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Tradescantia plant is a complex system that is sensible to environmental factors

such as water supply, pH, temperature, light, radiation, impurities, and nutrient

availability. It can be used as a biomonitor for environmental changes; however,

the bioassays are time-consuming and have a strong human interference factor

that might change the result depending on who is performing the analysis.

We have developed computer vision models to study color variations from

Tradescantia clone 4430 plant stamen hair cells, which can be stressed due to air

pollution and soil contamination. The study introduces a novel dataset, Trad-204,

comprising single-cell images from Tradescantia clone 4430, captured during

the Tradescantia stamen-hair mutation bioassay (Trad-SHM). The dataset contain

images from two experiments, one focusing on air pollution by particulate

matter and another based on soil contaminated by diesel oil. Both experiments

were carried out in Curitiba, Brazil, between 2020 and 2023. The images

represent single cells with di�erent shapes, sizes, and colors, reflecting the

plant’s responses to environmental stressors. An automatic classification taskwas

developed to distinguishing between blue and pink cells, and the study explores

both a baseline model and three artificial neural network (ANN) architectures,

namely, TinyVGG, VGG-16, and ResNet34. Tradescantia revealed sensibility to

both air particulate matter concentration and diesel oil in soil. The results

indicate that Residual Network architecture outperforms the other models in

terms of accuracy on both training and testing sets. The dataset and findings

contribute to the understanding of plant cell responses to environmental stress

and provide valuable resources for further research in automated image analysis

of plant cells. Discussion highlights the impact of turgor pressure on cell shape

and the potential implications for plant physiology. The comparison between

ANN architectures aligns with previous research, emphasizing the superior

performance of ResNetmodels in image classification tasks. Artificial intelligence

identification of pink cells improves the counting accuracy, thus avoiding human

errors due to di�erent color perceptions, fatigue, or inattention, in addition to

facilitating and speeding up the analysis process. Overall, the study o�ers insights

into plant cell dynamics and provides a foundation for future investigations

like cells morphology change. This research corroborates that biomonitoring

should be considered as an important tool for political actions, being a relevant

issue in risk assessment and the development of new public policies relating to

the environment.
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1 Introduction

Biomonitoring is a method to complement air quality
monitoring networks or chemical analysis of soils and the data
provided by bioindicators can help assess the level of pollution
in the environment and possibly its source (Kienzl et al., 2003).
Physicochemical measurements are straightforward and precise;
however, bioindicators provide assessment for interrelated effects
on the environment which can help to formulate policies and
regulations for the protection of human life, flora, and fauna
(Mulgrew and Williams, 2000). Bioindicators are becoming more
important for environmental control and impact assessments,
providing information of great political relevance and making it
possible to measure if intervention actions are having the desired
results (Kienzl et al., 2003; Cozea et al., 2019).

Plant cells can change color due to environmental stress
factors such as pH, temperature, light intensity, and nutrient
availability (Chapin et al., 1987; Młodzińska et al., 2009; Hu,
2013), which affect the presence of pigments such as chlorophyll
(Vogelmann and Evans, 2002), carotenoids (Langi et al., 2018), and
anthocyanins (Nassour et al., 2020). Tradescantia pallida via Trad-
MCN bioassay (Carreras et al., 2006; Prajapati and Tripathi, 2008)
and Tradescantia clone 4430 via Trad-SHM bioassay (Rodrigues
et al., 2023) revealed sensibility to air quality, and these studies
show that plants exposed to sites with highest traffic volumes had
higher frequencies of micronuclei and color change in stamen
hair compared with the control area. Tradescantia demonstrated
genotoxicity of ambient air due to ionizing radiations (Ichikawa
et al., 1969; Ichikawa, 1992; Panek et al., 2011), Caldwell et al. (1974)
performed field and laboratory experiments showing response of
Tradescantia plants to elevated intensities of global UV-B radiation.
An increased frequency of micronuclei (Trad-MCN) was detected
in Tradescantia clone 4430 planted on soils contaminated with
metals or fly ash from coal-fired power stations (Čėsnienė et al.,
2017; Meravi and Prajapati, 2018), and soil contaminated by diesel
also showed influence on stamen hair cells of the plant (Green et al.,
1996; Goeldner, 2023). Khosrovyan et al. (2022) used Tradescantia

clone 02 and the Trad-SHM and Trad-MCN bioassays to check the
water quality of an urban river that runs through a highly urbanized
and industrial area and observed an increase in all the parameters
studied, as well as morphological changes such as an increase in
pink cells and tetrads with micronuclei compared with the negative
control (tap water).

Several authors developed algorithms for human and vegetal
cell segmentation from images such as Contour Proposal Networks
(CPNs) (Upschulte et al., 2023), U-Net, and DeepCell (Caicedo
et al., 2019). Although there are a lot of literature studies for general
image classification (Wieslander et al., 2017; Ikechukwu et al., 2021;
Jusman, 2023), we have found few articles for the classification of
cells, such as malaria-infected cells (Loddo et al., 2019; Reddy and
Juliet, 2019), and no research use computer methods for classifying
colors of Tradescantia plant cells. In addition, no microscopy
dataset of Tradescantia single-cell images was found on research
databases.

Stamen hair cell color anomalies counting serves as a proxy
for analyzing whether the plant has been exposed to any stressors.
Trad-SHM bioassay is traditionally done through manual counting

and is a time-consuming process involving collecting the material,
mounting the slide, observing it under the microscope, counting
the cells, and then analyzing the data. To improve this process
and reduce the examiner’s workload and increase the assertiveness
of cell counting process, image processing with color recognition
was thought to optimize the manual counting process. However,
computational classification of Tradescantia cells as blue or pink
is not a trivial task. Visually, human eyes can easily distinguish
between the two colors on the macro scale of the cell, but when
observing the pixels closely, it is clear that there are many blue
pixels in a pink cell and there are many pink pixels in a blue cell.
Furthermore, there is great variability in the blue and pink tones
from cell microscopy images. This study has three principal aims:
(i) to investigate the sensibility of Tradescantia to air pollution
and soil contamination; (ii) to build a novel dataset composed of
single cell images from Tradescantia clone 4430 plant, and (iii)
to apply neural network architectures (TinyVGG, VGG-16, and
ResNET34) capable of automatically classify cells into blue or pink
classes. The idea is to build artificial intelligence algorithms that
might allow fast identification of blue and pink cells in stamen
hair images of Tradescantia plants and facilitate quantification for
subsequent statistical analysis. From an environmental point of
view, by reducing time in the laboratory, there is the possibility
of increasing the sampling area, covering possibly unseen critical
areas via biomonitoring air, water, and/or soil quality. Furthermore,
our dataset can be used as a resource for testing and validating
automated image-analysis algorithms.

2 Materials and methods

2.1 Experiments and Tradescantia single
cell dataset

Here, we describe the experiments that give birth to the
Trad-204 dataset, a computer vision single cell Tradescantia clone
4430 set of images. The pictures represent stamen hair cells of
Tradescantia clone 4430 plant that were captured during the Trad-
SHM bioassay. This assay is indicated to identify changes in cell
color from blue to pink, which indicates that the plant was exposed
to some types of environmental stress, such as temperature or
pH change, radiation, and contamination of soil, water, or air
(Underbrink et al., 1973; Sparrow et al., 1974; Schairer et al., 1978,
1982; Ma et al., 1994). This change in color can be a result of
mutation (Meravi and Prajapati, 2018) and/or can be associated
with anthocyanin pigments that are responsible for red, purple, and
blue colors, and they act as antioxidants and may play a role in
protecting plants from damage caused by UV light, pathogens, and
herbivores (Nassour et al., 2020). Figure 1 shows an exemplar of the
Tradescantia clone 4430 plant.

The experiments that generated the images were related to
the biomonitoring of air quality in Curitiba and Araucária-PR,
Brazil, from 2020 to 2021 (Rodrigues et al., 2023), and the
biomonitoring of soil quality after contamination by diesel oil in
different concentrations, and this last experiment was carried out
in the Federal University of Paraná (UFPR) laboratory from 2022
to 2023 (Goeldner, 2023). Rodrigues et al. (2023) deployed eight
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FIGURE 1

Tradescantia clone 4430 plant from the experiment on air pollution

and particulate matter in Curitiba, Brazil (Rodrigues et al., 2023).

monitoring points and a control to compare Tradescantia clone
4430 bio-monitoring with particulate matter measurements using
the SDS011 optical sensor. Each monitoring point contained five
pots of Tradescantia plants that were acclimatized for 2 months.
The control box was sealed at the top with filter paper to isolate
and prevent particles from coming into contact with the plants.
Throughout the monitoring period, each pot was watered weekly
with approximately 100 ml of water. After the acclimatization
period, inflorescences were collected for stamen hair analysis using
the Trad-SHM bioassay technique. Goeldner (2023) prepared five
pots with soil and stems ofTradescantia clone 4430. Concentrations
of diesel oil per kilo of soil were: zero (control), 100, 1.000, 10.000,
and 100.000 mg/kg. After this contamination, the pots were placed
on a bench in a laboratory. After a period of 3 weeks, the flowers
began to be collected for analysis of the stamen hair using the
Trad-SHM bioassay.

To quantify the dose-response relation of diesel oil in
Tradescantia, we propose a saturating function or stimulus
response curve, which is described in Equation (1). The function
increases at first but only up to a maximum (saturation) level.

y = m ·
x

h+ x
+ b (1)

In Equation (1), m is the saturation level, or the value that y
approaches as x gets large; the constant h is the half-saturation
point, the x value at which y = m

2 ; and the last parameter b is a bias
or error, which is supposed to be very small (Crump et al., 1976).

The preparation procedures for the Trad-SHM bioassay
(Goeldner, 2023; Rodrigues et al., 2023) followed those described
in the study by Underbrink et al. (1973) with some adaptations.
The flowers were always collected in the morning, as they close
up and wilt in the afternoon, and placed in pots labeled with their
origin. Afterward, all the stamens were removed with the help
of tweezers and arranged on slides, which were then identified
according to where the flowers had been collected. A 1:1 solution
of 70% alcohol and glycerin was used to fix the stamens. With the
aid of tweezers and a needle and observed with a magnifying glass,

the stamen hairs were aligned on the slide. After this procedure,
the material was analyzed using an optical microscope to obtain
images of the stamen hairs. Photographs of cells photographs were
taken using a camera attached to a binocular optical microscope. To
create the database, entitled Trad-204, images that contained pink
and blue cells in the same frame were used. In total, 31 multiple
cell images were used, including 16 pictures from the air quality
study (Rodrigues et al., 2023) and 15 images from the contaminated
soil research (Goeldner, 2023). Figure 2 shows four pictures from
the study by Goeldner (2023), and images were captured using
ToupView software.

The Trad-204 can be used to study the color and format
anomalies of Tradescantia cells. The dataset is a labeled set of 204
single cell images, 106 from soil contamination study and 98 from
air quality research, and all cell pictures were manually cropped
using Gimp (GNU Image Manipulation Program) by the authors.
Trad-204 dataset consists of color images labeled in two classes,
blue and pink cells, with 102 images per class. There are 164 training
and 40 test images. Image shapes range from 13 to 256 pixels in
height or weight.

Data preprocessing steps involved images normalization and
resizing of images, and no augmentation was performed. The
individual cell pictures were transformed and organized in batches
to serve as inputs to each ANN model training and testing.
For TinyVGG, the images were resized to 64 × 64 pixels with
3 RGB color channels; for ResNET34, the images were resized
to 224 × 224 pixels and normalized using the RGB mean of
(0.4914, 0.4822, and 0.4465) and standard deviation of (0.2023,
0.1994, and 0.201); for VGG16, the images were resized to
227 × 227 pixels with 3 RGB color channels. The image resize
values were distinct due to the different architecture of each
ANNmodel.

2.2 Models for color classification

As mentioned before, there is a great variety of colors
and tonalities in the image dataset. In addition, there
are cells with different formats, ranging from round
and oval to squared shapes. One key aspect for the
color classification is that there is blue cell with pinkish
pixels and a pink cell with blueish pixels, as shown
in Figure 3.

For the color classification task, we have used part of
the Trad-204 dataset containing 106 images of individual cells
and the subset of cell pictures from soil contamination study.
This set was used to compare the baseline model and the
different neural network architectures. A random split was created
with 84 single cell images for training 22 single cell images
for testing.

2.2.1 Baseline model
A simple baseline model based on pixel color channels was

developed to classify the Tradescantia cells into pink or blue cells.
We used the Red, Green, and Blue (RGB) color channels to define
mean values for blue and pink cells. The mean X̄ and standard
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FIGURE 2

Stamen hair photographs, samples were collected on: (A) 02/12/2022, (B) 29/11/2022, (C) 08/12/2022, and (D) 05/01/2023. Black arrows indicate

cells with modification of color (Goeldner, 2023). (A) Sample collected on 02/12/2022, control plant specimen planted on soil free of diesel

contamination. (B) Sample collected on 29/11/2022, plant specimen planted on soil contaminated with 1,000 mg of diesel. (C) Sample collected on

08/12/2022, plant specimen planted on soil contaminated with 100 mg of diesel. (D) Sample collected on 05/01/2023, plant specimen planted on

soil contaminated with 100 mg of diesel.

FIGURE 3

Sample of blue and pink cells (A) Blue cell with pinkish pixels. (B)

Pink cell with blueish pixels.

deviation σ of each color was calculated based on samples from
10 random images of the dataset. A pink pixel in the RGB system
was calculated as (133.83± 27, 75.84± 27, and 182.24± 27), where
each color was represented as mean ± standard deviation. A blue
pixel was determined as (70.99 ± 27,75.87 ± 27, and 163.05 ± 27).
If the pixel RGB colors falls into these intervals, it is counted either
as blue or pink. In the end, we performed the sum of blue and pink
pixels, and the highest number defines the major color of the cell.

2.2.2 Neural network architectures
Three Artificial Neural Network (ANN) architectures were

compared: TinyVGG (8 layers), VGG16 (16 layers), and ResNet34
(34 layers). VGG stands for Visual Geometry Group, and ResNET
is an abbreviation of Residual Networks. A Residual Network is an
ANNwith skip connections that perform identity mappings, which
are merged with the layer outputs by the addition of the study by
He et al. (2016). Figure 4 shows the architectures of each ANN
used in our research, and the diagrams show how a 2 dimensional
image is processed by convolutions to be classified into two classes
(blue or pink). The numbers below each block in Figures 4A–C
describe the image size in pixels and the number of hidden units
to produce a classifier, for example, the first block of the TinyVGG
accepts images of 64× 64 pixels and have 10 neurons in the hidden
layer. Labels with different colors indicate which kind of layer each
architecture of ANN is using. All ANN models were programmed
using PyTorch library and executed in CUDA (or Compute Unified
Device Architecture) graphics processing units (GPUs). The 3 ANN
architectures were trained for 20 epochs and we did not used data
augmentation.

Our TinyVGG, as shown in Figure 4A, has two blocks of a
convolutional layer and a rectified linear unit (ReLU) activation
function followed by a Flatten layer and a Linear layer. We have
used a batch size of 32 images to train the model. The convolutional
layers apply 2D convolutions over the input signal with kernel size
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A

B

C

FIGURE 4

ANNs architectures used in this study: (A) TinyVGG, (B) VGG16, and (C) ResNet34. (A) TinyVGG architecture composed by convolutional, rectified

linear units (ReLU), max pooling, fully connected, and flatten layers. (B) VGG16 architecture composed by convolutional, batch normalization

(BatchNorm2d), rectified linear units (ReLU), max pooling, fully connected, and dropout layers. (C) ResNet34 architecture composed by

convolutional, batch normalization (BatchNorm2d), rectified linear units (ReLU), max pooling, 2d average pooling, fully connected, and residual layers.

of 3, stride equals of 1, and padding of 1. The MaxPool2d layer has
hyper parameters: kernel size = 2 and stride = 2. The loss function or
criterion was selected as the cross entropy loss between input logits
and target. The optimizer was set to Adam algorithm (Kingma and
Ba, 2014) with learning rate 0.001.

The VGG is based on the study of AlexNet (Krizhevsky et al.,
2012), and it focuses on depth of Convolutional Neural Networks

(CNNs) (Simonyan and Zisserman, 2014). Our architecture, as
shown in Figure 4B, consists of 16 convolutional layers (VGG-
16) and its convolutional layers have 3x3 filters. We have used a
batch size of 32 images to train the model. It has five blocks of
convolutional layers followed by Batch Normalization and a ReLU
activation function. Then, it follows with a Dropout layer, a Linear
layer, and a ReLU activation function. The criterion was chosen
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as the cross entropy loss, and the optimizer is stochastic gradient
descent (Sutskever et al., 2013) with learning rate of 0.005.

ResNet has VGG’s full 3 × 3 convolutional layer design. The
residual block has two 3 × 3 convolutional layers with the same
number of output channels. Each convolutional layer is followed by
a batch normalization layer and a ReLU activation function. Then,
we skip these two convolution operations and add the input directly
before the final ReLU activation function (Zhang et al., 2023).

The first step on the ResNet consists on a convolution, batch
normalization, and max pooling operation. Then, the core building
blocks of ResNet are residual blocks. ResNet34 is composed of
multiple residual blocks stacked together. Each residual block
consists of two convolutional layers, batch normalization, and
a shortcut connection (skip connection). The skip connection
allows the gradient to bypass the convolutional layers, mitigating
the vanishing gradient problem. The identity mapping helps
in learning residual functions, making it easier to train deeper
networks (Zhang et al., 2023).

Figure 4C shows the architecture for our Residual Network,
ResNet34. A batch size of 32 images was used to train the model.
Criterion was chosen as cross entropy loss, and the optimizer is
stochastic gradient descent (Sutskever et al., 2013) with learning
rate of 0.01.

2.2.3 Evaluation metrics
Loss function cross entropy loss was used to evaluate both

training and testing of the ANNs. Another metric used to evaluate
all models was Accuracy, which is defined by the Equation (2):

Accuracy =
(TP+ TN)

(P+N)
(2)

The terminologies of Equation (2) are True Positive (TP)—the
model predicted “pink” and its actual class is “pink”; False Positive
(FP)—the model predicted “pink” and its actual class is “blue”;
False Negative (FN)—the model predicted “blue” and its actual
class is “pink”; True Negative (TN)—the model predicted “blue”
and its actual class is “blue”. These are the performance criteria
calculated from the confusion matrix. The remaining symbols are:
P = TP+ FN and N = TN+ FP.

3 Results

This section is divided into three parts: First, we show the
sensibility of Tradescantia to air pollution and diesel oil soil
contamination, and then, we describe the single cell dataset
developed in this study and, in the last part, neural network
architectures for color classification.

3.1 Tradescantia sensibility to air and soil
stress factors

Figure 5 represents the results from the study by Rodrigues
et al. (2023) with data from four sampling points (Jardim Botânico,
Jardim das Américas, Mercês, and Orleans) measured between

FIGURE 5

Average particulate matter concentration (PM10 and PM2.5)

calculated with BSW method and pink cell appearance per 1000

stamen hairs of Tradescantia clone 4430. Linear Regression (LR)

equations and Pearson’s correlation coe�cients (r) are represented

above the graph.

2020 and 2021 in Curitiba, Brazil. It shows a scatter plot of
particulate matter (PM2.5 and PM10) average concentrations and
a measure of pink cells appearance obtained from Trad-SHM
bioassay. Backward Sliding Window (BSW) Method (Rodrigues
et al., 2023) was used for detecting a 6-day exposure window
and 2-day lag time before inflorescence sampling, and this
method was used to calculate the averages of PM2.5 and PM10

as proxy for air pollution exposure. The graph also shows
linear regression between particulate matter (PM) and pink
cell appearance per 1000 stamen hairs. For PM10 and PM2.5,
the equations y = 7.00x and y = 12.82x, respectively,
represent the pink cell appearance as the dependent variable y

and average PM concentrations as independent variable x. Pearson
correlation coefficient was calculated demonstrating positive
correlation between the air pollution proxy and the change of
color in cells.

The test chosen to evaluate the reaction of Tradescantia clone
4430 plants to different concentrations of diesel was the Trad-SHM
bioassay (Sparrow et al., 1971; Maziviero, 2011). The inflorescences
of Tradescantia clone 4430 began to be collected and analyzed on
3 November 2022, 3 weeks after the start of the experiment. On 31
October 2022, the plant in the pot with a concentration of 100,000
mg/kg began to wilt and show yellowish leaves and stems, on 17
November 2022, the plant was completely wilted, predominantly
brown in color with slightly oily leaves, and on 3 December 2022,
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A B

FIGURE 6

Pink cell appearance box-plot and dose-response function of Tradescantia exposure to diesel oil-contaminated soil. (A) Box plot of pink cells

appearance in each treatment of diesel oil-contaminated soils. The control is represented by the zero oil concentration and “n” represents the

number of stamen hair samples analyzed. (B) Median of pink cells appearance per sample and dose response functional behavior of Tradescantia

exposure to diesel oil-contaminated soil. Function used for fitting, parameters, and standard deviation errors is shown in the graph.

FIGURE 7

Trad-204 random sample of 60 cells with labels.

the plant was already dry. For the 100,000 mg/kg concentration, it
was not possible to collect any inflorescences.

The results of soil contamination study are presented
in Figure 6. A box plot of pink cell appearance in each
treatment of diesel oil-contaminated soils is presented in

Figure 6A, showing the data dispersion. Figure 6B reveals
the median of pink cell appearance per sample and dose
response functional behavior of Tradescantia exposure to
diesel oil-contaminated soil. After fitting Equation (1) to
the data, we found y = 4.78 x/(125.12 + x) + 0.03, and
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FIGURE 8

Di�erent cells format: round, rectangular, oval, and elongated or needle types.

TABLE 1 Trad-204 dataset descriptive statistics.

Statistics Blue cells Pink cells

Number of images 102 102

Max number of pixels per
image

19,875 26,106

Min number of pixels per
image

381 290

Average number of pixels per
image

8,353.6 6,671.8

Per channel (R, G, B) (R, G, B)

Average maximum pixel value (154.8, 178.1, 207.5) (221.0, 208.7, 222.4)

Average minimum pixel value (37.9, 32.1, 28.8) (84.7, 25.3, 66.3)

Average pixel value (97.6, 91.7, 122.0) (143.9, 97.1, 140.2)

Standard Deviation (25.0, 31.8, 45.7) (33.6, 34.1, 39.4)

parameters and standard deviation errors are displayed in
the graph.

3.2 Trad-204 dataset

In this section, we show some images of the constructed dataset
and the results from baseline and ANN color classification task.
Figure 7 shows a random sample of 60 cells from the Trad-204
dataset.

Figure 8 shows format of different cells from the dataset. The
shapes vary between round, rectangular, oval, and elongated/needle
types. There is normally a progression of decreasing cell size and
shape from large basal cells to very small cells in the more distal
positions of the hair and a decrease in cell size from the base of the
filament to the anther (Underbrink et al., 1973). In addition, some
cells show vacuoles inside of the cytoplasm, which might have some
effect on the pattern recognition from ANN.

Table 1 shows descriptive statistics from Trad-204 dataset. It
describes information from pixels that contain cells, excluding
white pixels around cells.

3.3 ANN color classification

From this part onward, we present the results for classifying
cell colors from the dataset with 106 images. Figure 9 shows a

comparison of train and test accuracy between ANN models.
It can be observed that during training, TinyVGG takes more
epochs to achieve high accuracy in comparison with VGG16 and
ResNET. Training accuracy shows how efficient the network is at
correctly classifying the data it is being trained on (Theckedath and
Sedamkar, 2020). VGG16 shows instability in the test, and ResNET
has the better performance, both in training and testing. Accuracy
validation is the most important because it indicates the network’s
success in correctly classifying data that had not been classified
before (Theckedath and Sedamkar, 2020).

The performance of baseline model and each neural network
architecture is presented in the Table 2. All ANN models were
trained with 20 epochs, and we decided to use and show the
first 20 epochs because it was the optimization period that took
the three architectures to reach at least 90% of accuracy. The
VGG16 and ResNET34 architectures achieved 100% accuracy in
less than 10 training epochs. The total training time and the
number of epochs to achieve the best accuracy varied according
to the structure of each model. For TinyVGG, the total training
time was approximately 9 s, for VGG16 the total time was
approximately 47 s, and for ResNET34, this time was approximately
36 s. Although TinyVGG took less time to train, this model used
more epochs to achieve greater accuracy in correctly classifying
the training data. VGG16 took longer to train, but its accuracy
results are intermediate compared with the other two ANNmodels.
ResNET34, which showed the best performance in training and
testing, had an intermediate training time between the other two
ANNmodels, as shown in Table 2 and Figures 9A, B.

4 Discussion

Bioindicators are organisms that are used to assess the
environmental quality of a site, as well as the impact that a
given pollutant has on the ecosystem. They are usually applied
to specific sites, with local sources of pollutants, and can
provide information for implementing actions to reduce pollutant
emissions. To be relevant for political and administrative decisions,
bioindicators must provide simple, easy-to-interpret information
about the environment in which they are inserted, responding
to environmental changes that have occurred as a result of
anthropogenic activity and showing a relevant integration between
economic and environmental issues (Kienzl et al., 2003).

Tradescantia revealed positive correlation for PM2.5 and PM10

and a saturation dose-response behavior for diesel-contaminated
soil, as shown in Figures 5, 6. This result is aligned with other
studies (Green et al., 1996; Carreras et al., 2006; Prajapati and
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A B

FIGURE 9

Comparison of train and test accuracy between ANN models (TinyVGG, VGG16, and ResNET) for color classification. (A) Train accuracy for the three

ANN architectures. (B) Test accuracy for the three ANN architectures.

TABLE 2 Models training time and accuracy for train and test sets.

Model Train
accuracy

Test
accuracy

Training
time (seconds)

Baseline 0.67 0.87 -

TinyVGG 0.98 0.91 9

VGG-16 1.00 0.95 47

ResNET 1.00 1.00 36

Tripathi, 2008). The Pearson correlation was higher between
pink cell appearance and PM10 when compared with PM2.5,
which indicates that Tradescantia may be more sensitive to coarse
particles than finer ones. Guimarães et al. (2004) also found a
positive correlation (r = 0.47) between PM10 and changes in the
pink color of the stamen hair of Tradescantia clone KU-20, as did
Ferreira et al. (2003), who found a positive correlation (r=0.41)
between particulate matter and the frequency of color changes in
stamen hair in a study with Tradescantia. An analysis of the particle
composition would be crucial to identify the substances present in
PM2.5 and PM10, and this is certainly a limitation of this study.

Figures 7, 8 show different cell colors, formats, and patterns,
and it is the first single cell image dataset for Tradescantia

clone 4430. The architectures of ANNs tested here were capable
of reading, learning, and generalizing the classification of cell
colors with vacuoles of different sizes. Vacuoles are multifunctional
organelles of plant cells, which can vary largely in size depending
on the amount of available water. They are lytic compartments,
function as reservoirs for ions and metabolites, such as pigments,
and are crucial to processes of detoxification and general cell
homeostasis (Zhang et al., 2014; Kaiser and Scheuring, 2020). They
are involved in cellular responses to environmental and biotic
factors that provoke stress (Marty, 1999).

The vacuole plays a role to maintain pressure against the inside
of cell wall, giving the cell shape and helping in support. Turgor
pressure within cells is regulated by osmosis, and this also causes
the cell wall to expand. Along with size, rigidity of the cell is also

caused by turgor pressure; a lower pressure results in a wilted cell
(Fricke, 2017). The plant’s turgor pressure is regulated by the cell’s
semipermeable membrane, selectively permitting certain solutes to
enter and exit the cell, thereby sustaining a minimum pressure
(Steudle et al., 1977). Other mechanisms include transpiration,
which results in water loss and decreases turgidity in cells
(Waggoner and Zelitch, 1965). Turgor pressure is also a large factor
for nutrient transport throughout the plant. Different cell formats
found on the Trad-204 dataset (Figure 8) might be related to turgor
pressure inside cells.

Turgidity occurs when the membrane of the cell exerts
pressure against the cell wall, resulting in high turgor pressure,
or more rounded cells. Conversely, low turgor pressure leads to
cell flaccidity and rectangular shape, which is evident in plants
through wilted anatomical structures–a phenomenon known as
plasmolysis (Stadelmann, 1966). The volume and geometry of the
cell influence turgor pressure, impacting the plasticity of cell wall.
Research indicates that smaller cells undergo a more pronounced
elastic change compared with larger cells (Steudle et al., 1977).
Turgor pressure also plays a crucial role in plant cell growth,
causing irreversible expansion of the cell wall due to turgor
pressure’s force and inducing structural changes that modify its
extensibility (Jordan and Dumais, 2010). Although turgor has long
been assumed to be a rather passive contributor to cell shaping,
recent reports show that, in some cells, differential changes in
turgor may have a role in establishing specialized cell form (Martin
et al., 2001).

Several articles have shown the comparison between VGGs and
ResNET for image classification (Wieslander et al., 2017; Reddy
and Juliet, 2019; Ikechukwu et al., 2021; Jusman, 2023) and have
had similar performances compared with our research. Wieslander
et al. (2017) showed that ResNet was shown to be the preferable
network, with a higher accuracy and a smaller standard deviation
than VGG. Ikechukwu et al. (2021) compared three ANNs (VGG-
19 ResNet-50 IykeNet) performed very well, but VGG-19 had
higher accuracy, specificity, precision, and recall. Jusman (2023)
unveiled that ResNet-101 acquired the greatest results with an
average accuracy of 97.70%, precision of 93.19%, recall of 93.25%,
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specificity of 98.62%, and F-score of 93.11%, demonstrating its
superiority over VGG-19 in classifying prostate cell images based
on testing data.

One disadvantage of VGG architecture is that it cannot get too
deep in layers because it starts to lose the generalization capability,
i.e., it starts overfitting (Qian et al., 2020; Pardede et al., 2021;
Santos and Papa, 2022). This is because as the ANN gets deeper,
gradients from the loss function start to shrink to zero, and the
weights are not updated (Zhang et al., 2023). This is known as
the notorious problem of vanishing/exploding gradients (Bengio
et al., 1994; Glorot and Bengio, 2010; Basodi et al., 2020). ResNet
solved this problem by using skip connections (Jakubec et al., 2021;
Santos-Bustos et al., 2022).

5 Conclusion

Tradescantia revealed sensibility after exposure to air pollution
proxy PM and diesel-contaminated soil. Pink cell appearance
presented a higher correlation with PM10 when compared with
PM2.5. The experiments described here provided images for
constructing the single-cell Trad-204 dataset, which can be used
as a resource for testing and validating automated image-analysis
algorithms. It is the first dataset containing single cell images
from Tradescantia clone 4430, a biomarker and biomonitor for
environmental changes and stressors.

Among the graphs used for color classification, ResNET-34 had
100% accuracy in classifying a subset of 106 images from the Trad-
204 dataset and also achieved high validation accuracy with the least
number of epochs. Other ANN architectures such as TinyVGG and
VGG16 demonstrated good performances (accuracy between 77%
and 98%) while the baseline model had the worst performance.

For further studies, other ANN architectures can be explored
while the Tradescantia stamen hair cell dataset can be expanded
with images from new experiments. Data augmentation and
different normalization strategies can be adopted to improve image
recognition and generalization. Another step in the research is to
use algorithms for cell segmentation, such as Contour Proposal
Networks (CPNs), to crop the cells from stamen hair images
and then apply neural networks to classify cell colors. Another
suggestion is to create labels for cell shapes and test recognition of
shape patterns using artificial neural networks. There is evidence
showing that environmental stress factors can cause changes in
biological cell shape into giant, dwarf, bent, benched, and stunted
cells (Caldwell et al., 1974; Cosgrove, 1997; Mykytczuk et al., 2007;
Cook et al., 2008).

The methods presented here can be adapted in other
studies that require the identification and counting of plant or
animal cells. Environmental biomonitoring works in conjunction
with the physical or chemical monitoring of environmental
stressors, whether they are present in the air, water, or soil.
This research helps to get quicker and more accurate results
with bioindicators so that we can act more effectively through
actions in reducing pollutant sources. Future and strengthening
of biomonitoring in public policies and regulations depends
on continuous development, standardizing the techniques used
for each bioindicator. This will improve the cost-benefit ratio
for its application as an environmental decision-making tool,

demonstrating that biomonitoring is a crucial tool for highlighting
environmental changes caused by anthropogenic actions.
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