its

beginning time as shown in Equation 3.

The total amount of time it takes to finish a job FT
(

i, j
)

is the

addition of the amount of time it takes to transfer the task RT
(

i, j
)

and the amount of time it takes to run the task on the virtual

machine Ect
(

i, j
)

as shown in Equation 4.

FT
(

i, j
)

= RT
(

i, j
)

+ Ect
(

i, j
)

(4)

4.6 The crossover operator

The crossover operator seeks to build new chromosomes by

rearranging the genes on every set of chromosomes in a different

order. A number denoting the stage at which each chromosome is

split in half is chosen at random from the range of the total number

of genes on each chromosome in the crossover approach. A child

chromosome with two sections containing the genes, or VMs, of

both parents’ chromosomes is the result of the crossover. The first

group of virtual machines (VMs) use the first chromosome up to

the random number-determined index. The second chromosome

is home to the second set of virtual machines, which start at the

randomly selected index and go all the way to the end of the

chromosome. An example of how the crossover strategy could be

used is shown in Algorithm 4.

4.7 The mutation operator

Themutation operator’s goal is to induce unexpectedmutations

into the new chromosomes created by the preceding crossover

operator. These newly formed chromosomes ought to be more fit

than the ones that are currently there. The mutation rate variable

decides whether or not a mutation will really occur. The mutation

operator operates on the chromosome that was returned by the

selection procedure. The process of mutation begins with a number

that is created at random in such a way that it is either lower

than or the same as the mutation rate. It is necessary to determine

whether or whether two genes, known as VMs, located on the same

chromosome are distinct from one another. If they are identical,

their places will be altered in order to build a new chromosome,

indicating a different work allocation across the available virtual

machines (VMs). The chromosome that has been created is then

sent on to the subsequent step of the process. Algorithm 5 provides

an illustration of the method’s implementation, which is known

as mutation.

4.8 Implementing the PSO algorithm

The solutions obtained by the GA algorithm are then put

into the PSO algorithm, together with the remaining iterations

Algorithm: Crossover

Input: Parent1, Parent2

1. SelectTwoChromosomesForCrossover:

//Randomly select two chromosomes

for crossover

Parent1 = SelectRandomChromosome()

Parent2 = SelectRandomChromosome()

2. ChooseRandomCrossoverPoint:

//Choose a random crossover point

within the

chromosome length

CrossoverPoint =

RandomInteger(1, ChromosomeLength)

3. CreateOffspringChromosomes:

//Create two offspring chromosomes by

swapping genes

after the crossover point between

the parents

Offspring1 =

Concatenate(Parent1[1:CrossoverPoint],

Parent2[CrossoverPoint+1:])

Offspring2 =

Concatenate(Parent2[1:CrossoverPoint],

Parent1[CrossoverPoint+1:])

4. ReturnTheTwoOffspringChromosomes:

//Return the two offspring chromosomes

Return Offspring1, Offspring2

Algorithm 4. Cross over operator.

Algorithm: Mutation

Input: Chromosome, Mutation Rate

1. For each gene in the chromosome:

//With a small probability (mutation

rate), randomly

choose a new fog node for the task

For each gene in the chromosome:

If RandomNumber(0, 1) < MutationRate:

MutateGene(chromosome, gene)

2. Return the mutated chromosome.

Return Chromosome

Algorithm 5. Mutation operator.

indicated, to select the optimal solution from among the solutions

generated by the GA technique. This is done to identify which of

the solutions produced by the GA technique is the best solution.

The solutions are referred to as particles in the PSO approach, the

persons who make up each particle stand in for the VMs, and the

index of each VM stands in for a workflow job. The PSO algorithm

is divided into many sections, all of which will be explained in

this article.
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Algorithm: ParticleSwarmOptimization

Input: Population, PSO Parameters

1. IdentifyGlobalBest(Population):

//Identify the best individual in the

current population

(global best)

GlobalBest =

FindBestIndividual(Population)

2. For each particle in the swarm:

//Identify the best individual it has

encountered so far

(personal best)

PersonalBest =

FindBestIndividual(ParticleHistory)

//Update velocity and position based on

personal best,

global best, and other PSO parameters

UpdateVelocityAndPosition(Particle,

PersonalBest,

GlobalBest, PSOParameters)

Algorithm 6. Evolve (gbest) and (pbest) of the particles.

4.9 Evolve (gbest) and (pbest) of the
particles

Each iteration results in the production of a new generation of

the particles by basing that generation’s velocity and location on the

results of the previous iteration. The values of (gbest) and (pbest)

are created during each iteration; the changes in particle velocity

and placement are reliant on these values. Algorithm 6 shows how

to implement obtaining the best gbest and best pbest values of the

particles. The values of (gbest) and (pbest), which are dynamically

modified over the algorithm’s iterations, determine the forward

movement of the particles in the PSO algorithm. These values are

always shifting. The solutions that are generated by the GAmethod

are identical to the values of pbest[k] for the very first iteration,

where k is the variable that is utilized to distinguish one solution

from another. This holds true for all of the iterations that follow.

The alternative that results in the highest possible score (gbest) is

the one that has the lowest possible fitness value.

In addition, throughout each iteration, a comparison is made

between the particles that were previously formed and the particles

that are now being generated, and this comparison is based on the

fitness value. The location that has the particle with the highest

value of fitness is (pbest). The (gbest) saves the most suitable

particle from the entire production of particles in every repetition

by contrasting their fitness value to the value of the particle with

the best value in the previous iteration (Pbest). The comparison

procedure guarantees that all of the particles are progressing toward

the solution that is considered to be the best in order to arrive at the

solution that is considered to be the optimum one.

The pbest and gbest are crucial in guiding the particles toward

promising regions of the solution space. The pbest allows each

particle to remember its own historical best position, while the

gbest guides the entire swarm toward the overall best position

discovered by any particle. The process of updating pbest and gbest

is straightforward:

4.9.1 Update individual best (pbesti)
If the fitness (or objective value) of the current position xi(t) is

better than the fitness of pbesti, update pbesti to xi(t) as shown in

Equation 5.

pbesti =

{

xi (t) if fitness (xi (t)) < fitness(pbesti)

pbesti otherwise
(5)

4.9.2 Update global best (gbest):
If the fitness of pbesti is better than the fitness of gbest, update

gbest to pbesti as shown in Equation 6.

pbesti =

{

pbesti if fitness
(

pbesti
)

< fitness(gbest)

gbest otherwise
(6)

These updates ensure that the particles converge toward

optimal solutions in the search space over iterations, leveraging

both personal and swarm-wide historical information.

4.9.3 Update the velocity and position matrix
In particle swarm optimization (PSO), the evolution of particles

is governed by updating their positions and velocities based on

the best historical positions, both individual (pbest) and global

(gbest). Let’s denote xi as the position vector of particle i, vi as the

velocity vector of particle i, pbesti as the best historical position of

particle i, and gbest as the best position among all particles in the

entire swarm.

The equations for updating the velocity and position of each

particle in a basic form of PSO are as follows:

4.9.4 Velocity update (vi)

vi(t + 1) = w · vi(t)+ c1 · rand1 · (pbesti− xi(t))+ c2 · rand2 ·

(gbest − xi(t)) (7)

∗ w is the inertia weight, controlling the impact of the

previous velocity.
∗ c1 and c2 are the acceleration coefficients for personal and

global influence, respectively.
∗ rand1 and rand2 are random values between 0 and 1.

4.9.5 Position update (xi)

xi(t + 1) = xi(t)+ vi(t + 1) (8)

These Equations 7, 8 reflect the collaborative exploration of the

solution space by particles. The first term in the velocity update

equation represents the inertia of the particle, the second term
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is the attraction to the particle’s own best position (exploitation),

and the third term is the attraction to the swarm’s best

position (exploration).

The velocity of each particle is altered proportionally

throughout each iteration after the random creation of the

beginning values for the velocity and position of the particles, as

well as the computation of both (pbest) and (gbest). An example

of how the update procedure for the velocity matrix should be

implemented is shown in Algorithm 7, which can be found here.

Algorithm: ParticleSwarmOptimization

Input: Swarm, Inertia Weight, Cognitive

Acceleration Coefficient, Social

Acceleration Coefficient, Velocity Bounds

For each particle in the swarm:

//Update velocity based on

current velocity,

inertia weight, cognitive and

social acceleration

coefficients, distances to personal and

global best

positions

UpdateVelocity(Particle, InertiaWeight,

CognitiveAccelerationCoefficient,

SocialAccelerationCoefficient)

//Bound velocity within a predefined range

BoundVelocity(Particle, VelocityBounds)

//Update position based on the

updated velocity

UpdatePosition(Particle)

//If a position violates fog node resource

constraints, repair it by re-assigning

tasks while

minimizing fitness degradation

RepairPosition(Particle)

Algorithm 7. Update velocity and position matrix.

Themethod, which includes changing the speed of the particles,

tries to produce another type of particle from the different portions

of the VMs that is more suited than the previous one. This new

generation will be produced as a result of the procedure that

involves updating the velocity of the particles.

A comparison is made between the value of each individual

included inside the particles and its value from the prior iteration

of the procedure, which was indicated by the notation pbest. When

both individuals in (pbest) and the particle have the same velocity,

the velocity value for each person is reduced; otherwise, the velocity

amount is increased. In a similar manner, a comparison is being

made between each individual inside the particles and the values

that they had during the last iteration of the process (gbest). When

both persons in (gbest) and the particle have the same velocity, the

value of the individual’s velocity is lowered; otherwise, the value

of the individual’s velocity is raised. Therefore, the location of the

virtual machines (VMs) that make up each particle is altered in

accordance with the modified values of the velocity.

Two virtual machines (VMs) with maximum velocity values are

switched within each particle in the newly created population. The

word “maximum” serves as a symbol for the GAPSO algorithm’s

termination criteria, which is the condition that must be met

before the method can be considered complete. When all of

the termination conditions have been satisfied, the scheduling

solution for the workflow application will be changed to the

one that was devised during the most recent iteration of the

process and will have the lowest fittness value among the

population. If this is not the case, the values of (gbest) and (pbest)

continue to iteratively change until the termination condition

is met.

Input:

- Workflow W {N, E}

- Set of resources {VM1, VM2, ..., VM}

- p: Population size

- n: Number of iterations

Output:

- gbest: The best solution to allocate W

over VM

Algorithm:

1. Initialize population by randomizing

p solutions.

2. For i = 0 to p:

2.1 Randomly initialize the population.

2.2 End loop.

3. Initialize a counter n_half = 0.

4. While n_half is less than n/2:

4.1 For each Chromosomej and Chromosomei in

population:

4.1.1 Apply tournament selection

to Chromosomej.

4.1.2 Apply tournament selection to

Chromosomei.

4.1.3 Apply crossover to generate

offspring_chromosomej.

4.1.4 Apply mutation to generate

Newchromosomej.

4.2 End inner loop.

5. While not Reach n:

5.1 Initialize particles’ position and

velocity randomly.

5.2 Calculate the gbest and Pbest values

for each

particle.

5.3 While not Reach n:

5.1.1 Update particle velocity matrix using

particlej’s velocity update.

5.1.2 Update particle position matrix using

particlej’s position update.

5.1.3 Repeat inner loop.

5.4 End outer loop.

6. Output the best solution gbest.

7. End algorithm.

Algorithm 8. The proposed algorithm.
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Repeat all steps until a termination criterion is met (e.g.,

maximum iterations). Return the best chromosome in the

population as the optimal task allocation solution.

Algorithm 8 provides a visual representation of the whole GA-

PSO method.

The above proposed algorithm can be mathematically

expressed as shown below:

Sets:

W = (N, E) : Workflow represented as a directed graph with

node set N and edge set E

VM= {VM1, VM2, ..., VMm} : Set of m virtual machines

Parameters:

p ε N : Population size, a positive integer

n ε N : Number of iterations, a positive integer

Variables:

X_i: Solution (chromosome) i, represented as a vector of task-

to-VM assignments

V_i: Velocity of particle i in PSO

gbest: Global best solution

Pbest_i: Personal best solution of particle i

Initialization:

X_i← random_initialization(W, VM) for i= 1 to p

n_half← 0

Genetic Algorithm Phase:

While n_half < n/2:

For each pair of chromosomes X_j, X_i← population:

P1, P2← tournament_selection(population)

offspring_X_j← crossover(P1, P2)

new_X_j←mutation(offspring_X_j)

n_half← n_half+ 1

Particle Swarm Optimization Phase:

X_i ← random_initialization(W, VM), V_i ←

random_vector() for i= 1 to p

TABLE 1 Experiment parameters.

Experiment Purpose Data input
parameters

Fog node
parameters

1 Heterogenous

task

[100,100,500] 55

2 Heterogenous

nodes

200 [15,15,75]

TABLE 2 Task characteristics.

Parameters Units Type1 values Type2 values

Length SI [1,182, 4,090] [5,232, 9,648]

TABLE 3 Fog node characteristics.

Parameters Units Fog node values

CPU length MIPS [500, 2,000]

Ram MB 4,000

Uplink bandwidth Mbps 10,000

Download bandwidth Mbps 10,000

Calculate gbest, Pbest_i for each particle

While n_half < n:

For each particle j:

V_j← update_velocity(V_j, Pbest_j, gbest)

X_j← update_position(X_j, V_j)

Recalculate gbest, Pbest_i if necessary

Output:

Return gbest

Encoding Algorithm:

The encoding scheme defines how tasks and resources are

represented in the chromosomes (solutions) used by the hybrid

GA-PSO algorithm. Here’s an approach:

• Chromosome structure: Each chromosome is an array of N

genes, where N is the number of tasks in the workflow.

• Gene representation: Each gene represents the assigned

resource for a specific task. This can be achieved via direct

TABLE 4 The result of experiment number one.

Algorithm No.
of task

Execution
time
(sec)

Response
time (sec)

Completion
time (sec)

Scenario one

GA-P 100 213.58 827.37 1,040.95

GA 319.75 1,567.14 1,886.89

PSO 165.81 1,397.24 1,563.05

PWOA 245.30 900.50 1,148.75

Scenario two

GA-P 200 430.92 3,432.93 3,863.84

GA 435.3 4,458.42 4,893.72

PSO 489.35 3,901.05 4,390.4

PWOA 500 4,000.2 4,500.2

Scenario Three

GA-P 300 653.75 8,052.06 8,705.81

GA 690.52 10,759.93 11,450.45

PSO 972.37 9,912 10,884.37

PWOA 750.01 9,000.15 9,750.16

Scenario Four

GA-P 400 877.62 14,320 15,197

GA 958.72 19,934.28 20,893.01

PSO 1,614.1 17,882.4 19,496.5

PWOA 1,100.62 15,000 16,100.62

Scenario Five

GA-P 500 1,098.88 22,516.54 23,615.42

GA 1,437.36 37,530.06 38,967.42

PSO 2,414.29 32,822.27 35,236.56

PWOA 1,300 22,700.05 24,000.05
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encoding in which the gene value directly corresponds to the

resource ID (VM1, VM2, etc.).

Decoding Algorithm:

The decoding algorithm interprets the encoded chromosomes

back into actual task allocations on fog nodes. Here’s the process:

- Iterate over each chromosome.

- For each gene i in the chromosome:

- Based on encoding scheme:

- Direct Encoding: Look up the resource ID from the gene

value (i).

-Assign the task i to the identified resource.

Sample Example:

WorkflowW: 4 tasks (T1, T2, T3, T4).

Fog Nodes: 3 nodes (VM1, VM2, VM3).

FIGURE 3

Comparison of Execution time (in second) of proposed Hybrid

algorithm with conventional GA, Hybrid PWOA and PSO with

di�erent number of data input (cameras).

FIGURE 4

Comparison of Response time (in second) of proposed Hybrid

algorithm with conventional GA, Hybrid PWOA and PSO with

di�erent number of data input (cameras).

Chromosome (Direct Encoding): (Chandra and Verma, 2023;

Fanelli et al., 2023; Mortaheb and Jankowski, 2023)

Decoding Process:

T1 is assigned to VM2 (gene value 2).

T2 is assigned to VM1 (gene value 1).

T3 is assigned to VM3 (gene value 3).

T4 is assigned to VM2 (gene value 2).

The effectiveness of the proposed GA-PSO method for task

scheduling in fog computing is confirmed by extensive tests

carried out utilizing the iFogSim simulator. The studies conducted

a performance comparison between GA-PSO and well-known

algorithms like as GA, PSO, and PWOA. This comparison was

carried out across multiple situations, including diverse data inputs

and fog node configurations. The primary findings validate the

feasibility of GA-PSO in several aspects:

Superior performance: GA-PSO shown superior performance

compared to all other algorithms in terms of minimizing execution

time, reaction time, and completion time for jobs. This shows its

efficacy in identifying the most effective work assignments inside

the fog environment.

Effectiveness with heterogeneity: GA-PSO demonstrated

exceptional performance even in situations where there was a wide

range of job complexity and various capabilities of fog nodes. This

illustrates its capacity to adapt to real-world circumstances when

resources and workloads are not always homogeneous.

Dynamic adaptation: the algorithm has an inherent

mechanism for dynamic adaptation, enabling it to modify its

behavior in response to changing variables in the fog environment,

including changes in workload, network availability, and resource

availability. This functional characteristic guarantees consistent

and efficient operation even under changing circumstances.

In summary, the experimental findings strongly support

the notion that the GA-PSO algorithm, as described, is both

theoretically robust and practically successful in real-world fog

computing environments. The exceptional performance, versatility,

FIGURE 5

Comparison of Completion time (in second) of proposed Hybrid

algorithm with conventional GA, Hybrid PWOA and PSO with

di�erent number of data input (cameras).
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and efficacy across many workloads establish its potential as a key

tool for task scheduling in fog computing applications.

4.10 Performance evaluation and results

In order to test the proposed algorithm, the ifogsim (Gen

and Lin, 2023a) simulator was used to implement the proposed

algorithm. In order to determine howwell the proposed hybrid GA-

PSO algorithm performs, two experiments have been conducted

and its obtained results have been compared with those of

other task scheduling algorithms already in use, such as the GA

proposed in Reddy et al. (2020), the PSO algorithm proposed in

Jabour and Al-Libawy (2021) and PWOA algorithm (Bansal and

Aggarwal, 2023). In order to assess the efficiency of the Hybrid

GA-PSO algorithm that was proposed, this action was taken. The

experimental parameters are clearly outlined in Table 1. For the first

experiment, we came up with five scenarios in which the number of

tasks was incremented by 100 in each scenario. The number of fog

nodes remained constant at 55 throughout the entire experiment,

and the obtained results are presented in Table 4. In the same

way, we came up with five scenarios for experiment number two,

with the number of fog nodes varying by 15 and the number of

tasks remaining constant at 200 throughout the entire experiment.

The outcomes are detailed in Table 5. These results are in depth

discussed in results and discussion section.

4.11 Simulation setup

In order to compare the proposed method to existing

algorithms regarding the scheduling issue of workflows, we

performed detailed tests on an efficient car parking real-world

workflow application using the simulation settings (Gupta et al.,

2017) listed in Tables 2, 3. The simulation parameters included

the number of data inputs and the characteristics of fog nodes.

In determining the attributes of the fog node and workflow

application employed in the study, these factors were considered.

We conceived of a scenario in which parking spaces are

captured on film by intelligent, high-definition cameras. The

images are subsequently transmitted to the fog node. The fog node

evaluates the state of the parking space by analyzing the images

TABLE 5 The result of experiments number two.

Algorithm No. of fog nodes Execution time (sec) Response time (sec) Completion time (sec)

Scenario One

GA- 15 439.33 3,476.44 3,915.77

GA 551.4 5,641.75 6,193.15

PSO 561.87 4,290.59 4,852.46

PWOA 517.53 4,469.59 4,987.12

Scenario Two

GA- 30 431.52 3,433.28 3,864.79

GA 666.23 6,844.88 7,511.11

PSO 530.23 4,111.6 4,641.83

PWOA 542.66 4,796.59 5,339.25

Scenario Three

GA- 45 429.69 3,386.39 3,816.08

GA 440.08 4,491.95 4,932.03

PSO 504.71 4,043.9 4,548.61

PWOA 458.16 3,974.08 4,432.24

Scenario Four

GA- 60 428.39 3,450.72 3,879.11

GA 480.67 4,911.53 5,392.2

PSO 484.24 3,981.56 4,465.8

PWOA 464.43 4,114.60 4,579.03

Scenario Five

GA- 75 427.57 3,403.79 3,831.36

GA 458.94 4,713.05 5,172

PSO 463.68 3,724.14 4,187.82

PWOA 450.06 3,946.99 4,397.05
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and presents visual representations of the parking space through

a Wi-Fi-enabled smart LED that is affixed to the fog node (Gupta

et al., 2017). Through the use of a proxy server, communication

is established between the fog nodes and the cloud server. We

established variables for parking spaces and the quantity of cameras

within the simulation. As part of our experimental setup, five

parking lots were established. Initially, between one hundred and

five hundred cameras were installed in each parking lot for the

purpose of capturing images of the parking area.

It is essential to note that a minimum of one fog node was

generated for each distinct region. Subsequently, the number

of fog nodes was expanded to facilitate the analysis of results

obtained from various configurations. By virtue of their intelligent

nature (equipped with WiFi capabilities) and microcontroller

connectivity, we successfully implemented the cameras within

the simulation environment and classified them as sensors in

accordance with the guidelines outlined in Sheikh et al. (2023). We

augmented the quantity of cameras in order to conduct an analysis

of the data collected across diverse configurations and to assess

the impacts on the fog node’s execution time, response time, and

completion time.

5 Results and discussion

5.1 Experiment one (number of tasks trade
o�)

In Table 4 we have presented the outcomes of hybrid GA-

PSO algorithm, GA algorithm, Hybrid PWOA algorithm, and

PSO algorithm in terms of execution time, response time, and

completion time when various data input are given. Figure 3

indicates the proposed hybrid algorithm results improved the

execution time by 85.68% when compared with GA algorithm, by

84% when compared with Hybrid PWOA and by 51.03% when

compared with PSO algorithm. Figure 4 indicates the hybrid GA-

PSO algorithm results improved the response time by 67.28%

FIGURE 6

Comparison of Execution time (in second) of proposed Hybrid

algorithm with conventional GA, Hybrid PWOA and PSO with

di�erent number of fog nodes.

when compared with GA algorithm, by 54.24% when compared

with Hybrid PWOA and by 75.40% when compared with PSO

algorithm. Figure 5 indicates the hybrid GA-PSO algorithm results

improved the completion time by 68.69% when compared with GA

algorithm, by 98.91% when compared with Hybrid PWOA and by

75.90% when compared with PSO algorithm.

Therefore, GA-PSO is the most efficient algorithm in terms of

execution time, response time and completion time, followed by

PSO, Hybrid PWOA, and GA is the least efficient algorithm.

5.2 Experiment two (fog node trade o�)

In Table 5 we have presented the outcomes of the proposed

hybrid algorithm, GA algorithm, Hybrid PWOA algorithm and

PSO algorithm in terms of execution time, response time and

completion time when various fog nodes are given. Figure 6

FIGURE 7

Comparison of Response time (in second) of proposed Hybrid

algorithm with conventional GA, Hybrid PWOA and PSO with

di�erent number of fog nodes.

FIGURE 8

Comparison of Response time (in second) of proposed Hybrid

algorithm with conventional GA, Hybrid PWOA and PSO with

di�erent number of fog nodes.
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indicates the proposed hybrid algorithm results improved the

execution time by 84.87% when compared with GA algorithm, by

88.64% when compared with Hybrid PWOA and by 85.07% when

compared with PSO algorithm. Figure 7 indicates the proposed

hybrid algorithm results improved the response time by 65.92%

when compared with GA algorithm, by 80.51% when compared

with Hybrid PWOA and by 85.26% when compared with PSO

algorithm. Figure 8 indicates the proposed hybrid algorithm results

improved the completion time by 67.60% when compared with GA

algorithm, by 81.34% when compared with Hybrid PWOA and by

85.23% when compared with PSO algorithm.

Therefore, GA-PSO is the most efficient algorithm in terms of

execution time, response time and completion time, followed by

PSO, Hybrid PWOA and GA is the least efficient algorithm.

6 Conclusion

In this study, both the problems of task scheduling in fog

computing environment and the solution to it are discussed

by proposing a multi objective hybrid GA-PSO optimization

algorithm. The experimental result shows that the proposed Hybrid

GA-PSO algorithm-based task allocation give optimal results when

compared with the GA, Hybrid PWOA and PSO algorithm in

terms of both heterogeneity of fog nodes and number of data

input respectively. Furthermore, the Hybrid GA-PSO technique

does not always get trapped in the locally optimal solution due

to GA’s exploration skills with PSO’s exploitation characteristics

which increases the accuracy of the solution. We conducted two

experiments and compare both algorithm outputs in terms of

execution, response and completion time. In experiment one we

fix the number of fog nodes and change number of data inputs

and compare the results. We found that as the number of data

input increases proposed Hybrid GA-PSO algorithm improves

the execution time, response time, and completion time when

compared with Hybrid PWOA, GA and PSO algorithm. In

experiment two this time we fix the number of data input and

change no of fog nodes in every scenario and compare the results.

We found that as the number of fog nodes increases proposed

Hybrid GA-PSO algorithm improves the execution time, response

time, and completion time when compared with Hybrid PWOA,

GA, and PSO algorithm. By combining the Genetic algorithm

and particle swarm optimization algorithm, the performance of

the multi objective task scheduling in fog computing environment

is improved. In future, researchers can push the boundaries of

hybrid optimization and develop even more powerful and versatile

algorithms for solving complex real-world problems. The issue

of uncertainty in allocating tasks to fog nodes must be resolved.

Enhancing security and privacy protocols to handle sensitive large

data in fog situations may need more refinement.
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