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Source-free domain adaptation
for semantic image segmentation
using internal representations

Serban Stan and Mohammad Rostami*

Department of Computer Science, University of Southern California, Los Angeles, CA, United States

Semantic segmentation models trained on annotated data fail to generalize well

when the input data distribution changes over extended time period, leading

to requiring re-training to maintain performance. Classic unsupervised domain

adaptation (UDA) attempts to address a similar problem when there is target

domain with no annotated data points through transferring knowledge from

a source domain with annotated data. We develop an online UDA algorithm

for semantic segmentation of images that improves model generalization on

unannotated domains in scenarios where source data access is restricted during

adaptation. We perform model adaptation by minimizing the distributional

distance between the source latent features and the target features in a

shared embedding space. Our solution promotes a shared domain-agnostic

latent feature space between the two domains, which allows for classifier

generalization on the target dataset. To alleviate the need of access to source

samples during adaptation, we approximate the source latent feature distribution

via an appropriate surrogate distribution, in this case a Gaussian mixture model

(GMM).

KEYWORDS

domain adaptation, Gaussian mixture model (GMM), optimal transport and Wasserstein

distances, sliced Wasserstein distance, image segmentation

1 Introduction

Recent progress in deep learning has led to developing semantic segmentation

algorithms that are being adopted in many real-world tasks. Autonomous driving (Zhang

et al., 2016; Feng et al., 2020), object tracking (Kalake et al., 2021), or aerial scene parsing

(Sun et al., 2021) are just a few examples of these applications. Deep neural networks

(DNNs) have proven indispensable for reaching above human performance in semantic

segmentation tasks, given the ability of large networks to approximate complex decision

functions (He et al., 2015). Training such networks, however, requires access to large

continuously annotated datasets. Given that in semantic segmentation each image pixel

requires a label, generating new labeled data for semantic segmentation tasks requires

significant more overhead compared to regular classification problems.

Domain adaptation (DA) is a sub-field of AI which aims to allow model generalization

for input distributions different from those observed in the training dataset (Wang and

Deng, 2018). Unsupervised domain adaptation (UDA) addresses this problem for instances

where the deployment dataset lacks label information (Wilson and Cook, 2020). This

set of approaches is of especial interest for semantic segmentation tasks, where data

annotation is expensive and time-consuming. InUDA, amodel trained on a fully annotated
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source domain needs to generalize on an unannotated target domain

with a different data distribution. A primary approach for achieving

domain generalization is learning a shared embedding feature space

between the source and target in which the domains become

similar. If domain-agnostic features are learnt, a semantic classifier

trained on source data will maintain predictive power on target

data. While this high level approach is shared among various UDA

frameworks, different methods have been proposed for achieving

this goal.

A common line of research achieves domain alignment by the

use of adversarial learning (Goodfellow et al., 2020). A feature

extractor produces latent feature embeddings for the source and

target domains, while a domain discriminator is tasked with

differentiating the origin domain of the features. These two

networks are trained adversarially, process which leads the feature

extractor to learn a domain invariant feature representation upon

training completion. There is a large body of UDA work following

this methodology (Hoffman et al., 2016, 2018a; Chen et al., 2018a;

Hong et al., 2018; Benjdira et al., 2019). A different set of approaches

attempts direct distribution alignment between the source and

target domains. Distribution alignment can then be achieved by

minimizing an appropriate distributional distance metric (Zhang

et al., 2017, 2019; Wu et al., 2018; Gabourie et al., 2019; Lee et al.,

2019; Yang and Soatto, 2020), such as l2-distance, KL divergence, or

Wasserstein Distance.

While both types of approaches are able to obtain state-of-

the-art (SOTA) results on UDA semantic segmentation tasks, most

methods assume simultaneous access to both source and target data

samples. This benefits model stability during adaptation as source

domain access ensures a gradual shift of the decision function.

However, in real-world settings, there are many situations where

concomitant access to both domains cannot be achieved. For

instance, datasets may need to be stored on different servers due to

latency constraints (Xia et al., 2021) or data privacy requirements

(Li et al., 2020b). To adhere to these settings, UDA has been

extended to situations where the source domain data are no longer

accessible during adaptation. This class of methods is named

source-free adaptation and provides a balance between accuracy

and privacy (Kim et al., 2021; Kundu et al., 2021b). Compared

to regular UDA, source-free UDA is less explored. Our approach

addresses source-free adaptation, making it a suitable algorithm for

scenarios where data privacy is an issue. Moreover, our proposed

method is based on common DNN architectures for semantic

segmentation and requires little parameter fine-tuning compared

to adversarial approaches.

Contributions: We propose a novel algorithm that performs

source-free UDA for semantic segmentation tasks. Our approach

eliminates the need for access to source data during the adaptation

phase, by approximating the source domain via a internal

intermediate distribution. During adaptation, our method aligns

the target and intermediate domain via a suitable distance

metric to ensure classifier generalization on target features.

We demonstrate the performance of our method on two

benchmark semantic segmentation tasks, GTA5→CITYSCAPES

and SYNTHIA→CITYSCAPES, where the source datasets are

composed of computer generated images, and the target datasets

are real-world segmented images. We offer theoretical justification

for our algorithms’ performance, proving our approach minimizes

target error under our adaptation framework. We evaluate our

approach on well-established semantic segmentation datasets and

demonstrate it compares favorably against state-of-the-art (SOTA)

UDA semantic segmentation methods [partial results of this study

were presented in the AAAI Conference (Stan and Rostami, 2021)].

2 Related work

We provide an overview of semantic segmentation algorithms,

as well as describe recent UDA and source-free UDA approaches

for this setting.

2.1 Semantic segmentation

Compared to image classification problems, semantic

segmentation tasks are more complicated because we require each

pixel of an image to receive a label, which is part of a set of semantic

categories. As each image dimension may have thousands of pixels,

semantic segmentation models require powerful encoder/decoder

architectures capable of synthesizing large amounts of image

data and encode the spatial relationships between the pixels well.

Recent SOTA results for supervised semantic segmentation have

thus been obtained by the use deep neural networks (DNNs),

and in particular convolutional neural networks (CNNs) (LeCun

and Bengio, 1995), which are specialized for image segmentation.

While different architecture variants exist (Long et al., 2015; Chen

et al., 2018b; Tao et al., 2020; Wang et al., 2020), approaches often

rely on embedding images into a latent feature space via a CNN

feature extractor, followed by an up-sampling decoder which

scales the latent space back to the original input space, where a

classifier is trained to offer pixel-wise predictions. The idea is if the

extracted features can reconstruct the input image with a relatively

high accuracy, then they carry an information content similar

to the input distribution, yet in a lower dimensional space. Skip

connections between different levels of the network (Ronneberger

et al., 2015; Lin et al., 2017), using dilated convolutions (Chen

et al., 2017a) or using transformer networks as feature extractors

instead of CNNs (Strudel et al., 2021) have been shown to improve

supervised baselines.

While improvements in supervised segmentation are mostly

tied to architecture choice and parameter fine-tuning, model

generalization suffers when changes in the input distribution are

made. This phenomenon is commonly referred to as domain shift

(Sankaranarayanan et al., 2018). Changes in the input distortion

translate into shifted extracted features that do not match the

internal distribution learned by the DNN. This issue is common

in application domains where the same model needs to account

for multi-modal data, and the training set lacks a certain mode,

e.g., daylight and night-time images (Romera et al., 2019), clear

weather and foggy weather (Sakaridis et al., 2018), and medical

data obtained from different imaging devices and scanners (Guan

and Liu, 2021). Such differences in input data distributions between

source and target domains greatly impact the generalization power

of learnt models. When domain shift is present, source-only

training may be at least three-fold inferior compared to training

the same model on the target dataset (Hoffman et al., 2016, 2018a;
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Lee et al., 2019). While it is possible to retrain the model to account

for distribution shifts, we will require to annotate data again which

can be time-consuming and expensive in semantic segmentation

tasks. Because label information is expensive to obtain, adding a

cost to using such techniques, especially on new datasets. Weakly

supervised approaches explore the possibility of having access to

limited label information after domain shift to reduce the data

annotation requirement (Hung et al., 2018; Wei et al., 2018; Wang

et al., 2019). However, data annotation is still necessary.

On the other hand, due to the limited label availability for

semantic segmentation tasks, the use of synthetic images and labels

has become an attractive alternative for training segmentation

models even if domain shift is not a primary concern. The idea

is to prepare a synthetic source dataset which can be annotated

automatically. Semantic labels are easy to generate for virtual

images, and a model trained on such images could then be used

on real-world data as a starting point. Overcoming domain shift

becomes the primary bottleneck for successfully applying such

models to new domains.

2.2 Unsupervised domain adaptation

Unsupervised domain adaptation (UDA) addresses model

generalization in scenarios where target data label information is

unavailable but there a source domain with annotated data that

shares the same labels with the target domain problem. UDA

techniques primarily employ a shared feature embedding space

between the source and target domain in which the distributions of

both domains are aligned. A majority of these methods achieve this

goal by either using domain discriminators based on adversarial

learning or direct source-target feature alignment based on metric

minimization.

2.2.1 Adversarial adaptation for UDA
Techniques based on adversarial learning employ the idea

of domain discriminator, used in GANs (Goodfellow et al.,

2014), to produce a shared source/target embedding space. A

discriminator is tasked with differentiating whether two image

encodings originate from the same domain, or one is from the

source and one is from the target. A feature encoder aims to fool the

discriminator, thus producing source/target latent features more

and more similar in nature as training progressed. Over the course

of training, this leads the feature extractor producing a shared

embedding space for the source and target data.

In the context of UDA for semantic segmentation, Luc et al.

(2016) employ an image segmentation model and adversarially

train a semantic map generator, which uses a label map

discriminator to penalize the segmentation network for producing

label maps more similar to the generated ones rather than the

source ones. Murez et al. (2017) use an intermediate feature

distribution that attempts to capture domain-agnostic features

of both source and target datasets. To improve the domain-

agnostic representation, a discriminator is trained to differentiate

whether an encoded image is part of the source or target domain.

The encoder networks are then adversarially trained to fool the

discriminator, resulting in similar embeddings between source and

target samples. Bousmalis et al. (2017) develop a model for pixel-

level domain adaptation by creating a pseudo-dataset by making

source samples appear as though they are extracted from the target

domain. They use generative model to adapt source samples to the

style of target samples, and a domain discriminator to differentiate

between real and fake target data. Hoffman et al. (2018b) employ

the cycle consistency loss proposed in Zhu et al. (2017) to improve

the adversarial network adaptation performance. In addition to

this, Hoffman et al. (2018b) use GANs to stylistically transfer

images between source and target domains, and use a consistency

loss to ensure network predictions on the source image will be

the same as in the stylistically shifted variant. Saito et al. (2018)

use an approach based on a discriminator network without using

GANs to attempt to mimic source or target data distributions. They

propose the following adversarial learning process on a feature

encoder network with two classification heads: (1) they first keep

the feature encoder fixed and optimize the classifiers to have their

outputs as different as possible, (2) they freeze the classifiers and

optimize the feature encoder such that both classifiers will have

close outputs. Sankaranarayanan et al. (2018) employ an image

translation network that is tasked with translating input images

into the target domain feature space. A discriminator is tasked with

differentiating source images from target images passed through

the network, and a similar procedure is done for target images.

A pixel-level cross entropy loss ensures the network is able to

perform semantic segmentation. Lee et al. (2019) use a similar

idea to Saito et al. (2018) in that a network with two classifiers

is used for adaptation. The feature extractor and classification

heads are trained in an alternating fashion. The study of Lee

et al. (2019) differentiates itself by employing an approximation of

optimal transport to compute these discrepancy metrics, leading to

improved performance over (Saito et al., 2018).

2.2.2 Adaptation by distribution alignment
Adaptation methods using direct distribution alignment share

the same goal as adversarial methods. However, distribution

alignment is reached by directly minimizing an appropriate

distributional distance metric between the source and target

embedding feature distributions.

Wu et al. (2018) propose an image translation network that

takes as input source and target images, and outputs source images

in the style of the target domain. Their proposed architecture

does not use adversarial training, rather is based on the idea

that in order for stylistic transfer to be achieved, domain mean

and variance should be similar at different levels of abstraction

throughout the translation network. They achieve this goal by

minimizing ℓ2-distance in the feature space at various levels of

abstraction. Zhang et al. (2017) develop a method for semantic

segmentation adaptation by observing that a source trained model

should produce the same data statistics on the target domain as

present in the annotated source distribution. Examples include

label distribution or pixels of a certain class clustering around

specific regions in an image. Pseudo-labeling is used to estimate

these statistics. To enforce similarity in the output of a source-

trained model to the estimated target statistics, KL divergence is
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used as a minimization metric. Zhang et al. (2019) employ an

adaptation framework based on the idea that source and target

latent features should cluster together in similar ways. They use a

pseudo-labeling approach to produce initial target labels, followed

by minimizing the distance between class specific latent feature

centroids between source and target domains. The minimization

metric of choice is ℓ2-distance. For improved performance, they use

category anchors to align the adaptation process. Gabourie et al.

(2019) propose an adaptation method based on a shared network

encoder between source and target domains. Their model is trained

by minimizing cross entropy loss for the source samples and is

tasked with minimizing the distance between source and target

embeddings in the latent feature space. To achieve this goal, Sliced

Wasserstein Distance is minimized between the source and target

embeddings, leading to improved classifier performance on target

samples.

The expectation that continuous access to source data is

guaranteed when performing UDA is not always true, especially

in the case of privacy sensitive domains. This setting of UDA

has been previously explored by methods that do not employ

DNNs (Dredze and Crammer, 2008; Jain and Learned-Miller, 2011;

Wu, 2016) and has recently become the focus of DNN based

algorithms for image classification tasks (Saltori et al., 2020; Kim

et al., 2021; Kundu et al., 2021b; Yang et al., 2021). Source-free

semantic segmentation has been explored relatively less compared

to joint UDA adaptation approach. Kundu et al. (2021a) employ

source domain generalization and target pseudo-labeling in the

adaptation method. Liu et al. (2021) rely on self supervision and

patch level optimization for adaptation. You et al. (2021) allow

models trained on synthetic data to generalize on real data by a

mixture of positive and negative class inference.

Our adaptation approach shares the idea of direct distribution

alignment. As described previously, several choices for latent

feature alignment have been previously explored, such as l2-

distance (Wu et al., 2018), KL divergence (Zhang et al., 2017), or

Wasserstein Distance (WD) (Gabourie et al., 2019; Lee et al., 2019).

WD has been proven to leverage the geometry of the embedding

space better than other distance metrics (Tolstikhin et al., 2017).

Empirically, the behavior of using the Wasserstein metric has been

observed to benefit the robustness of training deep models, such

as in the case of the Wasserstein GAN (Arjovsky et al., 2017), or

by improving the relevance of discrepancy measures, as reported

by (Lee et al., 2019). One of the limitations of using the WD

is the difficulty of optimizing this quantity, as computing the

WD distance requires solving a linear program. Therefore, we

employ an approximation of this metric, the Sliced Wasserstein

Distance (SWD), which maintains the nice metric properties of

the WD while allowing for an end-to-end differentiation in the

optimization process.

We base our source-free UDA approach on estimating the

latent source embeddings via an internal distribution (Rostami,

2019). This approximation relies on the concept that a supervised

model trained on K classes will produce a K modal distribution in

its latent space. This property of the internal distribution allows us

to perform adaptation without direct access to source samples. The

idea is to approximate the internal distribution and then sample

from the K modal distributional approximation to use them as

a surrogate for the source domain distribution. The distribution

approximation introduces a small number of parameters into our

model. Once we produce a pseudo-dataset from sampling the

internal distribution, we align the target feature encodings by

minimizing the SWD between the two data distributions. Our

theoretical bounds demonstrate our approach leads to minimizing

an upperbound for the target domain error.

3 Problem formulation

Let PS be the data distribution corresponding to a source

domain, and PT be similarly the data distribution corresponding

to a target domain, with PS being potentially different from PT .

We consider a set of multi-channel images XS is randomly sampled

from PS with corresponding pixel-wise semantic labels YS. Let XT

be a set of images sampled from PT , where we do not have access

to the corresponding labels YT . We consider that both XS and XT

are represented as images with real pixel values in R
W×H×C, where

W is the image width, H is the image height, and C is the number

of channels. The labels YS,YT share the same input space of label

maps in R
W×H which makes the two domain relevant.

Our goal is to learn the parameters θ of a semantic

segmentation model φθ (·) :R
W×H×C → R

W×H capable of

accurately predicting pixel-level labels for images sampled from

the target distribution PT . We can formulate this problem

as a supervised learning problem, where our goal is to

minimize the target domain empirical risk, achieved by θ∗ =

argminθ {Ext∼PT (Xt)(L(fθ (x
t), yt)}, where xt ∈ XT , y

t ∈ YT . The

difficulty of the above optimization stems from the lack of access

to the label set YT . To overcome this challenge, we instead are

provided access to the labeled source domain (XS,YS), and then

sequentially the target domain XT . Many UDA algorithms consider

that both domains are accessible simultaneously but the source-

free nature of our problem requires that once the target images XT

become available, access to source domain information becomes

unavailable. This assumption is a practical assumption because

domain shift is often a temporal problem that arises after the initial

training phase.

To achieve training a generalizablemodel for the target domain,

we need to first train a model on the provided source dataset and

then adapted to generalize well on the target domain. Let N be the

size of the source dataset XS, and let (x
s
i , y

s
i ) be the image/label pairs

from XS,YS. Consider K to be the number of semantic classes and

1a(b) denote the indicator function determining whether a and b

are equal. Then, we learn the parameters that minimize empirical

risk on the source domain by optimizing the standard cross entropy

loss on the labeled dataset:

θ̂ = argmin
θ

{
1

N

N
∑

i=1

Lce(φθ (x
s
i ), y

s
i )}

Lce(p, y) = −
1

WH

W
∑

w=1

H
∑

h=1

K
∑

k=1

1ywh (k) log(pwh),

(1)

The optimization setup in Equation 1 ensures model

generalization on inputs sampled from PS . In cases where

PT differs from PS , the model will not generalize on the target
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domain, due to domain shift. To account for domain shift, we need

to map data points from both domains into an invariant feature

space between the two domains, without joint access to XS and XT .

To this end, let f (·), g(·), h(·) be three parameterized sub-networks

such that φ = f ◦ g ◦ h. In this composition, f :RW×H×C → R
L

is an encoder sub-network, g :RL → R
W×H is an up-scaling

decoder, and R
W×H → R

W×H is a semantic classifier, where L

represents the dimension of the latent network embedding. To

create a shared source-target embedding space, our goal is that the

network (f ◦ g)(·) embeds source and target samples in a shared

domain-agnostic embedding space. Under this condition, the

classifier h(·) trained on source domain samples will be able to

generalize on target inputs.

We can make the shared embedding space domain-agnostic by

direct distribution alignment between the embeddings of the two

domains at the decoder output. As previously explored in literature

(Gabourie et al., 2019), a suitable distributional distance metric

D(·, ·) can be minimized between the source and target domain

data points at the network (f ◦ g)(·) output. However, because

the source domains are inaccessible during model adaptation,

we cannot compute the distribution distance between the two

domains. Hence, directly minimizingD(f ◦ g(XS), f ◦ g(XT)) is not

feasible. We need to develop a solution that relaxes the need for

access to the source domain samples during adaptation for domain

adaptation. Our core idea is to benefit from another distribution

that can be served as a surrogate for the source domain distribution.

We describe our source domain approximation approach and the

choice forD(·, ·) in the next section.

4 Proposed algorithm

We visually describe our method in Figure 1. The first step of

our approach is to fully train a segmentation model on the labeled

source domain. As training progresses on the source domain, the

latent feature space will begin to cluster into K clusters, where each

of the clusters encode one of the semantic classes. If we use the

output of the softmax layer as our embedding space, the softmax

classifier will be able to learn a linear decision function based on the

decoder output which leads to high label accuracy at the end of this

pre-training stage. After the source-training stage, we approximate

the source distribution via a learnt internal distribution.We use this

as a surrogate for f ◦ g(XS) during adaptation.

As linear separation in the latent space is reached, we can

produce an approximation of the source domain distribution in

the embedding space and thus relax the need for having access

to the source samples during adaptation. We are interested in

learning aK-modal approximation to the latent feature distribution

at the decoder output, f ◦ g(PS ). Let pk, 1 ≤ k ≤ K represent

the component of f ◦ g(PS ) corresponding to class k. This

characteristic means that we should use a multi-modal distribution

for approximating the data distribution in the embedding space.

A multi-modal distribution possess distinct “modes,” signifying the

difference between these modes. These modes represent the most

frequently occurring values in the data set. Each mode a local

maximum in the distribution. The presence of multiple modes

indicates that the data has more than one central tendency or

characteristic value. As a result, these distributions can be used to

approximate the distribution of the data when we have separable

classes that are distinct and different from each other in a feature

space.

For approximation purposes, we will a Gaussian mixture

model (GMM), with each semantic class approximated by T high

Gaussians components, i.e, the GMM would have kT components

in total. Our choice for this approximation method stems from the

result by Goodfellow et al. (2016) that concludes with sufficient

Gaussians, any distribution can be approximated to vanishing

error. While the GMM model is traditionally learned in an

unsupervised fashion, we can leverage our knowledge of the source

labels to partially supervise the process. As we have access to the

source domain labeled data, we can directly identify which latent

feature vectors correspond to each of the K classes. Once the latent

feature vectors are pooled for each class, a T component GMM

is learned using expectation maximization. During the learning

process, we attempt to avoid inclusion of outlier elements in the

GMMs, which may lead to decreased class separability in the

latent space. This is a detrimental outcome for us as an increased

separability improves the performance of the classification layer.

We thus only consider data samples which have high associated

classifier confidence. Let τ be this confidence threshold, and let

Sk = {ui,j|∃(x
s, ys), f ◦ g(xs)i,j = ui,j, y

s
i,j = k, f ◦ g ◦ h(xs)i,j,k > τ } be

the set of source embedding feature vectors at the decoder output

which have label k and on which the classifier assigns to kmore than

τ probability mass. Then, we use expectationmaximization to learn

αk,t ,µk,t ,6k,t , 1 ≤ t ≤ T as the parameters of the T components

approximating class k. Thus, for each semantic class k, we model

the latent feature distribution pk as Equation (2):

pk(z) =

T
∑

t=1

αk,tN (z|µk,t ,6k,t) (2)

Learning a GMM approximation for each semantic class k

alleviates the need for source domain access during adaptation.

Once adaptation stage starts, the source domain becomes

unavailable, however, we use the learnt GMM approximation

distribution as a surrogate. We achieve classifier generalization

on the target domain by minimizing a distributional distance

metric between then GMM approximation and the target latent

embeddings. For this purpose, consider the dataset Z = (XZ ,YZ)

produced by sampling from the GMM distribution, with Nz =

|Z|. Let (xzi , y
z
i ) be embedding/label pairs from this dataset.

We achieve distribution alignment by empirically minimizing an

appropriate distributional distance metricD between samples from

Z and from the target embeddings. In addition to distribution

alignment, we need to account for shifts in the classifier input

space between the internal distribution and the original source

embedding distribution. We account for such shifts by fine tuning

the classifier on labeled GMM samples. Our adaptation loss can be

formalized as:

Ladapt = Lce(h(XZ),YZ)+ λLD(f ◦ g(XT),XZ) (3)

for an appropriate choice of regularizer λ.

The first loss term in Equation (3) is the cross entropy classifier

fine-tuning loss obtained for the GMM samples across the whole
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FIGURE 1

Diagram of the proposed model adaptation approach (best seen in color): (a) initial model training using the source domain labeled data, (b)

estimating the internal distribution as a GMM distribution in the embedding space, (c) domain alignment is enforced by minimizing the distance

between the internal distribution samples and the target unlabeled samples, (d) domain adaptation is enforced for the classifier module to fit

correspondingly to the GMM distribution.

sampling dataset, i.e. Equation (4),

Lce(h(XZ),YZ) = −
1

Nz

Nz
∑

i=1

1

WH

W
∑

w=1

H
∑

h=1

K
∑

k=1

1yz
i,wh

(k) log(h(xzi )wh)

(4)

where (xzi , y
z
i ) are the i’th GMM data point in the sampling

datasetZ . This loss terms helps maintaining model generalizability

as we perform distribution alignment.

The second loss term in Equation (3), LD, represents the

distributional distance metric between the GMM in the latent

space and the target domain data embedding vectors. We choose

the Sliced Wasserstein Distance (SWD) as our choice for the

distributional distance metric D. In the context of domain

adaptation, several distribution alignment metrics have been

previously used. Wu et al. (2018) propose an approach where the

feature space between source and target images is made similar

by directly minimizing the ℓ2-distance between feature vectors. KL

divergence has been used in domain adaptation (Yu et al., 2021)

to detect noisy samples or target samples from private classes.

Wasserstein Distance (WD) has been explored as a distributional

distance metric (Gabourie et al., 2019) by directly minimizing the

metric on the output feature space for a source and target encoder.

While study of appropriate distributional distance metrics is still

ongoing, the WD aims to find the optimal way of moving mass

between two distributions and thus is tied to the geometry of the

data. This has lead to the WD offering improved stability when

used in a number of deep learning and domain adaptation tasks

(Solomon et al., 2015; Kolouri et al., 2016; Arjovsky et al., 2017;

Bhushan Damodaran et al., 2018; Rostami et al., 2019; Li et al.,

2020a; Xu et al., 2020; Rostami andGalstyan, 2023). TheWDmetric

(Kolouri et al., 2019) between two distributions P and Q is defined

as Equation (5):

Wd(P,Q) = ( inf
L∈L(P,Q)

∫

‖x− y‖ddL(x, y))
1
d (5)

where L(P,Q) represents all transportation plans between P

and Q, i.e., all joint distributions with marginals P and Q. The

WD metric offers a closed-form solution only when P and Q are

one-dimensional distributions (Kolouri et al., 2019). For higher

dimensions, we need to solve a linear program. While employing

the WD has desirable properties, solving a linear program at every

optimization step can lead to significant computational costs in

the adaptation phase of UDA. To alleviate this issue, we employ

the SWD, an alternative for the WD that is fully differentiable,

yet has a closed-form formula. Computing the SWD between to

high dimensional distributions involves repeatedly projecting them

along randomon dimensional projection directions, obtaining one-

dimensional marginals for which computation of the WD which

has a closed-form solution. This process allows for an end-to-

end differentiation via gradient based methods, such as Stochastic

Gradient Descent (Bottou et al., 2018). Averaging one-dimensional

WD over sufficient random projection directions will produce a

closed-form approximation to the high dimensional WD objective.

We can use the distributional distance term in Equation (3) for two

distributions p, q as follows using Equation (6):

LD(p, q) = SWDd(p, q) =
1

J
(

J
∑

i=1

‖γip− γiq‖
d)

1
d (6)
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1: Initial training:

2: Input: source domain dataset DS = (XS ,YS ),

3: Training on source domain:

4: θ̂0 = (ŵ0, v̂0û0) = argminθ

∑

i L(fθ (x
s
i ), y

s
i )

5: Internal distribution estimation:

6: Estimate the GMM parameters

7: Model adaptation:

8: Input: target dataset DT = (XT )

9: Pseudo-dataset generation:

10: DP = (ZP ,YP ) =

11: ([z
p
1 , . . . , z

p
N ], [y

p
1 , . . . , y

p
N ]), where:

12: z
p
i ∼ p̂J (z), 1 ≤ i ≤ Np

13: y
p
i = argmaxj{hŵ0

(z
p
i )}, pip > τ

14: for itr = 1, . . . , ITR do

15: draw random batches from DT and DP

16: Update the model by solving Equation (3)

17: end for

Algorithm 1. MAS3 (λ, τ)

where SWDd represents the d order SWD, J represents the

number of random projection to be averaged, and γi is one of

the J random projections. In our approach, we will choose SWD2

due to ease of computation and comparable performance to higher

order choices of d. Pseudocode for our approach, named Model

Adaptation for Source-Free Semantic Segmentation (MAS3) is

provided in Algorithm 1.

5 Theoretical analysis

We prove Algorithm 1 can lead to improving the model

generalization on the target domain by minimizing an upperbound

for the empirical risk of the model on the target domain. For such a

result, we need to tie model generalization on the source domain to

the distributional distance between the source and target domains.

For this purpose, we use the framework developed by Redko et al.

(2017) designed for upper bounding target risk with respect to the

distance between the source and target domains in the classic joint

UDA process. We rely on the following Theorem 2 from Redko

et al. (2017) in our approach:

Theorem 1. (Redko et al., 2017) For the variables defined under

Theorem 2, the following distribution alignment inequality loss holds:

ǫT ≤ǫS +W(µ̂S, µ̂T)+

√

(

2 log(
1

ξ
)/ζ

)(

√

1

Ns
+

√

1

Nt

)

+ eC(h
∗)

(7)

The above relation characterizes target error after source

training and does not consider our specific scenario of using an

intermediate distribution. We adapt this bound for Algorithm 1 to

derive the following theorem:

Theorem 2. Consider the space of all possible hypotheses H

applicable to the proposed segmentation task. Let ǫS(h), ǫT(h)

represent the expected source and target risk for hypothesis h,

respectively. Let µ̂S, µ̂Z , µ̂T be the empirical mean of the embedding

space for the source, intermediate and target datasets respectively.

Let W(·, ·) represented the Wasserstein distance, and let ξ , ζ be

appropriately defined constants. Consider eC(h) to be the combined

error of a hypothesis h on both the source and target domains, i.e.,

ǫS(h)+ǫT(h), and let h
∗ be the minimizer for this function. Then, for

a model h, the following results holds:

ǫT(h) ≤ ǫS(h)+W(µ̂S, µ̂Z)+W(µ̂Z , µ̂T)

+

√

(

2 log(
1

ξ
)/ζ

)(

√

1

Ns
+

√

1

Nt

)

+ eC(h
∗)

(8)

Proof: We expand the second term of Equation (7). Given

W(·, ·) is a convex optimization problem, we can use the triangle

inequality as follows:

W(µ̂S, µ̂T) ≤ W(µ̂S, µ̂Z)+W(µ̂Z + µ̂T) (9)

Combining Equations (8, 7) leads to the result in Theorem 2.

The above results provides a justification Algorithm 1 is able to

minimize the right hand side of the Equation (8). The first term is

minimized during the initial training phase on the source domain.

Note that, as expected, the performance on the target domain

cannot be better than the performance on the source domain. We

conclude that the model we select should be a good model to learn

the source domain. The second term represents the WD distance

between the source and sampling dataset. This distance will be

small if the GMM approximation of the source domain will be

successful. As we explained before, if select a large enough T, we

can make this term negligible. The third term is the WD distance

e between the sampling dataset and the target domain dataset.

This term is directly minimized by the adaptation loss that we use

to align the distribution. The term 1 − τ is a constant directly

dependent on the confidence threshold τ , which we choose close

to 1. The fourth term is directly dependent on the dataset size and

becomes small when a large number of samples is present. Finally,

the last term is a constant indicating the difficulty of the adaptation

problem.

6 Experimental validation

We validate the proposed algorithm using common UDA

benchmarks for semantic segmentation. Our implementation code

is available as a supplement at https://github.com/serbanstan/

mas3-continual.

6.1 Experimental setup

6.1.1 Datasets
We follow the UDA literature to evaluate our approach. We

consider three common datasets used in semantic segmentation

literature: GTA5 (Richter et al., 2016), SYNTHIA (Ros et al., 2016),
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and Cityscapes (Cordts et al., 2016). Both GTA5 and SYNTHIA

are datasets consisting of artificially generated street images, with

24,966 and 9,400 instances, respectively. Cityscapes is composed of

real-world images recorded in several European cities, consisting

of 2,957 training images and 500 test images. We can see that the

diversity of sizes of these datasets which demonstrates the challenge

of data annotation for semantic segmentation tasks. For all three

datasets, images are processed and resized to a standard shape of

512× 1, 024.

Following the literature, we consider two adaptation tasks

designed to evaluate model adaptation performance when the

training set consists of artificial images, and the test set consists

of real-world images. For both SYNTHIA→Cityscapes and

GTA5→Cityscapes, we evaluate performance under two scenarios,

when 13 or 19 semantic classes are available.

6.1.2 Implementation and training details
We use a DeepLabV3 architecture (Chen et al., 2017a) with a

VGG16 encoder (Simonyan and Zisserman, 2014) for our CNN

architecture. The decoder is followed by a 1 × 1 convolution

softmax classifier. We choose a batch size of 4 images for training

and use the Adam optimizer with learning rate of 1e − 4 for

gradient propagation. For adaptation, we keep the same optimizer

parameters as for training. We choose 100 projections in our SWD

computation and set the regularization parameter λ to 0.5. We

perform training for 100k iterations on the source domain and then

fpr adaptation we perform 50k iterations.

When approximating the GMM components, we chose the

confidence parameter τ to be 0.95. We observe higher values of τ

to be correlated with increased performance, as expected from our

theorem, and conclude that a τ setting above 0.9 will lead to similar

target performance.

We run our experiments on a NVIDIA Titan XP GPU. Given

that our method relies on distributional alignment, the label

distribution between target batches may vary significantly between

different batches. As the batch distribution approaches the target

label distribution as the batch size increases, we use the oracle label

distribution per batch when sampling from the GMM, which can be

avoided if sufficient GPU memory becomes present. Experimental

code is provided with the current submission.

6.1.3 Baselines for comparison
Source-free model adaptation algorithms for semantic

segmentation have been only recently explored. Thus, due to most

UDA algorithms being designed for joint training, in addition

to source-free approaches we also include both pioneer and

recent UDA image segmentation method to be representative of

the literature. We have compared our performance against the

adversarial learning-based UDA methods: GIO-Ada (Chen et al.,

2019), ADVENT (Vu et al., 2019), AdaSegNet (Tsai et al., 2018),

TGCF-DA + SE (Choi et al., 2019), PCEDA (Yang et al., 2020),

and CyCADA (Hoffman et al., 2018b). We have also included

methods that are based on direct distributional matching which are

more similar to MAS3: FCNs in the Wild (Hoffman et al., 2016),

CDA (Zhang et al., 2017), DCAN (Wu et al., 2018), SWD (Lee

et al., 2019), and Cross-City (Chen et al., 2017b). Source-free

methods include GenAdapt (Kundu et al., 2021a) and SFDA (Liu

et al., 2021). We also added a joint UDA version of our method,

named MAS3-Joint, in which we used SWD to directly align the

distributions. This baseline offers the performance of our algorithm

when the source domain samples are directly accessible.

6.2 Comparison results

6.2.1 SYNTHIA→cityscapes task
We provide quantitative and qualitative results for this

task in Table 1. We report the performance our method

produces on the SYNTHIA→CITYSCAPES adaptation task

along with other baselines. Notably, even when confronted

with a more challenging learning setting, MAS3 demonstrates

superior performance compared to the majority of classic

UDA methods that have access to the source domain data

during model adaptation. It is essential to highlight that some

recently developed UDA methods leveraging adversarial learning

surpass our approach in performance; however, it is worth

noting that these methods often incorporate an additional

form of regularization, aside from probability matching and

are unable to address UDA when the source domain data

is missing.

In an overarching evaluation, MAS3 exhibits commendable

performance, particularly when compared to UDA methods

that rely on source samples. Furthermore, our method excels

in specific crucial categories, such as the accurate detection

of traffic lights, where it outperforms its counterparts. These

results underscore the robustness and effectiveness of MAS3 in

handling challenging learning scenarios and achieving notable

performance, especially in key object categories. We conclude that

MAS3 can be used to address classic UDA setting reasonably

well. Interestingly, we observe that MAS3 does not lead to a

good performance. This poor performance can be attributed

to the fact that when we use GMM samples, we have far

more samples than the original distribution for aligning the

two distributions.

6.3 GTA5→cityscapes task

We present the quantitative outcomes for this particular

task, detailed in Table 2. It is noteworthy that we observe

a more competitive performance in this task, and yet the

overall trend in the performance comparison remains similar to

Table 1. These findings highlight the versatility of our proposed

method, MAS3. While our primary motivation lies in achieving

source-free model adaptation, these results indicate that MAS3

can effectively function as a joint-training UDA algorithm.

We conclude our method manages to achieve state-of-the-art

performance even in a setting involving a larger number of

semantic classes. This capability underscores the robustness and

adaptability of MAS3 in diverse scenarios, making it a versatile

solution that goes beyond its original focus on source-free

model adaptation.
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TABLE 1 Model adaptation comparison results for the SYNTHIA→Cityscapes task.

Method Adv. Road sdwlk bldng Light Sign vgttn Sky Person Rider Car Bus mcycl bcycl mIoU

Source only (VGG16) N 6.4 17.7 29.7 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 20.2

FCNs in the wild N 11.5 19.6 30.8 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 22.9

CDA N 65.2 26.1 74.9 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 34.8

DCAN N 9.9 30.4 70.8 6.70 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 36.4

SWD N 83.3 35.4 82.1 12.2 12.6 83.8 76.5 47.4 12.0 71.5 17.9 1.6 29.7 43.5

Cross-City Y 62.7 25.6 78.3 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 35.7

GIO-Ada Y 78.3 29.2 76.9 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 43.0

ADVENT Y 67.9 29.4 71.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 36.6

AdaSegNet Y 78.9 29.2 75.5 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 37.6

TGCF-DA + SE Y 90.1 48.6 80.7 3.2 14.3 82.1 78.4 54.4 16.4 82.5 12.3 1.7 21.8 46.6

PCEDA Y 79.7 35.2 78.7 10.0 28.9 79.6 81.2 51.2 25.1 72.2 24.1 16.7 50.4 48.7

SFDA SF(Y) 81.9 44.9 81.7 3.3 10.7 86.3 89.4 37.9 13.4 80.6 25.6 9.6 31.3 45.89

GenAdapt SF(Y) 89.9 48.8 80.9 19.5 26.2 83.7 84.9 57.4 17.8 75.6 28.9 4.3 17.2 48.9

MAS3-Joint N 66.9 23.7 66.0 4.2 4.3 75.1 60.7 22.3 2.7 17.4 3.5 0.7 0.8 27.4

MAS3 SF(N) 74.8 51.6 71.5 20.4 32.3 73.0 75.3 48.9 19.7 66.3 25.7 10.1 40.8 47.0

We have used DeepLabV3 (Chen et al., 2017a) as the feature extractor with a VGG16 (Simonyan and Zisserman, 2014) backbone. The first row presents the source-trained model performance prior to adaptation to demonstrate effect of initial knowledge transfer from

the source domain.
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TABLE 2 Domain adaptation results for di�erent methods for the GTA5→cityscapes task.

Method road sdwk bldng Wall Fence Pole Light Sign vgttn trrn Sky Person Rider Car Truck Bus Train mcycl bcycl mIoU

Source (VGG16) 25.9 10.9 50.5 3.3 12.2 25.4 28.6 13.0 78.3 7.3 63.9 52.1 7.9 66.3 5.2 7.8 0.9 13.7 0.7 24.9

FCNs Wld. 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

CDA 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9

DCAN 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.30 17.0 6.70 36.2

SWD 91.0 35.7 78.0 21.6 21.7 31.8 30.2 25.2 80.2 23.9 74.1 53.1 15.8 79.3 22.1 26.5 1.5 17.2 30.4 39.9

CyCADA 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

ADVENT 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1

AdaSegNet 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

TGCF-DA + SE 90.2 51.5 81.1 15.0 10.7 37.5 35.2 28.9 84.1 32.7 75.9 62.7 19.9 82.6 22.9 28.3 0.0 23.0 25.4 42.5

PCEDA 90.2 44.7 82.0 28.4 28.4 24.4 33.7 35.6 83.7 40.5 75.1 54.4 28.2 80.3 23.8 39.4 0.0 22.8 30.8 44.6

SFDA 81.8 35.4 82.3 21.6 20.2 25.3 17.8 4.7 80.7 24.6 80.4 50.5 9.2 78.4 26.3 19.8 11.1 6.7 4.3 35.86

GenAdapt 90.1 44.2 81.7 31.6 19.2 27.5 29.6 26.4 81.3 34.7 82.6 52.5 24.9 83.2 25.3 41.9 8.6 15.7 32.2 43.4

MAS3-Joint 75.1 41.8 64.9 12.5 8.9 29.7 21.4 9.5 41.7 26.0 25.7 39.2 9.2 42.4 6.9 1.4 0.0 6.0 12.9 25.0

MAS3 75.8 55.6 72.9 20.9 24.7 20.5 30.5 39.8 80.0 36.9 77.9 51.9 22.4 77.3 26.5 45.2 22.6 18.8 51.7 44.8
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FIGURE 2

Qualitative performance: examples of the segmented frames for SYNTHIA→Cityscapes using the MAS3 method. (Left to right) Real images, manually

annotated images, source-trained model predictions, predictions based on our method.

6.4 Analytic experiment

We offer additional experiments to offer a better insight

about our algorithm. In Figure 2, we have provided visualizations

of representative frames from the Cityscapes dataset for the

SYNTHIA→Cityscapes task. These frames are segmented using

our model both prior to and after adaptation and are juxtaposed

with the corresponding ground-truth manual annotations for

each image. Through visual inspection, it becomes evident that

our method brings about significant improvements in image

segmentation, transitioning from source-only segmentation to

post-adaptation segmentation. This improvement is particularly

notable in semantic classes such as sidewalk, road, and cars

for the model initially trained on GTA5 which are particularly

important classes in autonomous driving applications. The visual

comparison highlights the considerable enhancement achieved in

performance. To further complement these findings, examples of

segmented frames for the SYNTHIA→Cityscapes task are included

in Figure 3, revealing similar observations. These visualizations

collectively underscore the effectiveness of our method in

enhancing image segmentation across diverse datasets.

We study the effect our algorithm on data distribution

in the embedding space. To validate the alignment achieved

by our solution, we employed the UMAP (McInnes et al.,

2018) visualization tool to reduce the dimensionality of data

representations in the embedding space to two for 2D visualization.

Figure 4 visually represents samples from the internal distribution,

along with the target domain data both before and after adaptation

for the GTA5→Cityscapes task. In this figure, each point

corresponds to a single data point, and each color represents

a semantic class cluster. Upon comparing Figures 4B, C with

Figure 4A, a noticeable observation emerges. The semantic classes

in the target domain exhibit greater separation and similarity to

the internal distribution after the model adaptation process. This

signifies a substantial reduction in domain discrepancy facilitated

by MAS3, where the source and target domain distributions align

indirectly through the intermediate internal distribution in the

embedding space, as originally anticipated.

6.5 Sensitivity analysis experiments

An inherent advantage of our algorithm, in contrast to methods

relying on adversarial learning, lies in its simplicity and dependence

on only a few hyperparameters. We study the sensitivity of

performance with respect to these hyperparameters. The primary

hyperparameters specific to our algorithm are λ and τ constants.

Through experimentation, we have observed that the performance

of MAS3 remains stable with respect to the trade-off parameter λ.

This stability is expected as the Lce loss term remains relatively

small from the outset due to prior training on the source domain,

and then, optimization mostly reduces the cross-domain alignment

loss term. We further delved into the impact of the confidence

hyperparameter τ . Figure 5 visually illustrates the fitted Gaussian

Mixture Model (GMM) on the source internal distribution for

three different values of τ . Notably, when τ = 0, the fitted GMM

clusters appear cluttered. However, as we increment the threshold

τ and selectively use samples for which the classifier demonstrates

confidence, the fitted GMM represents well-separated semantic

classes. This increase in interclass clusters in knowledge transfer
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FIGURE 3

Qualitative performance: examples of the segmented frames for SYNTHIA→Cityscapes and GTA5→Cityscapes using the MAS3 method. From (left to

right) column: real images, manually annotated images, source-trained model predictions, predictions based on our method.

from the source domain is evident as semantic classes become

more distinctly defined. This empirical exploration aligns with

our earlier deduction regarding the significance of τ , as outlined

in our Theorem, thereby validating the theoretical analysis. The

experimental findings underscore the robustness and effectiveness

of our method across different hyperparameter configurations.

We also extend our empirical investigation to analyze the

balance between the quantity of projections employed for
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FIGURE 4

Indirect distribution matching in the embedding space: (A) drawn samples from the GMM trained on the SYNTHIA distribution, (B) representations of

the Cityscapes validation samples prior to model adaptation, (C) representation of the Cityscapes validation samples after domain alignment.

FIGURE 5

Ablation experiment to study e�ect of τ on the GMM learnt in the embedding space: (A) all samples are used; adaptation mIoU = 41.8, (B) a portion

of samples is used; adaptation mIoU = 42.7, (C) samples with high model-confidence are used; adaptation mIoU = 44.7.

FIGURE 6

Performance accuracy vs. the number of projections used to

compute SWD using the SYNTHIA→Cityscapes task.

computing SWD for distribution alignment and the resulting UDA

performance on the target domain. The results for this experiment

are presented in Figure 6. We observe that the performance

remains robust even with a modest number of projections, such

as 5. Moreover, empirical evidence indicates that the performance

tends to plateau after ∼50 projections. It is noteworthy that

the runtime complexity scales linearly concerning the number of

projections, as the only operation involving the one-dimensional

Wasserstein computations is the subsequent averaging process. In

consideration of these findings, the results presented throughout

the rest of the study are based on utilizing 100 projections. This

choice is made to ensure that we operate within a favorable regime

concerning adaptation performance while maintaining a balanced

runtime to compute SWD. By doing so, we aim to achieve desirable

performance with a decent computational load.

7 Conclusion

We devised an algorithm tailored for adapting an image

segmentation model to achieve generalization across new domains,

a process facilitated solely through the use of unlabeled data for

the target domain during training. At the core of our approach is

the utilization of an intermediatemulti-modal internal distribution,

strategically employed to minimize the distributional cross-domain

discrepancy within a shared embedding space. To estimate this

internal distribution, we employ a parametric Gaussian Mixture

Model (GMM) distribution. Through rigorous experimentation on

benchmark tasks, our algorithm has demonstrated its effectiveness,

yielding competitive performance that stands out even when

compared to existing UDA algorithms rooted in joint-domain

model training strategies. The results underscore the robustness
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and efficacy of our approach in achieving domain adaptation for

image segmentation tasks, particularly in scenarios where only

unlabeled data is available for training. Future exploration includes

partial domain adaptation settings in which the source and the

target domain do not share the same classes.
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