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E�ciently detecting and treating cancer at an early stage is crucial to improve

the overall treatment process and mitigate the risk of disease progression. In

the realm of research, the utilization of artificial intelligence technologies holds

significant promise for enhancing advanced cancer diagnosis. Nonetheless,

a notable hurdle arises when striving for precise cancer-stage diagnoses

through the analysis of gene sets. Issues such as limited sample volumes, data

dispersion, overfitting, and the use of linear classifiers with simple parameters

hinder prediction performance. This study introduces an innovative approach

for predicting early and late-stage cancers by integrating hybrid deep neural

networks. A deep neural network classifier, developed using the open-source

TensorFlow library and Keras network, incorporates a novel method that

combines genetic algorithms, Extreme Learning Machines (ELM), and Deep

Belief Networks (DBN). Specifically, two evolutionary techniques, DBN-ELM-BP

and DBN-ELM-ELM, are proposed and evaluated using data from The Cancer

Genome Atlas (TCGA), encompassing mRNA expression, miRNA levels, DNA

methylation, and clinical information. The models demonstrate outstanding

prediction accuracy (89.35%−98.75%) in distinguishing between early- and late-

stage cancers. Comparative analysis against existing methods in the literature

using the same cancer dataset reveals the superiority of the proposed hybrid

method, highlighting its enhanced accuracy in cancer stage prediction.

KEYWORDS

cancer stage prediction, artificial intelligence, deep belief network, mRNA expression,

DNA methylation

1 Introduction

The timely identification and effective treatment of cancer are paramount for

enhancing patient outcomes and curbing disease progression (Mohtasebi et al., 2023). As

the landscape of cancer prediction evolves, artificial intelligence (AI) technologies have

emerged as powerful tools to streamline this process (Monjezi et al., 2023; Morteza et al.,

2023; Rezaei et al., 2023; Zeinali-Rafsanjani et al., 2023). However, challenges persist,

particularly in accurately categorizing cancer stages based on gene sets. Issues such as

limited sample sizes, data dispersion, and the use of linear classifiers with simplistic

parameters have impeded the progress of prediction algorithms.

The field of cancer diagnosis and prediction using artificial intelligence (AI) methods

has seen significant growth in recent years (Rezaei et al., 2022). AI techniques, such as
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machine learning (ML) and deep learning (DL), have been

increasingly applied in oncology for various purposes, including the

detection and diagnosis of cancer (Chugh et al., 2021; Painuli and

Bhardwaj, 2022; Rana and Bhushan, 2023). The application of AI

in oncology is not only limited to clinical practice but also extends

to research fields with contributions from medicine, computer

science, mathematics, and engineering (Murthy and Bethala, 2023).

AI methods have shown promise in increasing diagnostic accuracy

and efficiency by providing quantifiable outputs to predict cancer

behavior and prognosis (Choupanzadeh and Zadehgol, 2023). For

instance, ML has been shown to reduce variability in grading

dysplasia and cancers, ensuring standardization and consistency,

which is crucial for informing treatment decisions (Yadavendra

and Chand, 2020; Shaikh and Rao, 2022; Huang et al., 2023). The

use of computational methods to learn information directly from

data, whether through supervised or unsupervised learning, has

been a significant development in the field (Sultan et al., 2020;

Castiglioni et al., 2021; Jafarzadeh Ghoushchi et al., 2023). AI-

based image analysis from whole slide images of human tissue has

demonstrated potential in reliably predicting diagnosis, prognosis,

mutational status, and response to treatment in various cancers,

including colorectal, lung, skin, and breast malignancies (Naseem

et al., 2022).

A fully connected deep neural network was developed by Ahn

et al. (2018) from 6,703 tumors and 6,402 normal samples, and

the contribution of individual genes was evaluated. In a similar

effort, Li et al. (2017, 2021) classified individual tumor types. By

coupling a k-nearest neighbor algorithm with a genetic algorithm

for gene selection, Lyu and Haque (2018) were able to predict

31 types of cancer with a high level of accuracy. For each of the

33 TCGA cancer types analyzed, Selvaraju et al. (2017) achieved

more than 95% accuracy by using a CNN model with 2D mapping

of gene expression samples as inputs. Additionally, Liang et al.

(2020) developed a method of interpreting data using the guided

grad-CAM to identify the facial features of cancer patients. Based

on GeneCT (Sun et al., 2018), input genes are divided into

two categories: oncogenes and tumor suppressors, which allow

identification of cancer status, and transcription factors, which

allow identification of tissue origin. In this context, tissue origin

refers to the specific organ or tissue type from which the cancer

has originated. The identification of transcription factors associated

with input genes aids in discerning the tissue or organ where the

cancer has initiated. This information is valuable for understanding

the specific anatomical site affected by the cancerous condition.

Yuan et al. (2018) delved into cancer-type prediction using

copy number aberration and chromatin 3D structure, employing

convolutional neural networks (CNNs). Their investigation, as

reflected in experimental outcomes on the COSMIC CNA dataset

Abbreviations: AI, Artificial intelligence; GA, Genetic Algorithms; ELM,

Extreme Learning Machines; DBN, Deep Belief Networks; TCGA, The Cancer

Genome Atlas; BP, Backpropagation; DL, Deep learning; ML, Machine

learning; CNN, Convolutional neural network; KIRP, Kidney renal papillary

cell carcinoma; KIRC, Kidney renal clear cell carcinoma; LUSC, Lung

squamous cell carcinoma; HNSC, Head and neck squamous cell carcinoma;

RBM, Restricted Boltzmann Machine; ACC, Accuracy; SEN, Sensitivity; SPE,

Specificity.

(Forbes et al., 2017), highlights the optimal performance achieved

by a 2D CNN utilizing both cell lines of HiC data. The output

of the model corresponds to the total number of cancer types,

which in this instance is 25, resulting in an impressive accuracy

rate of 61%. To a certain extent, all of these attempts were accurate;

however, these methods do not take into account the possibility of

tissue of origin within each type of cancer. A data interpretation

scheme that has not been designed to remove the effect of normal

tissues during cancer arrangement will not be able to differentiate

between tissues or types of cancer in the absence of removing these

influences. This makes such models ineffective for the analysis of

functional data or the selection of biomarkers for cancer detection.

There was also no systematic examination of the effect of different

CNN model constructions on prediction accuracy in any of these

studies. Ma et al. (2020) introduced a prediction model based on

extreme gradient boosting to distinguish early-stage from late-stage

cancers. In the context of predicting the stage of breast cancer,

they employed the extreme gradient boosting method. The average

prediction accuracy scores for the four cancers were 0.808 for KIRC,

0.872 for KIRP, 0.600 for HNSC, and 0.595 for LUSC. It’s crucial to

highlight that despite these accuracy scores, the extreme gradient

boosting method does have a drawback, namely, the potential

for low accuracy. This limitation increases the risk of errors in

the prediction process, necessitating careful consideration of its

application in clinical contexts.

In addition to conducting a comprehensive statistical analysis,

the integration of machine learning algorithms holds promise

in identifying key driving mutations. Gene expression data is a

widely utilized data type for cancer prediction in numerous studies

(Nguyen and Rocke, 2002; Xiao et al., 2018; Huang et al., 2021).

However, a significant challenge arises from the small sample size

coupled with high dimensionality. While each sample may contain

thousands of genes, only a subset is pertinent to the target disease,

rendering most genes irrelevant (Wang et al., 2008). To address the

high dimensionality issue, gene selection methods are commonly

employed before prediction (Mostavi et al., 2020; Mazlan et al.,

2021; Varnier et al., 2021). Nevertheless, this step may inadvertently

discard genes that, while havingminor effects on disease generation

in general, remain significant for diagnosing specific cancer types

in certain patients. Furthermore, the inclusion of irrelevant genes

introduces noise and diminishes the performance of machine-

learning classifiers (Yang et al., 2018). Despite these advances, the

integration of AI into clinical practice faces several challenges,

including the need for large, multicenter clinical trials to validate AI

systems in real-time clinical settings (Abbasi et al., 2020; Alhasan,

2021; Talukder et al., 2022). The potential of AI to improve

the quality of care in healthcare systems is significant, as AI-

based risk prediction models can investigate complex relationships

between clinical data and disease treatment. In summary, AI

methods are transforming cancer diagnosis and prediction, offering

tools for more consistent, efficient, and accurate diagnosis, which

can aid clinical decision-making and potentially improve patient

survival. However, further research and development are needed to

overcome current limitations and fully realize the potential of AI

in oncology.

According to the literature, the accurate prediction of cancer

stages based on gene sets presents notable challenges. Issues such

as limited sample volumes, data dispersion, and the use of linear
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classifiers with simplistic parameters impede the improvement of

prediction performance. This paper addresses these challenges by

proposing a novel approach that leverages the power of hybrid

deep neural networks for the prediction of early and late-stage

cancers. The integration of Genetic Algorithms (GA), Extreme

Learning Machines (ELM), and Deep Belief Networks (DBN)

forms the foundation of our innovative method. Employing a deep

neural network classifier developed with the Tensorflow framework

and Keras libraries, our study aims to enhance the accuracy of

cancer stage prediction. To assess the efficacy of our proposed

method, we conducted extensive evaluations using data sourced

from The Cancer Genome Atlas (TCGA), encompassing diverse

information such as mRNA expression levels, miRNA levels,

DNA methylation data, and clinical information. Two distinct

evolutionary techniques, namely DBN-ELM-BP and DBN-ELM-

ELM, are introduced and rigorously tested. Our findings reveal

exceptional prediction accuracy in distinguishing between early-

and late-stage cancers, demonstrating the potential of our hybrid

model. Furthermore, we conduct a comparative analysis against

state-of-the-art methods in the literature, affirming the superiority

of our proposed hybrid method in cancer stage prediction. This

research contributes to the ongoing efforts to improve cancer

diagnosis and treatment, offering a promising avenue.

2 Materials and methods

This study introduces an innovative method for forecasting

early and late-stage cancers by integrating hybrid deep neural

networks. In general, “early-stage” cancers are characterized by

localized growth, confined to the site of origin and limited spread,

often corresponding to lower numerical stages (e.g., Stage I or

Stage 0). In contrast, “late-stage” cancers have progressed beyond

the initial site, involving invasion of nearby tissues or metastasis,

and are associated with higher numerical stages (e.g., Stage III or

Stage IV).

1) Early-Stage Cancers:

- Early-stage cancers are characterized by localized growth,

meaning that the tumor is confined to its site of origin and has not

yet invaded neighboring tissues or spread to distant organs.

- In the context of cancer staging, early-stage cancers are

typically associated with lower numerical stages (e.g., Stage I or

Stage 0), indicating a smaller tumor size and limited spread.

2) Late-Stage Cancers:

- Late-stage cancers, on the other hand, have advanced beyond

the initial site of origin and often involve the invasion of nearby

tissues or the spreading (metastasis) to distant parts of the body.

- Higher numerical stages (e.g., Stage III or Stage IV) are

indicative of late-stage cancers, signifying a more extensive disease

with greater tumor size and potential involvement of lymph nodes

or distant organs.

The distinction between early and late stages is crucial in

cancer diagnosis and treatment planning. Early detection of cancer

allows for more effective and less aggressive treatment options,

often resulting in better outcomes for patients. Late-stage cancers,

with their increased complexity and potential for metastasis,

often require more aggressive interventions and may have a

poorer prognosis.

2.1 Dataset

This study utilized data sourced from TCGA, specifically

focusing on four prominent cancer types (Wang et al., 2016).

In 2006, an initial pilot initiative demonstrated the feasibility of

creating a specific atlas detailing genetic changes unique to various

cancer types. Subsequently, the TCGA dataset has expanded its

efforts, amassing tissues from over 11,000 patients, encompassing

more than 33 types and subtypes of cancer, including 10 rare

forms of cancer. A noteworthy aspect of this undertaking is

the unrestricted availability of all collected information to any

researcher interested in directing their investigations toward

these diseases. Figure 1 succinctly outlines the diverse types of

data provided by the TCGA project and visually represents the

percentage contribution of each data type to the overall subtype.

Quantifying the number of samples within the TCGA repository

involves categorizing them based on both the type of tumor and

the specific biotechnological analysis employed. The open-access

nature of the data streamlines the development of innovative

models, eliminating the need for an initial financial investment to

acquire the necessary information.

The primary emphasis was on the top four types of cancer,

and our data collection encompassed 1,392 patients diagnosed

with kidney cancer. The kidney cancer subtypes included were

kidney renal papillary cell carcinoma (KIRP) and kidney renal clear

cell carcinoma (KIRC), along with lung squamous cell carcinoma

(LUSC) and head and neck squamous cell carcinoma (HNSC).

The present study focused on four types of biotechnological data,

namely miRNA-seq data, DNA methylation data, cancer stage,

and mRNA expression. In the TCGA dataset, these features are

represented numerically for various genes, and the respective

ranges for each quantity are detailed in Table 1. Figure 2 depicts

a heatmap showcasing the expression levels of DNA methylation

hyperparameter for 50 chosen genes across TCGA samples, with

a specific emphasis on the KIRP, KIRC, LUSC, and HNSC

cancer types.

In this study, we recognize the significance of considering the

unique molecular characteristics and clinical behaviors associated

with different types of cancers. Therefore, to ensure the specificity

of our classification models, we adopted a meticulous approach

by training separate neural networks for each of the four

cancer types under investigation—kidney renal papillary cell

carcinoma (KIRP), kidney renal clear cell carcinoma (KIRC), lung

squamous cell carcinoma (LUSC), and head and neck squamous

cell carcinoma (HNSC). This individualized training strategy

allows us to tailor the models to the distinct features of each

cancer type, thereby enhancing the accuracy and reliability of

our results.

2.2 Data pre-processing

The primary objective of data pre-processing and cleaning is

to enhance data quality, especially considering the inevitability of

missing data in medical research. Our analysis involves scrutinizing

a patient’s DNAmethylation, mRNA, andmicroRNA levels for each

cancer type (Table 2). Within our dataset, certain features exhibit

missing values. In adherence to prior research practices, any patient
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FIGURE 1

Quantification of TCGA repository samples by tumor type and biotechnological analysis (Liñares-Blanco et al., 2021).

TABLE 1 Range of DNA methylation, miRNA-seq, and mRNA

hyperparameters.

KIRP KIRC LUSC HNSC

DNAmethylation 0.05–1.01 0.05–1.02 0.01–1.02 0.01–0.99

miRNA-seq 800–15,000 200–16,000 400–15,000 500–14,000

mRNA 0.2–120 0.1–180 0.5–150 0.1–200

Cancer stage I or II I or II I or II I or II

information with even a single missing data item was traditionally

discarded—a practice we aim to continue. Therefore, it becomes

imperative to address these missing values by imputing appropriate

data before modeling.

In this work, we harnessed the power of multiple types of data

to gain a comprehensive understanding of the molecular landscape

associated with different cancer types. Specifically, we integrated

microRNA data, cancer stage information, DNA methylation data,

and mRNA expression data. Each of these data types offers unique

insights into the molecular characteristics of cancer, capturing

different aspects of its complexity.

mRNA-seq data provides valuable information about the

regulatory role of microRNAs, while cancer stage information

allows us to contextualize molecular alterations in the progression

of the disease. DNAmethylation data offers insights into epigenetic

modifications that can influence gene expression, and mRNA

expression data provides a snapshot of active genes in the cellular

environment. By integrating these diverse datasets, our approach

aims to unravel the intricate molecular details of cancer, identify

potential biomarkers, elucidate regulatory networks, and explore

the clinical implications of molecular alterations at various stages

of the disease.

This integrative strategy is grounded in the fundamental

principles of cancer biology, recognizing that a holistic view

of the molecular landscape is crucial for a comprehensive

understanding of the disease. By exploring the relationships among

different data layers, we can unveil hidden patterns, discover

novel associations, and contribute to advancing our knowledge of

cancer biology.

The Expectation-Maximization algorithm (Ng et al., 2012)

serves as a method for estimating maximum likelihood in scenarios

involving latent variables. In the realm of machine learning

algorithms, this method proves to be a versatile and effective

approach, contingent on the inclusion of all relevant interacting

random variables within the training dataset. However, when latent

variables—unobserved or hidden variables that interrelate with

those in the dataset—are introduced, the maximum likelihood

estimation becomes challenging. In situations where data is

missing, the Expectation-Maximization algorithm stands out as an

efficient iterative process for computing the maximum likelihood

estimate. The algorithm comprises two main stages in each

iteration: the expectation stage and the maximization stage. The

expectation stage involves estimating the values of latent variables,

while the maximization stage entails optimizing the parameters of

the model based on the observed and estimated latent variables.

Through repeated iterations, with an assurance that the likelihood

value increases at each step, the algorithm converges to a stable

solution (Schön, 2009; Gupta and Chen, 2011).

For normalization, the minimum-maximum technique

was employed as one of the pre-processing steps, as
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FIGURE 2

Heatmap of the expression levels of DNA methylation hyperparameter for a selected gene across TCGA samples, specifically focusing on the KIRP,

KIRC, LUSC, and HNSC cancer types.

TABLE 2 KIRC, KIRP, LUSC, and HNSC datasets (Ma et al., 2020).

Cancer type Class Number DNA methylation mRNA microRNA

KIRC Early 175 16,335 16,387 385

Late 120

KIRP Early 195 16,740 16,469 350

Late 55

LUSC Early 294 16,586 16,598 417

Late 53

HNSC Early 107 16,598 16,207 442

Late 386

described in Eq. 1.

Ynew = 2
y− ymin

ymin − ymax
− 1 (1)

where ymin and ymax are the minimum and maximum of

the parameters.

2.3 Proposed models

Stage I was labeled early-stage, while stage II was labeled late-

stage literature (Rahimi and Gönen, 2018). Samples from each

cancer type were randomly allocated to three distinct datasets as

follows: (1) a training set comprising 70% of the samples, (2)

a validation set encompassing 10% of the samples, and (3) a

testing set containing 20% of the samples. This division ensures

a representative distribution of data across these sets, facilitating

robust model training, validation, and evaluation. The training

dataset served as the foundation for model training, while the

test dataset was employed for evaluating the model performance.

To address the imbalance present within the training dataset,

oversampling was implemented concerning the target variable.

This approach aims to ensure a more equitable representation of

different classes, enhancing the model’s ability to generalize and

make accurate predictions. In the framework of this study, both the

testing and training datasets are randomly selected from the main
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datasets for each neural network. The development of a deep neural

network classifier is implemented using the TensorFlow framework

and the Keras libraries.

2.3.1 Deep belief network
A DBN is constructed by combining several layers of the

Restricted Boltzmann Machine (RBM). Unsupervised learning is

performed in one visible layer and one hidden layer of an RBM

(Sohn, 2021). Essentially, the data are divided into two layers: a

visible layer and a hidden layer. Except for the hidden layer of the

last RBM in a DBN, the hidden layer of each RBM in a DBN is

treated as the visible layer of the next RBM. Based on RBMs, the

probability distribution of visible variables is calculated using the

hidden layer (Hinton, 2009).

2.3.2 Evolving DBN weights
Typically, the backpropagation (BP) algorithm is a feed-

forward supervised neural network training algorithm used to fine-

tune deep belief networks’ weights (Rumelhart et al., 1995). In this

algorithm, there is a risk of becoming trapped in the local minimum

of the error function when learning patterns among data. The

global minimum cannot be found by BP when the error function is

multivariate or non-differentiable. The best set of network weights

can be found by using evolutionary techniques. A genetic algorithm

searches for optimal or near-optimal solutions to different types of

objective functions using an evolutionary algorithm.

In WE-DBN, the optimization of network weights occurs

through a genetic algorithm tailored to a predefined architecture.

The acronym “WE” denotes the evolution of weights within

the deep belief network facilitated by genetic algorithms. This

model incorporates pre-trained deep belief networks, constituting

chromosomes within the initial population. In the realm of

optimization problems, this approach serves as a fitting initial step

for the application of genetic algorithms.

2.3.3 DBN-based ELM classifier
The Extreme Learning Machine (ELM) stands out as an

efficient algorithm grounded in feed-forward neural networks

featuring a hidden layer. Notably, ELM exhibits higher scalability,

reduced computational complexity, and superior generalization

performance when compared to the Backpropagation (BP)

algorithm. In this study, we leverage the advantages of ELM to

introduce a novel combination with a deep belief network. Unlike

traditional approaches, the hidden layer in ELM does not require

explicit adjustment. The connection weights between the input and

hidden layers, alongside biases and hidden neurons, are generated

randomly. Meanwhile, the connection weights between the hidden

layer and the output layer are computed. Notably, improved results

are achieved by utilizing more appropriate weights for the hidden

layer, as opposed to random weights. This paper introduces a

hybrid model, DBN-ELM, representing both an enhancement over

the traditional DBN and an extension of the capabilities of ELM.

The ELM-DBN deep learning algorithm aims to procedure an

extreme learning machine classifier after pertaining the network by

DBN to accurately adjust the weights between the last DBN layer

and the output layer (β). This model replaces the BP algorithm with

an ELM classifier. The DBN-ELM model utilizes basic ELM for its

advantages, such as high learning speed and good generalization

performance. The selection of basic ELM was also motivated by

the fact that this type of ELM is very suitable for the scale of the

data sets used in this study. The inner part of Figure 3 illustrates the

combination of DBN and ELM graphically. It is considered that the

input and hidden layers of the last restricted Boltzmann machine

and the matrix of weights between them (WN , a real value matrix

with dimensions ofm× n) are the input layer and the hidden layer

of ELM, respectively.

2.3.4 DBN-ELM followed by BP algorithm
The BP algorithm, known for its local search characteristic,

benefits from the use of non-random and more appropriate

weights, leading to faster convergence and improved prediction

performance. However, in the context of deep belief network pre-

training, only the last hidden layer undergoes training, leaving

the weights between the final hidden layer and the output layer

randomly selected. To address this limitation, the DBN-ELM-BP

model incorporates an ELM classifier. This model involves a BP-

supervised ELM step following unsupervised network pre-training

and supervised prediction. Figure 3 visually illustrates the training

process of this model.

In the initial phase, a pre-training session occurs without DBN

supervision. TheHmatrix, equivalent to the weight matrix derived

from the last restricted Boltzmann machine in the DBN (first fine-

tuning step), is calculated using the ELM classifier for weights

between the last hidden layer and output. Subsequently, after error

calculation, the network’s weight matrix is updated (represented

by the dashed arrows), marking the second fine-tuning stage.

The dashed arrow in Figure 3 denotes that the weight matrix

has been updated through the BP algorithm. Notably, during the

optimization of the DBN architecture, a genetic algorithm was

employed for the first time in this work.

Displayed in Table 3 are the parameters governing the

genetic algorithm for the evolutionary models. Determining these

parameters involves a meticulous trial-and-error approach, where

the values are fine-tuned to optimize the performance of the

evolutionary models. This iterative process ensures that the genetic

algorithm is configured with settings that enhance its efficiency and

effectiveness in achieving the desired outcomes within the context

of the evolutionary models. Table 3 outlines the specific parameters

employed for the genetic algorithm in the evolutionary models.

These parameters play a crucial role in guiding the optimization

process within the context of evolutionarymodels, influencing their

performance and outcomes. The table serves as a reference for

understanding the key settings that have been configured to fine-

tune the GA, ensuring its effectiveness in achieving the desired

objectives within the evolutionary models.

2.4 Evaluation metrics

To evaluate and determine the fitness value of each

chromosome, we calculate the accuracy, sensitivity, and specificity
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FIGURE 3

Structure of DBN-ELM and DBN-ELM-BP.

using the training data. Calculation of the prediction accuracy

percentage, sensitivity, specificity, and F1-score are based on the

confusion matrix elements as shown in Eqs. 2–5.

ACC =
TN + TP

TN + TP + FP + FN
(2)

SEN =
TP

FN + TP
(3)

SPE =
TN

FP + TN
(4)

F1-score =
TP

TP + (FN + FP)
/

2
(5)

in which ACC, SEN, and SPE are accuracy, sensitivity, and

specificity parameters, respectively. TP, TN, FP, and FN respectively
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denote the number of true positives, true negatives, false positives,

and the number of false negatives. As a result, high sensitivity

and specificity will result in higher accuracy. Furthermore, an

evaluation of performance is conducted using the confusionmatrix.

3 Results

This section conducts a comparative analysis of the results

obtained from the presented DBN, WE-DBN, DBN-ELM,

and DBN-ELM-BP models against various existing sequential

prediction models, including the standard deep neural network.

Figure 4 provides a visualization of the confusion matrix analysis

TABLE 3 The specific parameters employed for the genetic algorithm in

the evolutionary models.

Parameter Value

Population type Binary

Population size 50

Iteration no. 2,000

Selection method Ranking

Crossover fraction 0.75000

Mutation probability 0.350

Crossover probability 0.9

Crossover PMX

for each model, focusing on the KIRC cancer type. In Figure 4,

the confusion matrix for the test data of the KIRC cancer type

is depicted. Notably, the DBN model correctly predicts 45 test

data instances with negative labels. In comparison, the WE-DBN

model achieves 34 correct predictions, the DBN-ELM model

attains 26 correct predictions, and the DBN-ELM-BP model

achieves 36 correct predictions. These results offer insights into the

performance variations among the different models in the context

of KIRC cancer-type prediction. Similarly, 132 positively labeled

data can be correctly predicted by the DBN model, whereas the

WE-DBN model can predict 125 data, the DBN-ELM model can

predict 135 data, and the DBN-ELM-BP model can predict 178

data. The confusion matrix in Figure 4 shows that the DBN-ELM-

BP model produces the most realistic positive predictive values. In

contrast, the DBN model produces the most negative real values.

Figure 5 provides a comprehensive visualization in the form

of a loss diagram, presenting the dynamic behavior of the DBN-

ELM-BP network across three distinct datasets: KIRP, LUSC,

and HNSC. This representation encapsulates the interplay of the

network during both the training and validation phases. Notably,

the diagram reveals a convergence trend in the network’s training,

indicating a stabilization of the learning process, which becomes

prominent around the 1,000th step. An interesting observation

emerges as the loss on the validation data surpasses that of the

training data, suggesting the potential generalization performance

of the network in diverse scenarios. Turning attention to Figure 6,

a detailed comparative analysis unfolds, showcasing the accuracy

metrics of prominent networks—DBN, WE-DBN, DBN-ELM, and

DBN-ELM-BP—across the three datasets: KIRP, LUSC, and HNSC.

FIGURE 4

The confusion matrix for binary prediction obtained from various CNN approaches for the KIRC cancer type. The subfigures depict di�erent models:

(A) DBN, (B) WE-DBN, (C) DBN-ELM, and (D) DBN-ELM-BP.
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FIGURE 5

Validation and training loss profiles for the KIRP, LUSC, and HNSC datasets based on the proposed DBN-ELM-BP network for multi-omics data.

Remarkably, the hybrid DBN-ELM-BP network stands out with the

highest accuracy across all three datasets. Specifically, the accuracy

achieved with this algorithm for KIRP, LUSC, and HNSC datasets is

reported as 88.31%, 91.42%, and 77.51%, respectively. These results

underscore the superior performance and robustness of the DBN-

ELM-BP hybrid network, positioning it as an effective and reliable

model for the prediction tasks when compared to alternative

models. This visual representation offers a clear assessment of the

performance of the DBN-ELM-BP model relative to alternative

networks for each specific dataset, providing valuable insights into

its efficacy in different cancer-type predictions.

Moreover, following the generation of model predictions for

each class, the model’s confidence level is computed by considering

its accuracy, precision, and recall. As a class prediction model, the

goal is to assess the trustworthiness of the accuracy percentage.

Table 4 presents the outcomes concerning sensitivity, accuracy,

and specificity obtained from the KIRC cancer dataset. Increased

sensitivity and diagnostic specificity contribute to elevated accuracy

and the area under the ROC curve, as depicted in Figure 7, which

illustrates the accuracy and ROC curves for various neural network

models. The accuracy plot (Figure 7A) offers insights into how

accuracy evolves over different iterations, providing a dynamic

view of the model’s performance. On the other hand, the ROC

curve (Figure 7B) illustrates the trade-off between sensitivity and

specificity, offering a comprehensive evaluation of the model’s

prediction capabilities for the KIRP datasets. The outcomes of this

study suggest that the DBN-ELM-BP model attains the highest

accuracy and sensitivity levels. Additionally, the DNN model

demonstrates favorable specificity in comparison to other models.

Tables 5, 6 present an evaluation of the performance of

various neural network methods on DNA methylation data about

KIRP, LUSC, and HNSC cancers. Specifically, Table 5 provides a

comparison of results between DBN, WE-DBN, DBN-ELM, DBN-

ELM-BP, and sequential methods such as DNN and GoogleNet

for the KIRP dataset. The outcomes highlight that the DBN-ELM-

BP prediction method exhibits notable performance compared to

other methods. Notably, the DBN-ELM-BP network attains the

highest values for ACC, SEN, and F1-score, indicating superior

overall performance. In contrast, DBN-ELM shows the least

favorable values for ACC and SPE. Interestingly, WE-DBN stands

out as the best-performing method based on the SPE criterion.

For the KIRP dataset, the DBN-ELM-BP network achieves an ACC

of 97.09%, SEN of 89.16%, SPE of 75.45%, and an F1-score of

86.45%. These results underscore the efficacy of the DBN-ELM-BP

prediction method for the KIRP dataset.

Table 6 provides the prediction results for the LUSC dataset.

Notably, DBN-ELM-BP demonstrates superior accuracy and

sensitivity, while GoogleNet exhibits the best performance in
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FIGURE 6

Comparative analysis of the accuracy of the proposed DBN-ELM-BP model for multi-omics data about other networks across three distinct datasets:

(A) KIRC, (B) LUSC, and (C) HNSC.

terms of specificity (SPE) and F1-score. WE-DBN records the

lowest F1-score among the evaluated methods. The outcomes in

Table 7, consistent with previous datasets, underscore the superior

performance of the DBN-ELM-BP method based on accuracy

(ACC) and sensitivity (SEN) for the HNSC dataset. In this case,

GoogleNet and DNN excel in specificity (SPE) and F1-score

criteria, respectively. For the LUSC dataset, the resulting accuracy,

sensitivity, specificity, and F1-score values for the DBN-ELM-BP

method are reported as 97.85%, 98.34%, 80.79%, and 69.10%,

respectively. Also, for the HNSC dataset, the resulting accuracy,

sensitivity, specificity, and F1-score values for the DBN-ELM-BP

method are reported as 89.68%, 87.44%, 56.63%, and 73.70%,

respectively. It’s noteworthy that DBN-ELM-BP exhibits robustness

and accuracy, particularly in scenarios with highly imbalanced

datasets. Additionally, DNN demonstrates performance closely

aligned with GoogleNet in predicting the cancer stage.

Tables 8–11 illustrate the impact of molecular data on

predictive performance. It’s essential to clarify that the primary

goal of this section is not to assess the performance of various

machine-learning algorithms through parameter modification.

Instead, the objective is to evaluate how different molecular

datasets influence the prediction of cancer stage, using the default

parameters of DBN-ELM-BP. The DBN-ELM-BP approach, when

applied to different molecular datasets as feature sets for stage

prediction, demonstrated improved predictive performance. The

maximum accuracy (ACC) scores across the four cancers were

TABLE 4 Comparative overview of prediction accuracy among various

prediction models utilizing the KIRC dataset.

Methods Performance measures

ACC (%) SEN (%) SPE (%) F1-score
(%)

DBN 74.37 82.29 56.64 71.23

WE-DBN 70.76 79.34 45.43 75.67

DBN-ELM 87.38 92.26 52.72 80.34

DBN-ELM-BP 94.61 94.73 60.23 86.56

DNN 75.67 73.54 67.60 79.98

Google net 74.74 77.45 65.45 74.15

Bold values indicate the appropriate values in each column of the table.

95.34% for KIRC, 97.09% for KIRP, 97.58% for LUSC, and 89.68%

for HNSC. Despite the ACC score achieved by the multi-omics

dataset of KIRC being slightly lower than the standalone Methy

dataset (84.49%), it showed greater significance in several other

evaluation indicators such as ACC, SEN, SPE, and F1-score. This

underscores the importance of integrating DNA methylation with

mRNA expression, as combining these two types of molecular data

can yield more accurate results for various stages of cancer. The

results highlight the effectiveness of the DBN-ELM-BP approach
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FIGURE 7

Two distinct aspects related to the KIRP datasets: (A) accuracy at each iteration and (B) the ROC curve.

in leveraging different molecular datasets for enhanced predictive

performance in cancer stage prediction. The findings indicate

that, for cancers KIRP, LUSC, and HNSC, leveraging multi-

omics information yields the highest accuracy. Conversely, in

the context of type KIRC cancer, employing Methy-data proves

to be advantageous, particularly in predicting stages I and II of

the disease.

4 Discussion

The discussion of the study involves a comparison of the

proposed DBN-ELM-BP model with existing studies in the realm

of determining the early- and late- stages of cancer. Rahimi

and Gönen (2018) utilized a multiple kernel learning model

and achieved an 86% prediction accuracy for KIRP cancer. In

comparison, our proposed DBN-ELM-BP model attained a higher

accuracy of 97.09%, indicating a notable 12.5% improvement.

Deng et al. (2016), who employed DNA methylation to predict

KIRC stages, reported an accuracy of 0.696, which is approximately

35% lower than the results obtained from our current model. Bhalla

et al. (2017) focused on using gene data to identify the early and

late stages of KIRC, achieving a maximum accuracy of 72.6%.

In contrast, the proposed research achieved a higher accuracy

of 95.34%.

Additionally, the study by Ma et al. (2020), which introduced

the new XGBoost method, reported accuracies of 0.719, 0.835,

0.783, and 0.837 for KIRC, KIRP, HNSC, and LUSC, respectively.

In comparison, the proposed hybrid neural network outperformed

these results with accuracies of 0.953, 0.971, 0.897, and 0.978 for the

corresponding datasets.

These comparisons underscore the superior performance of the

presented deep learning method in predicting the characteristics of

different cancers with high accuracy. The potential for extending

this method to other types of cancers and larger datasets is

TABLE 5 A comparative analysis of prediction accuracy across various

prediction models using the KIRP dataset.

Methods Performance measures

ACC (%) SEN (%) SPE (%) F1-score
(%)

DBN 88.22 78.06 63.41 74.60

WE-DBN 68.00 76.40 74.37 72.93

DBN-ELM 77.87 78.82 59.98 75.69

DBN-ELM-BP 97.09 89.16 70.72 86.45

DNN 78.08 73.78 75.45 77.08

Google net 75.66 75.78 72.43 75.21

ResNet 87.56 78.42 74.16 82.64

Bold values indicate the appropriate values in each column of the table.

suggested for future research, highlighting the versatility and

promising outcomes of the proposed approach.

5 Conclusion

The significance of timely and accurate cancer prediction

and diagnosis necessitates the development of effective methods

for disease identification. Various prediction techniques can

be employed to predict cancer at different stages. In this

study, we propose a novel framework based on diverse deep

learning models, including DBN, WE-DBN, DBN-ELM,

and DBN-ELM-BP, for the diagnosis of early- and late-stage

cancers using gene sets. The framework aims to achieve

high accuracy while maintaining low computational time.

The key innovation lies in the utilization of a modified

segmentation approach within the DBN model for the

prediction process.
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TABLE 6 A comparative analysis of prediction accuracy across various

prediction models using the LUSC dataset.

Methods Performance measures

ACC (%) SEN (%) SPE (%) F1-score
(%)

DBN 86.72 81.90 66.21 49.22

WE-DBN 78.42 80.14 63.52 43.77

DBN-ELM 92.14 79.61 62.53 57.87

DBN-ELM-BP 97.85 98.34 77.85 68.16

DNN 83.45 77.33 78.23 65.38

GoogleNet 84.06 79.48 80.79 69.10

ResNet 89.96 82.13 77.72 67.91

Bold values indicate the appropriate values in each column of the table.

TABLE 7 A comparison of the prediction accuracy of di�erent prediction

models using the HNSC dataset.

Methods Performance measures

ACC (%) SEN (%) SPE (%) F1-score
(%)

DBN 71.84 72.72 48.73 67.27

WE-DBN 62.16 67.64 47.06 65.29

DBN-ELM 64.87 76.62 43.77 66.74

DBN-ELM-BP 89.68 87.44 58.63 73.70

DNN 70.65 65.80 62.03 81.67

Google net 76.31 69.44 69.37 68.38

ResNet 69.05 62.36 53.20 72.63

Bold values indicate the appropriate values in each column of the table.

TABLE 8 Predictive performances of DBN-ELM-BP algorithms for three

molecular datasets of KIRC.

KIRC Performance measures

ACC (%) SEN (%) SPE (%) F1-score
(%)

Methy 95.34 96.09 56.67 68.65

mRNA 97.56 91.87 53.45 73.46

Multi-omics 94.61 94.73 60.23 86.56

A bolded performance indicates a notable one.

Compared to prior studies, our model showcases a notable

12% enhancement in predictive accuracy. Noteworthy is the

fact that this improvement is realized through a considerably

streamlined construction of DBN-ELM-BP. The methods we

propose demonstrate a remarkably high diagnostic performance in

predicting cancer stages, encompassing both early and late phases,

as reflected in the results. These findings suggest the promising

potential of our DBN-ELM-BP model to unveil cancer-specific

markers tailored to each cancer type. This optimism stems from

the prospect that continued refinements may pave the way for

identifying markers conducive to early cancer detection.

TABLE 9 Predictive performances of DBN-ELM-BP algorithms for three

molecular datasets of KIRP.

KIRP Performance measures

ACC (%) SEN (%) SPE (%) F1-score
(%)

Methy 84.56 85.45 87.43 83.56

mRNA 62.34 82.53 74.22 77.42

Multi-omics 97.09 89.16 70.72 86.45

Bold values indicate the appropriate values in each column of the table.

TABLE 10 Predictive performances of DBN-ELM-BP algorithms for three

molecular datasets of LUSC.

LUSC Performance measures

ACC (%) SEN (%) SPE (%) F1-score
(%)

Methy 83.61 89.12 61.34 63.56

mRNA 75.23 93.23 59.34 65.34

Multi-omics 97.85 98.34 77.85 68.16

Bold values indicate the appropriate values in each column of the table.

TABLE 11 Predictive performances of DBN-ELM-BP algorithms for three

molecular datasets of HNSC.

HNSC Performance measures

ACC (%) SEN (%) SPE (%) F1-score
(%)

Methy 74.45 70.33 54.12 67.37

mRNA 69.45 79.23 62.95 62.65

Multi-omics 89.68 87.44 58.63 73.70

Bold values indicate the appropriate values in each column of the table.
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