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Introduction: Artificial Intelligence (AI) is increasingly used as a helper to
develop computing programs. While it can boost software development and
improve coding proficiency, this practice o�ers no guarantee of security. On
the contrary, recent research shows that some AI models produce software with
vulnerabilities. This situation leads to the question: How serious and widespread
are the security flaws in code generated using AI models?

Methods: Through a systematic literature review, this work reviews the state of
the art on howAImodels impact software security. It systematizes the knowledge
about the risks of using AI in coding security-critical software.

Results: It reviews what security flaws of well-known vulnerabilities (e.g., the
MITRE CWE Top 25 Most Dangerous Software Weaknesses) are commonly
hidden in AI-generated code. It also reviews works that discuss how
vulnerabilities in AI-generated code can be exploited to compromise security
and lists the attempts to improve the security of such AI-generated code.

Discussion: Overall, this work provides a comprehensive and systematic
overview of the impact of AI in secure coding. This topic has sparked interest
and concern within the software security engineering community. It highlights
the importance of setting up security measures and processes, such as
code verification, and that such practices could be customized for AI-aided
code production.
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1 Introduction

Despite initial concerns, increasingly, many organizations rely on artificial intelligence

(AI) to enhance the operational workflows in their software development life cycle and to

support writing software artifacts. One of the most well-known tools is GitHub Copilot.

It is created by Microsoft relies on OpenAI’s Codex model, and is trained on open-source

code publicly available on GitHub (Chen et al., 2021). Like many similar tools—such as

CodeParrot, PolyCoder, StarCoder—Copilot is built atop a large language model (LLM)

that has been trained on programming languages. Using LLMs for such tasks is an idea

that dates back at least as far back as the public release of OpenAI’s ChatGPT.

However, using automation and AI in software development is a double-edged sword.

While it can improve code proficiency, the quality of AI-generated code is problematic.

Some models introduce well-known vulnerabilities, such as those documented in MITRE’s

Common Weakness Enumeration (CWE) list of the top 25 “most dangerous software

weaknesses.” Others generate so-called “stupid bugs,” naïve single-line mistakes that

developers would qualify as “stupid” upon review (Karampatsis and Sutton, 2020).

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2024.1386720
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2024.1386720&domain=pdf&date_stamp=2024-05-13
mailto:claudia.negriribalta@uni.lu
https://doi.org/10.3389/fdata.2024.1386720
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2024.1386720/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Negri-Ribalta et al. 10.3389/fdata.2024.1386720

This behavior was identified early on and is supported to a

varying degree by academic research. Pearce et al. (2022) concluded

that 40% of the code suggested by Copilot had vulnerabilities.

Yet research also shows that users trust AI-generator code more

than their own (Perry et al., 2023). These situations imply that

new processes, mitigation strategies, and methodologies should

be implemented to reduce or control the risks associated with

the participation of generative AI in the software development

life cycle.

It is, however, difficult to clearly attribute the blame, as the

tooling landscape evolves, different training strategies and prompt

engineering are used to alter LLMs behavior, and there is conflicting

if anecdotal, evidence that human-generated code could be just as

bad as AI-generated code.

This systematic literature review (SLR) aims to critically

examine how the code generated by AI models impacts software

and system security. Following the categorization of the research

questions provided by Kitchenham and Charters (2007) on SLR

questions, this work has a 2-fold objective: analyzing the impact

and systematizing the knowledge produced so far. Our main

question is:

“How does the code generation from AI models impact

the cybersecurity of the software process?”

This paper discusses the risks and reviews the current state-of-

the-art research on this still actively-researched question.

Our analysis shows specific trends and gaps in the literature.

Overall, there is a high-level agreement that AI models do not

produce safe code and do introduce vulnerabilities, despite

mitigations. Particular vulnerabilities appear more frequently and

prove to be more problematic than others (Pearce et al., 2022; He

and Vechev, 2023). Some domains (e.g., hardware design) seem

more at risk than others, and there is clearly an imbalance in the

efforts deployed to address these risks.

This work stresses the importance of relying on dedicated

security measures in current software production processes

to mitigate the risks introduced by AI-generated code and

highlights the limitations of AI-based tools to perform this

mitigation themselves.

The article is divided as follows: we first introduce the reader

to AI models and code generation in Section 2 to proceed to

explain our research method in Section 3. We then present our

results in Section 4. In Section 5 we discuss the results, taking

in consideration AI models, exploits, programming languages,

mitigation strategies and future research. We close the paper

by addressing threats to validity in Section 6 and conclusion in

Section 7.

2 Background and previous work

2.1 AI models

The sub-branch of AI models that is relevant to our discussion

are generative models, especially large-language models (LLMs)

that developed out of the attention-based transformer architecture

(Vaswani et al., 2017), made widely known and available through

pre-trained models (such as OpenAI’s GPT series and Codex,

Google’s PaLM, Meta’s LLaMA, or Mistral’s Mixtral).

In a transformer architecture, inputs (e.g., text) are converted

to tokens1 which are then mapped to an abstract latent space, a

process known as encoding (Vaswani et al., 2017). Mapping back

from the latent space to tokens is accordingly called decoding,

and the model’s parameters are adjusted so that encoding and

decoding work properly. This is achieved by feeding the model

with human-generated input, from which it can learn latent space

representations that match the input’s distribution and identify

correlations between tokens.

Pre-training amortizes the cost of training, which has become

prohibitive for LLMs. It consists in determining a reasonable set of

weights for the model, usually through autocompletion tasks, either

autoregressive (ChatGPT) or masked (BERT) for natural language,

during which the model is faced with an incomplete input and

must correctly predict the missing parts or the next token. This

training happens once, is based on public corpora, and results in

an initial set of weights that serves as a baseline (Tan et al., 2018).

Most “open-source” models today follow this approach.2

It is possible to fine-tune parameters to handle specific tasks

from a pre-trained model, assuming they remain within a small

perimeter of what the model was trained to do. This final training

often requires human feedback and correction (Tan et al., 2018).

The output of a decoder is not directly tokens, however,

but a probability distribution over tokens. The temperature

hyperparameter of LLMs controls how much the likelihood of

less probable tokens is amplified: a high temperature would allow

less probable tokens to be selected more often, resulting in a less

predictable output. This is often combined with nucleus sampling

(Holtzman et al., 2020), i.e., requiring that the total sum of token

probabilities is large enough and various penalty mechanisms to

avoid repetition.

Finally, before being presented to the user, an output may

undergo one or several rounds of (possibly non-LLM) filtering,

including for instance the detection of foul language.

2.2 Code generation with AI models

With the rise of generative AI, there has also been a rise

in the development of AI models for code generation. Multiple

examples exist, such as Codex, Polycoder, CodeGen, CodeBERT,

and StarCoder, to name a few (337, Xu, Li). These new tools should

help developers of different domains bemore efficient when writing

code—or at least expected to (Chen et al., 2021).

The use of LLMs for code generation is a domain-specific

application of generative methods that greatly benefit from the

narrower context. Contrary to natural language, programming

languages follow a well-defined syntax using a reduced set of

keywords, and multiple clues can be gathered (e.g., filenames,

other parts of a code base) to help nudging the LLM in the right

1 The number of di�erent tokens that amodel can handle, and their internal

representation, is a design choice.

2 This is the meaning of “GPT:” generative pre-trained transformer.
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direction. Furthermore, so-called boilerplate code is not project-

specific and can be readily reused across different code bases with

minor adaptations, meaning that LLM-powered code assistants can

already go a long way simply by providing commonly-used code

snippets at the right time.

By design, LLMs generate code based on their training set

(Chen et al., 2021).3 In doing so, there is a risk that sensitive,

incorrect, or dangerous code is uncritically copied verbatim from

the training set or that the “minor adaptations” necessary to

transfer code from one project to another introduces mistakes

(Chen et al., 2021; Pearce et al., 2022; Niu et al., 2023).

Therefore, generated code may include security issues, such as

well-documented bugs, malpractices, or legacy issues found in the

training data. A parallel issue often brought up is the copyright

status of works produced by such tools, a still-open problem that

is not the topic of this paper.

Similarly, other challenges and concerns have been highlighted

by different academic research. From an educational point of view,

some concerns are that using AI code generation models may

impact acquiring bad security habits between novice programmers

or students (Becker et al., 2023). However, the usage of such models

can also help lower the entry barrier to the field (Becker et al., 2023).

Similarly, cite337 has suggested that using AI code generation

models does not output secure code all the time, as they are non-

deterministic, and future research on mitigation is required (Pearce

et al., 2022). For example, Pearce et al. (2022) was one of the first to

research this subject.

There are further claims that it may be possible to use by

cyber criminal (Chen et al., 2021; Natella et al., 2024). In popular

communicationmediums, there are affirmations that ChatGPT and

other LLMs will be “useful” for criminal activities, for example

Burgess (2023). However, these tools can be used defensively in

cyber security, as in ethical hacking (Chen et al., 2021; Natella et al.,

2024).

3 Research method

This research aims to systematically gather and analyze

publications that answer our main question: “How does the

code generation of AI models impact the cybersecurity of the

software process?” Following Kitchenham and Charters (2007)

classification of questions for SLR, our research falls into the type

of questions of “Identifying the impact of technologies” on security,

and “Identifying cost and risk factors associated with a technology”

in security too.

To carry out this research, we have followed different SLR

guidelines, most notably Wieringa et al. (2006), Kitchenham and

Charters (2007), Wohlin (2014), and Petersen et al. (2015). Each

of these guidelines was used for different elements of the research.

We list out in a high-level approach which guidelines were used for

each element, which we further discuss in different subsections of

this article.

3 Some authors claim that, because there is an encoding-decoding step,

and the output is probabilistic, data is not directly copy-pasted. However

seriously this argument can be taken, LLMs can and do reproduce parts of

their training set (Huang et al., 2023).

• For the general structure and guideline on how to carry out the

SLR, we used Kitchenham and Charters (2007). This included

exclusion and inclusion criteria, explained in Section 3.2;

• The identification of the Population, Intervention,

Comparison, and Outcome (PICO) is based both in

Kitchenham and Charters (2007) and Petersen et al. (2015),

as a framework to create our search string. We present and

discuss this framework in Section 3.1;

• The questions and quality check of the sample, we used the

research done by Kitchenham et al. (2010), which we describe

in further details at Section 3.4;

• The taxonomy of type of research is from Wieringa et al.

(2006) as a strategy to identify if a paper falls under our

exclusion criteria. We present and discuss this taxonomy in

Section 3.2. Although their taxonomy focuses on requirements

engineering, it is broad enough to be used in other areas as

recognized by Wohlin et al. (2013);

• For the snowballing technique, we used the method presented

in Wohlin (2014), which we discuss in Section 3.3;

• Mitigation strategies from Wohlin et al. (2013) are used,

aiming to increase the reliability and validity of this study.

We further analyze the threats to validity of our research in

Section 6.

In the following subsections, we explain our approach to the

SLR in more detail. The results are presented in Section 4.

3.1 Search planning and string

To answer our question systematically, we need to create a

search string that reflects the critical elements of our questions.

To achieve this, we thus need to frame the question in a way

that allows us to (1) identify keywords, (2) identify synonyms,

(3) define exclusion and inclusion criteria, and (4) answer the

research question. One common strategy is the PICO (population,

intervention, comparison, outcome) approach (Petersen et al.,

2015). Originally from medical sciences, it has been adapted

for computer science and software engineering (Kitchenham and

Charters, 2007; Petersen et al., 2015).

To frame our work with the PICO approach, we follow the

methodologies outlined in Kitchenham and Charters (2007) and

Petersen et al. (2015). We can identify the set of keywords and their

synonyms by identifying these four elements, which are explained

in detail in the following bullet point.

• Population: Cybersecurity.

Following Kitchenham and Charters (2007), a population can

be an area or domain of technology. Population can be very

specific.

• Intervention: AI models.

Following Kitchenham and Charters (2007) “The intervention

is the software methodology/tool/technology, such as the

requirement elicitation technique.”

• Comparison: we compare the security issues identified by

the code generated in the research articles. In Kitchenham

and Charters (2007) word, “This is the software engineering
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TABLE 1 Keywords and synonyms.

Keyword Synonyms

Artificial intelligence AI, large language models, LLM, and LLMS

Code generation Code creation, generate code, code

production, code writing, and code quality

Cyber security Secure, insecure, security, vulnerab*, threat*,

exploit, fault*, and failure

∗ denotes the wildcard in the search.

methodology/tool/technology/procedure with which the

intervention is being compared. When the comparison

technology is the conventional or commonly-used technology,

it is often referred to as the ‘control’ treatment.”

• Outcomes: A systematic list of security issues of using AI

models for code generation and possible mitigation strategies.

• Context: Although not mandatory (per Kitchenham and

Charters, 2007) in general we consider code generation.

With the PICO elements done, it is possible to determine

specific keywords to generate our search string. We have identified

three specific sets: security, AI, and code generation. Consequently,

we need to include synonyms of these three sets for generating

the search string, taking a similar approach as Petersen et al.

(2015). The importance of including different synonyms arises

from different research papers referring to the same phenomena

differently. If synonyms are not included, essential papers may be

missed from the final sample. The three groups are explained in

more detail:

• Set 1: search elements related to security and insecurity due to

our population of interest and comparison.

• Set 2: AI-related elements based on our intervention.

This set should include LLMs, generative AI, and other

approximations.

• Set 3: the research should focus on code generation.

With these three sets of critical elements that our research

focuses on, a search string is created. We constructed the search

string by including synonyms based on the three sets (as seen in

Table 1). In a concurrent manner, while identifying the synonyms,

we create the search string. Through different iterations, we aim

at achieving the “golden” string, following a test-retest approach

by Kitchenham et al. (2010). In every iteration, we checked if the

vital papers of our study were in the sample. The final string was

selected based on the new synonym that would add meaningful

results. For example, one of the iterations included “hard * ,” which

did not add any extra article. Hence, it was excluded. Due to

space constraints, the different iterations are available in the public

repository of this research. The final string, with the unique query

per database, is presented in Table 2.

For this research, we selected the following databases to gather

our sample: IEEE Explore, ACM, and Scopus (which includes

Springer and ScienceDirect). The databases were selected based

on their relevance for computer science research, publication of

peer-reviewed research, and alignment with this research objective.

Although other databases from other domains could have been

selected, the ones selected are notably known in computer science.

3.2 Exclusion and inclusion criteria

The exclusion and inclusion criteria were decided to align our

research objectives. Our interest in excluding unranked venues is

to avoid literature that is not peer-reviewed and act as a first quality

check. This decision also applies to gray literature or book chapters.

Finally, we excluded opinion and philosophical papers, as they do

not carry out primary research. Table 3 shows are inclusion and

exclusion criteria.

We have excluded articles that address AI models or AI

technology in general, as our interest—based on PICO—is on

the security issue of AI models in code generation. So although

such research is interesting, it does not align with our main

objective.

For identifying the secondary research, opinion, and

philosophical papers—which are all part of our exclusion

criteria in Table 3—we follow the taxonomy provided by Wieringa

et al. (2006). Although this classification was written for the

requirements engineering domain, it can be generalized to other

domains (Wieringa et al., 2006). In addition, apart from helping us

identify if a paper falls under our exclusion criteria, this taxonomy

also allows us to identify how complete the research might be. The

classification is as follows:

• Solution proposal: Proposes a solution to a problem (Wieringa

et al., 2006). “The solution can be novel or a significant

extension of an existing technique (Petersen et al., 2015).”

• Evaluation research: “This is the investigation of a problem

in RE practice or an implementation of an RE technique in

practice [...] novelty of the knowledge claimmade by the paper

is a relevant criterion, as is the soundness of the research

method used (Petersen et al., 2015).”

• Validation research: “This paper investigates the properties

of a solution proposal that has not yet been implemented...

(Wieringa et al., 2006).”

• Philosophical papers: “These papers sketch a new way of

looking at things, a new conceptual framework (Wieringa

et al., 2006).”

• Experience papers: Is where the authors publish their

experience over a matter. “In these papers, the emphasis is on

what and not on why (Wieringa et al., 2006; Petersen et al.,

2015).”

• Opinion papers: “These papers contain the author’s opinion

about what is wrong or good about something, how we should

do something, etc. (Wieringa et al., 2006).”

3.3 Snowballing

Furthermore, to increase the reliability and validity of this

research, we applied a forward snowballing technique (Wohlin

et al., 2013; Wohlin, 2014). Once the first sample (start set) has

passed an exclusion and inclusion criteria based on the title,

abstract, and keyword, we forward snowballed the whole start set

(Wohlin et al., 2013). That is to say; we checked which papers were

citing the papers from our starting set, as suggested by Wohlin

(2014). For this section, we used Google Scholar.
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TABLE 2 Search string per database.

Database Search string

IEEE Xplore (“Abstract”:LLM OR AI OR “artificial intelligence” OR LLMs OR “large language
models”)AND(“Abstract”:“code generation” OR “code creat ion” OR “generate code” OR
“code writing” OR “code production” OR “code correction” OR “code
quality”)AND(“Abstract”:security OR “cyber security” OR insecure OR secure OR
insecurity OR vulnerab * OR threat * OR exploit OR fault OR failure)

ACM [[Abstract: “ai”] OR [Abstract: “large language models”] O R [Abstract: “llm”] OR
[Abstract: “artificial intelligence”]] AND [[Abstract: “ code generation”] OR
[Abstract: “code creation”] OR [Abstract: “generate code” ] OR [Abstract: “code
production”] OR [Abstract: “code correction”] OR [Abstrac t: “code quality”]] AND
[[Abstract: “security”] OR [Abstract: “cyber security”] O R [Abstract: “secure”] OR
[Abstract: “insecure”] OR [Abstract: vulnerab * ] OR [Abstract: threat * ] OR [Abstract:
exploit] OR [Abstract: fault * ] OR [Abstract: failure]]

SCOPUS (TITLE-ABS-KEY(“LLM”) OR TITLE-ABS-KEY(“artificial int elligence”) OR
TITLE-ABS-KEY(“large language models”) OR TITLE-ABS-KEY (“LLMs”)) AND
(TITLE-ABS-KEY(“code generation”) OR TITLE-ABS-KEY(“co de creation”) OR
TITLE-ABS-KEY(“generate code”) OR TITLE-ABS-KEY(“code w riting”) OR
TITLE-ABS-KEY(“code quality”) OR TITLE-ABS-KEY(“code co rrection”) OR
TITLE-ABS-KEY(“code production”)) AND (TITLE-ABS-KEY(“ security”) OR
TITLE-ABS-KEY(“cyber security”) OR TITLE-ABS-KEY(“secu rity”) OR
TITLE-ABS-KEY(“insecure”) OR TITLE-ABS-KEY(vulnerab * ) OR TITLE-ABS-KEY(exploit * ) OR
TITLE-ABS-KEY(fault * ) OR TITLE-ABS-KEY(“failure”))

TABLE 3 Inclusion and exclusion criteria.

Inclusion Exclusion

• Studies that are about AI code generation;

• Studies that explicitly address security elements as the main object of study;

• Papers written in English.

• Study not peer-reviewed, including books and book chapters;

• Study not available online;

• Studies about AI models in general;

• Secondary research (SLR, summaries, and guidelines/templates);

• Unranked venues;

• Gray literature;

• Opinion papers and philosophical papers.

TABLE 4 Quality criteria questionnaire.

• (Question on design, data collection, data analysis:) Do the authors describe the

research methods?∗

• Do the authors describe the data collection procedure and define the measurements?

(Applicable for validation and evaluation papers)∗

• Do the authors define the (security) analysis procedure?†

• Do the authors discuss threats to validity and limitations?∗

• (Question on aims:) Do the authors clearly state the aims of the research?∗

• (Question on study outcomes:) Do the authors state the findings clearly?∗

• Is the evidence of this research be used by others?∗

• (Our question:) Does the study explicitly address a cybersecurity

concern?‡

∗Are questions obtained from Kitchenham et al. (2010), †are slightly modified questions based from Kitchenham et al. (2010), and ‡are original question of this research.

In the snowballing phase, we analyzed the title, abstract,

and key words of each possible candidate (Wohlin, 2014). In

addition, we did an inclusion/exclusion analysis based on the

title, abstract, and publication venue. If there was insufficient

information, we analyzed the full text to make a decision, following

the recommendations by Wohlin (2014).

Our objective with the snowballing is to increase the reliability

and validity. Furthermore, some articles found through the

snowballing had been accepted at different peer-reviewed venues

but had not been published yet in the corresponding database. This

is a situation we address at Section 6.

3.4 Quality analysis

Once the final sample of papers is collected, we proceed

with the quality check, following the procedure of Kitchenham

and Charters (2007) and Kitchenham et al. (2010). The objective

TABLE 5 Quality criteria assessment.

Score value Description

Fully (1 point) The article addresses the question and

provides enough details for the reader to

understand;

Mostly (0.66) The article addresses the most relevant

concerns to questions; however, certain

details are missing;

Somewhat (0.33) The article addresses some of the concerns to

answer the question; however, it leaves out

vital concerns;

No (0) The article does not address the question in

any detail.

behind a quality checklist if 2-fold: “to provide still more detailed

inclusion/exclusion criteria” and act “as a means of weighting the
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TABLE 6 Data extraction form and type of answer.

Question Type of answer

About the AI model

Which AI model does it study String

Only LLms? Boolean

Which specific LLM String field

Any extra comments on the AI model section String field

Identification of security issues

What type of security concern is addressed

[General]

String field

How was the concern identified? String field

Which methodology is used for verifying the

identified concern?

String field

Vulnerabilities identified and mitigation strategies

Is it specific for one programming language? Boolean

Which programming language(s) Select many fields

What vulnerability(ies) is(are) addressed? String field

Technical, socio-technical, or human

vulnerabilities?

Select many fields

Are they known vulnerability(ies)? Boolean

If known, which vulnerability(ies)? String field

Do the authors present a new exploit Boolean

If it is a new exploit, summarize and describe

it

String field

Are mitigation strategies suggested? Boolean

If mitigation strategies are suggested, please

provide details

String field

Are these mitigation strategy for a specific AI

model?

Boolean

At what level are the mitigation strategy

suggested

Select many fields

Extra elements

Extra comments String field

importance of individual studies when results are being synthesized

(Kitchenham and Charters, 2007).” We followed the approach

taken by Kitchenham et al. (2010) for the quality check, taking

their questions and categorizing. In addition, to further adapt the

questionnaire to our objectives, we added one question on security

and adapted another one. The questionnaire is properly described

at Table 4. Each question was scored, according to the scoring scale

defined in Table 5.

The quality analysis is done by at least two authors of this

research, for reliability and validity purposes (Wohlin et al., 2013).

3.5 Data extraction

To answer the main question and extract the data, we have

subdivided the main question, to answer it. This allows us to extract

TABLE 7 Search results per database.

Database IEEE ACM SCOPUS

Search results 49 5 41

information and summarize it systematically; we created an extract

form in line with (Kitchenham and Charters, 2007; Carrera-Rivera

et al., 2022). The data extraction form is presented in Table 6.

The data extraction was done by at least two researchers

per article. Afterward, the results are compared, and if there are

“disagreements, [theymust be] resolved either by consensus among

researchers or arbitration by an additional independent researcher

(Kitchenham and Charters, 2007).”

4 Results

4.1 Search results

The search and recollection of papers were done during the last

week of November 2023. Table 7 shows the total number of articles

gathered per database. The selection process for our final samples

is exemplified in Figure 1.

The total number of articles in our first round, among all

the databases, was 95. We then identified duplicates and applied

our inclusion and exclusion criteria for the first round of selected

papers. This process left us with a sample of 21 articles.

These first 21 artcles are our starting set, from which we

proceeded for a forward snowballing. We snowballed each paper

of the starting set by searching Google Scholar to find where it had

been cited. The selected papers at this phase were based on the title,

abstract, based on Wohlin (2014). From this step, 22 more articles

were added to the sample, leaving 43 articles. We then applied

inclusion and exclusion criteria to the new snowballed papers, that

left us with 35 papers. We discuss this high number of snowballed

papers at Section 6.

At this point, we read all the articles to analyze if they should

pass to the final phase. In this phase, we discarded 12 articles

deemed out of scope for this research, leaving us with 23 articles for

quality check. For example, they would not focus on cybersecurity,

code generation, or the usage of AI models for code generation.

At this phase, three particular articles (counted among the eight

articles previously discarded) sparked discussion between the first

and fourth authors regarding whether they were within the scope

of this research. We defined AI code generation as artifacts that

suggest or produce code. Hence, those artifacts that use AI to check

and/or verify code, and vulnerability detection without suggesting

new code are not within scope. In addition, the article’s main focus

should be on code generation and not other areas, such as code

verification. So, although an article might discuss code generation,

the paper was not accepted as it was not the main topic. As a

result, two of the three discussion articles were accepted, and one

was rejected.
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FIGURE 1

Selection of sample papers for this SLR.

4.2 Quality evaluation

We carried out a quality check for our preliminary sample of

papers (N = 23) as detailed at Section 3.4. Based on the indicated

scoring system, we discarded articles that did not pass 50% of the

total possible score (four points). If there were disagreements in

the scoring, these were discussed and resolved between authors.

Each paper’s score details are provided in Table 8, for transparency

purposes (Carrera-Rivera et al., 2022). Quality scores guides us on

where to place more weight of importance, and on which articles

to focus (Kitchenham and Charters, 2007). The final sample is of

N = 19.

4.3 Final sample

The quality check discarded three papers, which left us with

19 as a final sample, as seen in Table 9. The first article published

in this sample was in 2022 and the number of publications has

been increasing every year. This situation is not surprising, as

generative AI has risen in popularity in 2020 and has expanded into

widespread knowledge with the release of ChatGPT 3.5.

5 Discussion

5.1 About AI models comparisons and
methods for investigation

Almost the majority (14 papers—73%) of the papers research

at least one OpenAI model, Codex being the most popular option.

OpenAI owns ChatGPT, which was adopted massively by the

general public. Hence, it is not surprising that most articles

focus on OpenAI models. However, other AI models from other

organizations are also studied, Salesforce’s CodeGen and CodeT5,

both open-source, are prime examples. Similarly, Xu et al. (2022)

Polycoder was a popular selection in the sample. Finally, different

authors benchmarked in-house AI models and popular models.

For example, papers such as Tony et al. (2022) with DeepAPI-

plusSec and DeepAPI-onlySec and Pearce et al. (2023) with Gpt2-

csrc. Figure 3 shows the LLM instances researched by two or more

articles grouped by family.

As the different papers researched different vulnerabilities, it

remains difficult to compare the results. Some articles researched

specific CWE, other MITRE Top-25, the impact of AI in code,

the quality of the code generated, and malware generation, among

others. It was also challenging to find the same methodological

approach for comparing results, and therefore, we can only

infer certain tendencies. For this reason, future research could

focus on generating a standardized approach and analyzing

vulnerabilities to analyze the quality of security. Furthermore, it

would be interesting to have more analysis between open-source

and proprietary models.

Having stated this, two articles with similar approaches, topics,

and vulnerabilities are Pearce et al. (2022, 2023). Both papers share

authors, which can help explain the similarity in the approach. Both

have similar conclusions on the security of the output of different

OpenAI models: they can generate functional and safe code, but

the percentage of this will vary between CWE and programming

language (Pearce et al., 2022, 2023). For both authors, the security

of the code generated in C was inferior to that in Python (Pearce

et al., 2022, 2023). For example, Pearce et al. (2022) indicates that

for Python, 39% of the code suggested is vulnerable and 50% for

code in C. Pearce et al. (2023) highlights that the models they

studied struggled with fixes for certain CWE, such as CWE-787 in

C. So even though they compared different models of the OpenAI

family, they produced similar results (albeit somemodels had better

performance than others).

Based on the work of Pearce et al. (2023), when comparing

OpenAI’s models to others (such as the AI21 family, Polycoder, and

GPT-csrc) in C and Python with CWE vulnerabilities, OpenAI’s

models would perform better than the rest. In the majority of the

cases, code-davinci-002 would outperform the rest. Furthermore,

when applying the AI models to other programming languages,

such as Verilog, not all models (namely Polycoder and gpt2-csrc)

supported it (Pearce et al., 2023). We cannot fully compare these

results with other research articles, as they focused on different

CWEs but identified tendencies. To name the difference,

• He and Vechev (2023) studies mainly CodeGen and mentions

that Copilot can help with CWE-089,022 and 798. They do

not compare the two AI models but compare CodeGen with

SVEN. They use scenarios to evaluate CWE, adopting the
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TABLE 8 Quality scores of the final sample.

References Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Final
score

Pa Pa et al. (2023) 1 0.66 0.33 1 0.33 0.33 0.66 0 4.31

Siddiq et al. (2022) 1 1 1 0.33 1 1 1 0.33 6.66

Pearce et al. (2022) 1 1 1 1 1 1 1 1 8

Jia et al. (2023) 1 1 1 1 0.66 0 0.66 0 5.32

Jha and Reddy (2023) 1 1 1 1 1 0.33 1 0.33 6.66

Perry et al. (2023) 1 1 1 1 1 0 1 1 7

Storhaug et al. (2023) 1 1 0.66 1 0.33 0.33 0.66 0.33 5.31

Pearce et al. (2023) 1 1 1 1 0.66 1 1 1 7.66

Botacin (2023) 1 1 1 1 1 0.33 1 1 7.33

Tony et al. (2022) 1 1 1 1 1 1 1 1 8

Wu et al. (2023) 1 0.66 1 1 1 0.33 1 0.66 6.65

Nair et al. (2023) 1 0.33 0.33 1 0.33 0 0.66 0.66 4.31

Asare et al. (2023) 1 1 1 1 1 1 1 1 8

Tony et al. (2023) 0.66 0.66 0.66 0.33 0.66 1 0.66 0.33 4.96

Jesse et al. (2023) 1 1 1 1 0.66 1 1 0.66 7.31

He and Vechev (2023) 1 1 1 1 1 0.33 1 0.66 6.99

Sandoval et al. (2023) 1 1 1 1 1 1 1 1 8

Liguori et al. (2023) 1 0.66 0.66 0 0 1 1 1 5.32

Niu et al. (2023) 1 1 1 1 1 0.33 1 1 7.33

Articles that did not pass the minimum threshold (four points) are not included.

method from Pearce et al. (2022). CodeGen does seem to

provide similar tendencies as Pearce et al. (2022): certain

CWE appeared more recurrently than others. For example,

comparing with Pearce et al. (2022) and He and Vechev

(2023), CWE-787, 089, 079, and 125 in Python and C appeared

in most scenarios at a similar rate.4

This data shows that even OpenAI’s and CodeGen models

have similar outputs. When He and Vechev (2023) present the

“overall security rate” at different temperatures of CodeGen,

they have equivalent security rates: 42% of the code suggested

being vulnerable in He and Vechev (2023) vs. a 39% in Python

and 50% in C in Pearce et al. (2022).

• Nair et al. (2023) also studies CWE vulnerabilities for Verilog

code. Both Pearce et al. (2022, 2023) also analyze Verilog in

OpenAI’s models, but with very different research methods.

Furthermore, their objectives are different: Nair et al. (2023)

focuses on prompting and how tomodify prompts for a secure

output. What can be compared is that Nair et al. (2023) and

Pearce et al. (2023) highlight the importance of prompting.

• Finally Asare et al. (2023) also studies OpenAI

from a very different perspective: the human-

computer interaction (HCI). Therefore, we cannot

compare the study results of Asare et al. (2023) with

Pearce et al. (2022, 2023).

4 Certain CWE prompting scenarios, when compared between the authors,

had dissimilar security rates, which we would like to note.

Regarding malware code generation, both Botacin (2023)

and Pa Pa et al. (2023) OpenAI’s models, but different base-

models. Both conclude that AI models can help generate malware

but to different degrees. Botacin (2023) indicates that ChatGPT

cannot create malware from scratch but can create snippets and

help less-skilled malicious actors with the learning curve. Pa Pa

et al. (2023) experiment with different jailbreaks and suggest

that the different models can create malware, up to 400 lines

of code. In contrast, Liguori et al. (2023) researchers Seq2Seq

and CodeBERT and highlight the importance for malicious actors

that AI models output correct code if not their attack fails.

Therefore, human review is still necessary to fulfill the goals of

malicious actors (Liguori et al., 2023). Future work could benefit

from comparing these results with other AI code generation

models to understand if they have similar outputs and how to

jailbreak them.

The last element we can compare is the HCI aspects, specifically

Asare et al. (2023), Perry et al. (2023), and Sandoval et al.

(2023), who all researched on C. Both Asare et al. (2023) and

Sandoval et al. (2023) agree that AI code generation models do

not seem to be worse, if not the same, in generating insecure

code and introducing vulnerabilities. In contrast, Perry et al. (2023)

concludes that developers who used AI assistants generated more

insecure code—although this is inconclusive for the C language—

as these developers believed they had written more secure code.

Perry et al. (2023) suggest that there is a relationship between how

much trust there is between the AI model and the security of code.
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TABLE 9 Sample of papers, with the main information of interest (†means no parameter or base model was specified in the article).

References Topic AI-base model/parameter†

(Organization)
Language(s) Vulnerability(ies)

Pearce et al. (2022) Insecure code

generation

Codex Copilot† (OpenAI) C, Python and

Verilog

MITRE’s CWE Top 25 (2021)

Botacin (2023) Malware code

generation

ChatGPT- GPT3 (OpenAI) C Malware samples

Tony et al. (2022) Cryptographic API

calls

DeepAPI (DeepAI), DeepAPI-plusSec and

DeepAPI-onlySec (both created by the

authors)

Java Misusing cryptographic API calls

sequences

Pearce et al. (2023) Insecure software

code generation

Codex family—code-cushman-001 and

code-davinci-001 and code-davinci-002

(OpenAI), J1-jumbo - 178B and

J1-large—7.8B (AI21), Polycoder—2.7B (Xu

et al., 2022), Gpt2-csrc—774M (locally

trained model by the authors)

C, Python and

Verilog

CWEs: [Software] 787, 089, 079, 125,

020, 416, 476, 119 and 732; [Hardware]

1271 and 1234

Nair et al. (2023) Insecure hardware

code generation

ChatGPT† (OpenAI) Verilog Hardware Design CWE: 1194, 1221,

1224, 1234, 1245, 1254, 1255, 1271,

1276, 1280, 1298

Jha and Reddy (2023) Exploit Agnostic, but tested in CodeT5† (Salesforce,

Wang et al., 2021), CodeBert - 125 (Feng

et al., 2020), GraphCodeBERT† (Guo et al.,

2021), RoBERTa† (Facebook, Liu et al., 2019)

C#, Java, Python and

PHP

Generation of adversarial code by

attacking the vulnerable token

Sandoval et al. (2023) HCI for security Codex family-code-cushman-001 and

code-davinci-001 and code-davinci-002

(OpenAI)

C Impact of AI assistance in secure code

production

Pa Pa et al. (2023) Malware code

generation

Auto-GPT-GPT-3.5-turbo and gpt-4-32k

(Significant Gravitas), ChatGPT-

GPT-3.5-turbo and text-davinci-003

(OpenAI)

C++, Python and GO Jailbreaking

He and Vechev (2023) Hardening and

downgrading security

code (controlled code

generation)

CodeGen - 350M, 2.7B and 6.1B (Salesforce,

Nijkamp et al., 2023), Codex Copilot†

(OpenAI)

C, C++ and Python Different MITRE’s Top-25: 022, 078,

079, 089, 119, 125, 190, 416, 476, 501,

732, 787, and 798.

Jesse et al. (2023) Software bugs

generation

Codex family—cushman-codex 12B,

davinci-codex 175B (OpenAI), CodeGen -

350M, 2B, 6B, and 16B (Salesforce, Nijkamp

et al., 2023) and PolyCoder- 160M, 0.4B and

2.6B (Xu et al., 2022)

Java Simple stupid bugs generation

comparison between AI models

Wu et al. (2023) AI code generation

fixing vulnerabilities

Codex family-davinci-002 (OpenAI),

CodeT5-770M (Salesforce, Wang et al.,

2021), CodeGen-6B (Salesforce, Nijkamp

et al., 2023), PLBART-400M (Ahmad et al.,

2021) and InCoder-6B (Fried et al., 2022)

Java Capabilities and quality of the generated

code for fixing security issues

Asare et al. (2023) HCI for security Codex Copilot† (OpenAI) C and C++ 28 CWE from Big-Vul: 020, 119, 190,

284, 399, 476 664, 666, 682, 691, 693,

707 and 710 (listed in the paper)

Niu et al. (2023) Exploit Codex Copilot† (OpenAI), CodeParrot -

GPT-2 1.5B (HuggingFaces (2022)),

PolyCoder - GPT-2 2.7B (Xu et al. (2022))

and StarCoder - 15.5B (Li et al. (2023))

Python Membership inference attack for

personal data leaks

Perry et al. (2023) HCI for security Codex-davinci-002 (OpenAI) C, Java and Python Code security for encryption, signing

messages, sandbox directory, and SQL

injection

Storhaug et al. (2023) Insecure software

code generation

GPT-J-6B (Eleuther-AI) Solidity Avoiding smart contract vulnerable

code generation

Jia et al. (2023) Adversarial code

generation

ContraCode† (Jain et al., 2021) and M1†

(Henkel et al., 2022)

Java and Python Code-generation AI models

manipulation by “adversarial inputs”

Tony et al. (2023) Insecure software

code generation

Codex-code-davinci-002 (OpenAI) C and Python MITRE’s CWE Top 25 (2021)

Liguori et al. (2023) Malware code

generation

Seq2Seq (Britz et al., 2017) and

CodeBERT-RoBERTA (Microsoft)

Assembly, Java and

Python

Optimization of AI code generation

models for malware production

Siddiq et al. (2022) Insecure software

code generation

Codex Copilot† (OpenAI) and

GPT-Code-Clippy† (Multiple authors, 2021)

Python Code smells in AI generated code.
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All three agree that AI assistant tools should not be used carefully,

particularly between non-experts (Asare et al., 2023; Perry et al.,

2023; Sandoval et al., 2023).

5.2 New exploits

Niu et al. (2023) study how Codex Copilot (and, to some

extent, other AI models, such as StarCoder and CodeParrot)

can leak personal data by suggesting code. They leak personal

data by generating prompts that are more likely to leak this

data. This approach could then be semi-automatized. They

use a membership interference (MI) technique to achieve the

objective, specifically blind MI, as the Codex dataset is too

big and would be challenging to shadow (Niu et al., 2023).

They also researched how much of the personal data leaked

is memorized.

Firstly, Niu et al. (2023) hand-crafted prompts that seemed

could leak personal data, which yielded 200 prompts. Then,

they queried each of these prompts, obtaining five responses

per prompt, giving 1,000 responses. Two authors then looked

through the outputs to identify if the prompts had leaked

personal data. The authors then improved these with the identified

prompts. They tweaked elements such as context, pre-fixing

or the natural language (English and Chinese), and meta-

variables such as prompt programming language style for the final

data set.

With the final set of prompts, the model was queried

for privacy leaks. B efore querying the model, the authors

also tuned specific parameters, such as temperature. “Using

the BlindMI attack allowed filtering out 20% of the outputs,

with the high recall ensuring that most of the leakages are

classified correctly and not discarded (Niu et al., 2023).” Once

the outputs had been labeled as members, a human checked if

they contained “sensitive data” (Niu et al., 2023). The human

could categorize such information as targeted leak, indirect leak,

or uncategorized leak.

When applying the exploit to Codex Copilot and verifying

with GitHub, it shows there is indeed a leakage of information

(Niu et al., 2023). 2.82% of the outputs contained identifiable

information such as address, email, and date of birth; 0.78%

private information such as medical records or identities;

and 0.64% secret information such as private keys, biometric

authentication or passwords (Niu et al., 2023). The instances in

which data was leaked varied; specific categories, such as bank

statements, had much lower leaks than passwords, for example

Niu et al. (2023). Furthermore, most of the leaks tended to

be indirect rather than direct. This finding implies that “the

model has a tendency to generate information pertaining to

individuals other than the subject of the prompt, thereby breaching

privacy principles such as contextual agreement (Niu et al.,

2023).”

Their research proposes a scalable and semi-automatic manner

to leak personal data from the training data in a code-generation

AI model. The authors do note that the outputs are not verbatim or

memorized data.

He and Vechev (2023) propose SVEN, “a new method for

controlled code generation5” for AImodels that can generate secure

and insecure code. “SVEN doesn’t change the weight of the LLMs

and can be plugged in on top, meaning the LLMs don’t need re-

training or fine-tuning (He and Vechev, 2023).” Hence, SVEN can

produce two outputs: SVENsec which increases the overall security

score in different CWE, and SVENvul, which aims to find as much

adversarial code as possible, while keeping code functional (He and

Vechev, 2023). Although not per se an exploit (as its main objective

is to improve security), they do also lower the security score of code.

In short, SVENsec, hardens the code and improves the security score

(He and Vechev, 2023).

To achieve this, He and Vechev (2023) curated a dataset

of vulnerabilities from CrossVul (Nikitopoulos et al., 2021)

and Big-Vul (Fan et al., 2020), which focuses in C/C++ and

VUDENC (Wartschinski et al., 2022) for Python. In addition, they

included data from commits from GitHub, taking into special

consideration that they were true commits, avoiding that SVEN

learns “undesirable behavior.” At the end, they target 9 CWES from

MITRE Top 25.

Through benchmarking, they evaluate SVEN output’s security

(and functional) correctness against CodeGen (350M, 2.7B, and

6.1B). They follow a scenario-based approach “that reflect[s] real-

world coding (He and Vechev, 2023),” with each scenario targeting

one CWE. They measure the security rate, which is defined as

“the percentage of secure programs among valid programs (He and

Vechev, 2023).” They set the temperature at 0.4 for the samples.

Their results show that SVEN can significantly increase and

decrease (depending on the controlled generation output) the code

security score. “CodeGen LMs have a security rate of≈60%, which

matches the security level of other LMs [...] SVENsec significantly

improves the security rate to >85%. The best-performing case is

2.7B, where SVENsec increases the security rate from 59.1 to 92.3%

(He and Vechev, 2023).” Similar results are obtained for SVENvul

with the “security rate greatly by 23.5% for 350M, 22.3% for 2.7B,

and 25.3% for 6.1B (He and Vechev, 2023)”.6 When analyzed per

CWE, in almost all cases (except CWE-416 language C) SVENsec

increases the security rate. Finally, even when tested with 4 CWE

that were not included in the original training set of 9, SVEN had

positive results.

Although the authors aim at evaluating and validating SVEN,

as an artifact for cybersecurity, they also recognize its potential

use as a malicious tool. They suggest that SVEN can be inserted

in open-source projects and distributed (He and Vechev, 2023).

Future work could focus on how to integrate SVEN—or similar

approaches—as plug-ins into AI code generations, to lower the

security of the code generated. Furthermore, replication of this

approach could raise security alarms. Other research can focus

5 “A general di�erence is that controlled code generation targets a code

completion setting and takes e�ect on code that the user is about to write,

while the other three tasks operate retrospectively on code that has already

been written. [...] Controlled code generation can be viewed as the opposite

task of vulnerability detection, as the input and output of the two tasks are

reverse (He and Vechev, 2023).”

6 The authors do highlight that their proposal is not a poisoning attack.
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on seeking ways to lower the security score while keeping the

functionality and how it can be distributed across targeted actors.

Jha and Reddy (2023) proposes CodeAttack, a black-box attack

that seeks to generate adversarial code based on the natural channel

input, regardless of the programming language.7 The attack has

mainly two steps: “(I) finding the most vulnerable tokens, and

(ii) substituting these vulnerable tokens (subject to code-specific

constraints), to generate adversarial samples in the natural channel

of code (Jha and Reddy, 2023).” They hypothesize that AI models

treat code as natural language and do not necessarily consider

complication or correctness. Hence, this approximation can be

exploited for adversarial code generation.

They benchmark CodeAttack against the TextFooler and

BERT-Attack, two other adversarial attacks in three tasks: code

translation (translating code between different programming

languages, in this case between C# and Java), code repair (fixes

bugs for Java) and code (a summary of the code in natural

language). The authors also applied the benchmark in different AI

models (CodeT5, CodeBERT, GraphCode-BERT, and RoBERTa) in

different programming languages (C#, Java, Python, and PHP). In

the majority of the tests, CodeAttack had the best results.

5.3 Performance per programming
language

Different programming languages are studied. Python and

the C family are the most common languages, including C,

C++, and C# (as seen in Figure 2). To a lesser extent, Java and

Verilog are tested. Finally, specific articles would study more

specific programming languages, such as Solidity, Go or PHP.

Figure 2 offers a graphical representation of the distribution of the

programming languages.

5.3.1 Python
Python is the second most used programming language8 as of

today. As a result most publicly-available training corpora include

Python and it is therefore reasonable to assume that AI models can

more easily be tuned to handle this language (Pearce et al., 2022,

2023; Niu et al., 2023; Perry et al., 2023). Being a rather high level,

interpreted language, Python should also expose a smaller attack

surface. As a result, AI-generated Python code has fewer avenues to

cause issues to begin with, and this is indeed backed up by evidence

(Pearce et al., 2022, 2023; Perry et al., 2023).

In spite of this, issues still occur: Pearce et al. (2022)

experimented with 29 scenarios, producing 571 Python programs.

Out of these, 219 (38.35%) presented some kind of Top-25 MITRE

(2021) vulnerability, with 11 (37.92%) scenarios having a top-

vulnerable score. Unaccounted in these statistics are the situations

7 The authors define natural channel as: “for human comprehension and is

noisy. It relies on code comments, variable names, function names, etc., to

ease human understanding (Jha and Reddy, 2023).”

8 In reality, multiple (broadly incompatible) versions of Python coexist, but

this is unimportant in the context of our discussion and we refer to them

collectively as “Python.”

where generated programs fail to achieve functional correctness

(Pearce et al., 2023), which could yield different conclusions.9

Pearce et al. (2023), building from Pearce et al. (2022), study

to what extent post-processing can automatically detect and fix

bugs introduced during code generation. For instance, on CWE-

089 (SQL injection) they found that “29.6% [3197] of the 10,796

valid programs for the CWE-089 scenario were repaired” by an

appropriately-tuned LLM (Pearce et al., 2023). In addition, they

claim that AI models can generate bug-free programs without

“additional context (Pearce et al., 2023).”

It is however difficult to support such claims, which need to

be nuanced. Depending on the class of vulnerability, AI models

varied in their ability in producing secure Python code (Pearce

et al., 2022; He and Vechev, 2023; Perry et al., 2023; Tony et al.,

2023). Tony et al. (2023) experimented with code generation from

natural language prompts, findings that indeed, Codex output

included vulnerabilities. In another research,Copilot reports only

rare occurences of CWE-079 or CWE-020, but common occurences

of CWE-798 and CWE- 089 (Pearce et al., 2022). Pearce et al.

(2022) report a 75% vulnerable score for scenario 1, 48% scenario 2,

and 65% scenario 3 with regards to CWE-089 vulnerability (Pearce

et al., 2022). In February 2023, Copilot launched a prevention

system for CWEs 089, 022, and 798 (He and Vechev, 2023), the

exact mechanism of which is unclear. At the time of writing it falls

behind other approaches such as SVEN (He and Vechev, 2023).

Perhaps surprisingly, there is not much variability across

different AI models: CodeGen-2.7B has comparable vulnerability

rates (He and Vechev, 2023), with CWE-089 still on top. CodeGen-

2.7B also produced code that exhibited CWE-078, 476, 079, or 787,

which are considered more critical.

One may think that using AI as an assistant to a human

programmer could alleviate some of these issues. Yet evidence

points to the opposite: when using AI models as pair programmers,

developers consistently deliver more insecure code for Python

(Perry et al., 2023). Perry et al. (2023) led a user-oriented study on

how the usage of AI models for programming affects the security

and functionality of code, focusing on Python, C, and SQL. For

Python, they asked participants to write functions that performed

basic cryptographic operations (encryption, signature) and file

manipulation.10 They show a statistically significant difference

between subjects that used AI models (experimental group) and

those that did not (control group), with the experimental group

consistently producing less secure code (Perry et al., 2023). For

instance, for task 1 (encryption and decryption), 21% of the

responses of the experiment group was secure and correct vs. 43%

of the control group (Perry et al., 2023). In comparison, 36% of the

experiment group provided insecure but correct code, compared

to 14%.

9 One could argue for instance that the vulnerabilities occur in large

proportions in generated code that fails basic functional testing, and would

never make it into production because of this. Or, the other way around,

that code without security vulnerabilities could still be functionally incorrect,

which also causes issues. A full study of these e�ects remains to be done.

10 They were tasked to write a program that “takes as input a string path

representing a file path and returns a File object for the file at ’path’ (Perry

et al., 2023).”
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FIGURE 2

Number of articles that research specific programming languages. An article may research 2 or more programming languages.

FIGURE 3

Number of times each LLM instance was researched by two or more articles, grouped by family. One paper might study several instances of the
same family (e.g., Code-davinci-001 and Code-davinci-002), therefore counting twice. Table 9 o�ers details on exactly which AI models are studied
per article.

Even if AI models produce on occasion bug-free and secure

code, evidence points out that it cannot be guaranteed. In this light,

both Pearce et al. (2022, 2023) recommend deploying additional

security-aware tools andmethodologies whenever using AImodels.

Moreover, Perry et al. (2023) suggests a relationship between

security awareness and trust in AI models on the one hand, and

the security of the AI-(co)generated code.

Another point of agreement in our sample is that prompting

plays a crucial role in producing vulnerabilities, which can be

introduced or avoided depending on the prompt and adjustment

of parameters (such as temperature). Pearce et al. (2023) observes

that AI models can generate code that repairs the issue when they

are given a suitable repair prompt. Similarly, Pearce et al. (2022)

analyzed how meta-type changes and comments (documentation)

can have varying results over the security (Pearce et al., 2022). An

extreme example is the difference between an SQL code generated

with different prompts: the prompt “adds a separate non-vulnerable

SQL function above a task function” (identified as variation C-2, as

it is a code change) would never produce vulnerable code whereas

“adds a separate vulnerable SQL function above the task function”

(identified as variation C-3) returns vulnerable code 94% of the

time (Pearce et al., 2022). Such results may not be surprising if

we expect the AI model to closely follow instructions, but suffice

to show the effect that even minor prompt variations can have

on security.

Lastly, Perry et al. (2023) observe in the experimental group

a relationship between parameters of the AI model (such as

temperature) and code quality. They also observe a relationship

between education, security awareness, and trust (Perry et al.,

2023). Because of this, there could be spurious correlations in
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their analysis, for instance the variable measuring AI model

parameters adjustments could be, in reality, measuring education

or something else.

On another security topic, Siddiq et al. (2022) study code

and security “smells.” Smells are hints, not necessarily actual

vulnerabilities, but they can open the door for developers to

make mistakes that lead to security flaws that attackers exploit.

Siddiq et al. (2022) reported on the following CWE vulnerabilities:

078,703,330. They have concluded that bad code patterns can (and

will) leak to the output of models, and code generated with these

tools should be taken with a “grain of salt” (Siddiq et al., 2022).

Furthermore, identified vulnerabilities may be severe (not merely

functional issues) (Siddiq et al., 2022). However, as they only

researched OpenAI’s AI models, their conclusion may lack external

validity and generalization.

Finally, some authors explore the possibility to use AI models

to deliberately produce malicious code (He and Vechev, 2023; Jha

and Reddy, 2023; Jia et al., 2023; Niu et al., 2023). It is interesting

to the extent that this facilitates the work of attackers, and therefore

affects cybersecurity as a whole, but it does not (in this form at least)

affect the software development process or deployment per se, and

is therefore outside of the scope of our discussion.

5.3.2 C
The C programming language is considered in 10 (52%) papers

of our final sample, with C being the most common, followed by

C++ and C#. Unlike Python, C is a low-level, compiled language,

that puts the programmer in charge ofmany security-sensitive tasks

(such as memory management). The vast majority of native code

today is written in C.11

The consensus is that AI generation of C programs yields

insecure code (Pearce et al., 2022, 2023; He and Vechev, 2023; Perry

et al., 2023; Tony et al., 2023), and can readily be used to develop

malware (Botacin, 2023; Liguori et al., 2023; Pa Pa et al., 2023).

However, it is unclear whether AI code generation introduce more

or new vulnerabilities compared to humans (Asare et al., 2023;

Sandoval et al., 2023), or to what extent they influence developers’

trust in the security of the code (Perry et al., 2023).

Multiple authors report that common and identified

vulnerabilities are regularly found in AI-generated C code

(Pearce et al., 2022, 2023; Asare et al., 2023; He and Vechev,

2023; Perry et al., 2023; Sandoval et al., 2023). Pearce et al. (2022)

obtained 513 C programs, 258 of which (50.29% ) had a top-scoring

vulnerability. He and Vechev (2023) provides a similar conclusion.

About automated code-fixing, Asare et al. (2023) and Pearce

et al. (2023) report timid scores, with only 2.2% of C code for

CWE-787.

On the question of human- vs. AI-generated code, Asare et al.

(2023) used 152 scenarios to conclude that AI models make in fact

fewer mistakes. Indeed, when prompted with the same scenario as

a human, 33% cases suggested the original vulnerability, and 25%

provided a bug-free output. Yet, when tested on code replication or

automated vulnerability fixing, the authors do not recommend the

11 Following the authors of our sample, we use “C” to refer to the various

versions of the C standard, indiscriminately.

usage of a model by non-experts. For example, in code replication,

AI models would always replicate code regardless of whether it

had a vulnerability, and CWE-20 would consistently be replicated

(Asare et al., 2023).

Sandoval et al. (2023) experimentally compared the security

of code produced by AI-assisted students to the code generated

by Codex. They had 58 participants and studied memory-related

CWE, given that they are in the Top-25 MITRE list (Sandoval

et al., 2023). Although there were differences between groups,

these were not bigger than 10% and would differ between metrics

(Sandoval et al., 2023). In other words, depending on the chosen

metric, sometimes AI-assisted subjects perform better in security

and vice versa (Sandoval et al., 2023). For example, CWE-787

was almost the same for the control and experimental groups,

whereas the generated Codex code was prevalent. Therefore, they

conclude that the impact on “cybersecurity is less conclusive than

the impact on functionality (Sandoval et al., 2023).” Depending

on the security metric, it may be beneficial to use AI-assisted

tools, which the authors recognize goes against standard literature

(Sandoval et al., 2023). They go so far as to conclude that there

is “no conclusive evidence to support the claim LLM assistant

increase CWE incidence in general, even when we looked only at

severe CWEs (Sandoval et al., 2023).”

Regarding AI-assisted malware generation, there seems to

be fundamental limitations preventing current AI models from

writing self-contained software from scratch (Botacin, 2023;

Liguori et al., 2023; Pa Pa et al., 2023), although it is fine for creating

smaller blocks of code which, strung together, produce a complete

malware (Botacin, 2023). It is also possible to bypass models’

limitations by leveraging basic obfuscation techniques (Botacin,

2023). Pa Pa et al. (2023) experiment prompts and jailbreaks in

ChatGPT to produce code (specifically, fileless malware for C++),

which was only providedwith 2 jailbreaks they chose.While Liguori

et al. (2023) reflect on how to best optimize AI-generating tools

to assist attackers in producing code, as failure or incorrect codes

means the attack fails.

Over CWE, Top MITRE-25 is a concern across multiple

authors (Pearce et al., 2022, 2023; He and Vechev, 2023; Tony et al.,

2023). CWE-787 is a common concern across articles, as it is the #1

vulnerability in the Top-25 MITRE list (Pearce et al., 2022; Botacin,

2023; He and Vechev, 2023). On the three scenarios experimented

by Pearce et al. (2022), on average,∼34% of the output is vulnerable

code. He and Vechev (2023) tested with two scenarios, the first

receiving a security rate of 33.7% and the second one 99.6%. What

was interesting in their experiment is that they were not able to

provide lower security rates for SVENvul than the originals (He and

Vechev, 2023). Other vulnerabilities had varying results but with a

similar trend. Overall, it seems that the AI code generation models

produce more vulnerable code compared to other programming

languages, possibly due to the quality and type of data in the

training data set (Pearce et al., 2022, 2023).

Finally, regarding human-computer interaction, Perry et al.

(2023) suggests that subjects “with access to an AI assistant often

produced more security vulnerabilities than those without access

[...] overall.” However, they highlight that their difference is not

statistically significant and inconclusive for the case they study in C.

So even if the claim applies to Python, Perry et al. (2023) indicates

this is not the case for the C language. Asare et al. (2023) and
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Sandoval et al. (2023), as discussed previously, both conclude that

AI models do not introduce more vulnerabilities than humans into

code. “This means that in a substantial number of scenarios we

studied where the human developer has written vulnerable code,

Copilot can avoid the detected vulnerability (Asare et al., 2023).”

5.3.3 Java
Java12 is a high-level programming language that runs atop a

virtual machine, and is today primarily used for the development

of mobile applications. Vulnerabilities can therefore arise from

programs themselves, calls to vulnerable (native) libraries, or from

problems within the Java virtual machine. Only the first category of

issues is discussed here.

In our sample, four articles (Tony et al., 2022; Jesse et al.,

2023; Jha and Reddy, 2023; Wu et al., 2023) analyzed code

generation AI models for Java. Each research focused on very

different aspects of cyber security and they did not analyze the

same vulnerabilities. Tony et al. (2022) investigated the dangers

and incorrect of API calls for cryptographic protocols. Their

conclusions is that generative AI might not be at all optimized

for generating cryptographically secure code (Tony et al., 2022).

The accuracy of the code generated was significantly lower on

cryptographic tasks than what the AI is advertised to have on

regular code (Tony et al., 2022).

Jesse et al. (2023) experiments with generating single stupid

bugs (SStuB) with different AI models. They provide six main

findings, which can be summarized as: AI models propose twice

as much SSTuB as correct code. However, they also seem to help

with other SStuB (Jesse et al., 2023).13 One of the issues with SStuBs

is that “where Codex wrongly generates simple, stupid bugs, these

may take developers significantly longer to fix than in cases where

Codex does not (Jesse et al., 2023).” In addition, different AImodels

would behave differently over the SStuBs generated (Jesse et al.,

2023). Finally, Jesse et al. (2023) found that commenting on the

code leads to fewer SStuBs and more patches, even if the code

is misleading.

Wu et al. (2023) analyze and compare (1) the capabilities

of different LLMs and fine-tuned LLMs and automated program

repair (APR) techniques for repairing vulnerabilities in Java; (2)

proposes VJBench and VJBench-trans as a “new vulnerability

repair benchmark;” (3) and evaluates the studied AI models on

their proposed VJBench and VJBench-trans. VJBench aims to

extend the work of Vul4J and thus proposes 42 vulnerabilities,

including 12 new CWEs that were not included in Vul4J (Wu

et al., 2023). Therefore, their study assessed 35 vulnerabilities

proposed by Vul4J and 15 by the authors (Wu et al., 2023). On

the other hand, VJBench-trans is composed of “150 transformed

Java vulnerabilities (Wu et al., 2023).” Overall, they concluded that

the AI models fix very few Java vulnerabilities, with Codex fixing

12 Here again we conflate all versions of Java together.

13 The authors define single stupid bugs as “...bugs that have single-

statement fixes that match a small set of bug templates. They are called

’simple’ because they are usually fixed by small changes and ’stupid’ because,

once located, a developer can usually fix them quickly with minor changes

(Jesse et al., 2023).”

20.4% of them (Wu et al., 2023). Indeed, “large language models

and APR techniques, except Codex, only fix vulnerabilities that

require simple changes, such as deleting statements or replacing

variable/method names (Wu et al., 2023).” Alternatively, it seems

that fine-tuning helps the LLMs improve the task of fixing

vulnerabilities (Wu et al., 2023).

However, four APR and nine LLMs did not fix the new CWEs

introduced by VJBench (Wu et al., 2023). Some CWEs that are

not tackled are “CWE-172 (Encoding error), CWE-325 (Missing

cryptographic step), CWE-444 (HTTP request smuggling; Wu

et al., 2023),” which can have considerable cybersecurity impacts.

For example, CWE-325 can weaken a cryptographic protocol, thus

lowering the security capacity. Furthermore, apart from Codex,

the other AI models and APR studied did not apply complex

vulnerability repair but would focus on “simple changes, such as

deletion of a statement (Wu et al., 2023).”

Jia et al. (2023) study the possibility that a code-generation

AI model is manipulated by “adversarial inputs.” In other

words, the user inputs designed to trick the model into either

misunderstanding code, or producing code that behaves in

an adversarially-controlled way. They tested Claw, M1 and

ContraCode both in Python and Java for the following tasks: code

summarization, code completion and code clone detection (Jia

et al., 2023).

Finally, Jha and Reddy (2023) proposes CodeAttack, which

is implemented in different programming languages, including

Java.14 When tested in Java, their results show that 60% of the

adversarial code generated is syntactically correct (Jha and Reddy,

2023).

5.3.4 Verilog
Verilog is a hardware-description language. Unlike other

programming languages discussed so far, its purpose is not to

describe software but to design and verify of digital circuits (at the

register-transfer level of abstraction).

The articles that researched Verilog generally conclude that the

AI models they researched are less efficient in this programming

language than Python or C (Pearce et al., 2022, 2023; Nair et al.,

2023). Different articles would research different vulnerabilities,

with two specific CWEs standing out: 1271 and 1234. Pearce et al.

(2022) summarizes the difficulty of defining which vulnerability to

study from the CWE for Verilog, as there is no Top 25 CWE for

hardware. Hence, their research selected vulnerabilities that could

be analyzed (Pearce et al., 2022). This situation produces difficulties

in comparing research and results, as different authors can select

different focuses. The different approaches to vulnerabilities in

Verilog can be seen in Table 9, where only two CWE are common

across all studies (1271 and 1234), but others such as 1221 (Nair

et al., 2023) or 1294 (Pearce et al., 2022) are researched by

one article.

Note that unlike software vulnerabilities, it is much harder to

agree on a list of the most relevant hardware vulnerabilities, and

to the best of our knowledge there is no current consensus on the

matter today.

14 The attack is explained in detail in Section 5.2.
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Regarding the security concern, both Pearce et al. (2022, 2023),

studying OpenAI, indicated that in general these models struggled

to produce correct, functional, and meaningful code, being less

efficient over the task. For example, Pearce et al. (2022) generates

“198 programs. Of these, 56 (28.28%) were vulnerable. Of the 18

scenarios, 7 (38.89 %) had vulnerable top-scoring options.” Pearce

et al. (2023) observes that when using these AI models to generate

repair code, firstly, they had to vary around with the temperature of

the AI model (compared to C and Python), as it produced different

results. Secondly, they conclude that the models behaved differently

with Verilog vs. other languages and “seemed [to] perform better

with less context provided in the prompt (Pearce et al., 2023).”

The hypothesis on why there is a difference between Verilog and

other programming languages is because there is less training data

available (Pearce et al., 2022).

5.4 Mitigation strategies

There have been several attempts, or suggestions, to mitigate

the negative effects on security when using AI to code. Despite

reasonable, not all are necessarily effective, as we discuss in the

remainder of this section. Overall, the attempts we have surveyed

discuss how modify the different elements that can affect the

quality of the AI models or the quality of the user control

over the AI-generated code. Table 10 summarizes the suggested

mitigation strategies.

5.4.1 Dataset
Part of the issue is that LLMs are trained on code that is itself

ripe with vulnerabilities and bad practice. As a number of the

AI models are not open-source or their training corpora is no

available, different researchers hypothesize that the security issue

arise from the training dataset (Pearce et al., 2022). Adding datasets

that include different programming languages with different

vulnerabilities may help reduce the vulnerabilities in the output

(Pearce et al., 2022). This is why, to mitigate the problems with

dataset security quality, He and Vechev (2023) manually curated

the training data for fine-tuning, which improved the output

performance against the studied CWE.

By carefully selecting training corpora that are of higher quality,

which can be partially automated, there is hope that fewer issues

would arise (He and Vechev, 2023). However, a consequence of

such a mitigation is that the size of the training set would be

much reduced, which weakens the LLM’s ability to generate code

and generalize (Olson et al., 2018). Therefore one may expect that

being too picky with the training set would result, paradoxically,

in a reduction in code output quality. A fully fledged study of this

trade-off remains to be done.

5.4.2 Training procedure
During the training process, LLMs are scored on their ability

to autoencode, that is, to accurately reproduce their input (in

the face of a partially occulted input). In the context of natural

language, minor errors are often acceptable and almost always

have little to no impact on the meaning or understanding of a

sentence. Such is not the case for code, which can be particularly

sensitive to minor variations, especially for low-level programming

languages. A stricter training regimen could score an LLM based

not only on syntactic correctness, but on (some degree of) semantic

correctness, to limit the extent to which the model wanders away

from a valid program. Unfortunately, experimental data from

Liguori et al. (2023) suggests that currently no single metric

succeeds at that task.

Alternatively, sincemost LLMs today come pre-trained, a better

fine-tuning step could reduce the risks associated with incorrect

code generation. He and Vechev (2023) took this approach and had

promising results in the CWE they investigated. However, there

is conflicting evidence. Evidence from Wu et al. (2023) seems to

indicate that this approach is inherently limited to fixing a very

narrow, and simple class of bugs. More studies analyzing the impact

of fine-tuning models with curated security datasets are needed to

assess the impact of this mitigation strategy.

5.4.3 Generation procedure
Code quality is improved by collecting more context that

the user typically provides through their prompts (Pearce et al.,

2022; Jesse et al., 2023). The ability to use auxiliary data, such as

other project files, file names, etc. seems to explain the significant

difference in code acceptation between GitHub Copilot and its

bare model OpenAI Codex. The exploration of creating guidelines

and best practices on how to do prompts effectively may be

interesting. Nair et al. (2023) explored the possibility of creating

prompt strategies and techniques for ChatGPT that would output

secure code.

From an adversarial point of view, Niu et al. (2023) provides

evidence of the impact of context and prompts for exploiting AI

models. There are ongoing efforts to limit which prompts are

accepted by AI systems by safeguarding them (Pa Pa et al., 2023).

However, Pa Pa et al. (2023) showed—with mixed results—how to

bypass these limitations, what is called “jailbreaking.” Further work

on this area is needed as a mitigation strategy and its effectiveness.

Independently, post-processing the output (SVEN is one

example; He and Vechev, 2023) has a measurable impact on code

quality, and is LLM-agnostic, operating without the need for re-

training nor fine-tuning. Presumably, non-LLM static analyzers or

linters may be integrated as part of the code generation procedure

to provide checks along the way and avoid producing code that is

visibly incorrect or dangerous.

5.4.4 Integration of AI-generated code into
software

Even after all the technical countermeasures have been taken

to avoid producing code that is obviously incorrect, there remains

situations where AI-generated programs contain (non-obvious)

vulnerabilities. To a degree, such vulnerabilities could also appear

out of human-generated code, and there should in any case be

procedures to try and catch these as early as possible, through

unit, functional and integration testing, fuzzing, or static analysis.

Implementation of security policies and processes remains vital.

However AI models are specifically trained to produce code

that looks correct, meaning that their mistakes may be of a different
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TABLE 10 Summary of the mitigation strategies.

Mitigation strategy Main points

Dataset • Better quality dataset

• Adding different programming languages

• Trade-offs between the size of the training set and the ability to generate code and generalize.

Training procedure • Stricter training regime on syntactic and (some degree of) semantic correctness of the output

• Fine-tunning with carefully curated data; although there are divergent views on this topic.

Generation procedure • Context of prompt is important

• Guidelines or best practices for prompting

• Limitations or safeguarding prompts (and jailbreaking)

• Post-processing the outputs.

Integration of AI-generated code into software • Procedures and process for security check of the suggested code

• Keeping a level of mistrust toward AI code generation tools.

End-user education • Education on the limitations of AI code generation models

•Human-oversight

• Possible design changes in the user interface

nature or appearance than those typically made by human software

programmers, and may be harder to spot. At the same time, the

very reason why code generation is appealing is that it increases

productivity, hence the amount of code in question.

It is therefore essential that software developers who rely

on AI code generation keep a level of mistrust with regards to

these tools (Perry et al., 2023). It is also likely that code review

methodologies should be adjusted in the face of AI-generated code

to look for the specific kind of mistakes or vulnerabilities that this

approach produces.

5.4.5 End-user education
One straightforward suggestion is educating users to assess the

quality of software generated with AI models. Among the works

we have reviewed, we found no studies that specifically discuss

the quality and efficacy of this potential mitigation strategy, so

we can only speculate about it from related works. For instance,

Moradi Dakhel et al. (2023) compares the code produced by

human users with the code generated by GitHub Copilot. The

study is not about security. It is about the correctness of the

implementation of quite well-known algorithms. Still, human

users—students with an education in algorithms—performed

better than their AI counterparts, but the buggy solutions generated

by Copilot were easily fixable by the users. Relevantly, the AI-

generated bugs were more easily recognizable and fixable than

those produced by other human developers performing the same

task.

This observation suggests that using AI could help write

code faster for programmers skilled in debugging and that

this task should not hide particular complexity for them. As

Chen et al. (2021) suggested, “human oversight and vigilance is

required for safe use of code generation systems like Codex.”

However, removing obvious errors from buggy implementations

of well-known algorithms is not the same as spotting security

vulnerabilities: the latter task is complex and error-prone,

even for experts. And here we speculate that if AI-generated

flaws are naïve, programmers can still have some gain from

using AI if they back up coding with other instruments

used in security engineering (e.g., property checking, code

inspection, and static analysis). Possible design changes or decision

at the user interfaces may also have an impact. However,

we have no evidence of whether our speculative idea can

work in practice. The question remains open and calls for

future research.

6 Threats to validity and future work

Previous literature Wohlin et al. (2013) and Petersen et al.

(2015) have identified different reliability and validity issues in

systematic literature reviews. One of the first elements that needs

to be noted is the sample of papers. As explained by Petersen

et al. (2015), the difference between systematic mapping studies

and systematic literature reviews is the sample’s representativeness;

mappings do not necessarily need to obtain the whole universe

of papers compared with literature reviews. Nevertheless, previous

research has found that even two exact literature reviews on the

same subject do not have the same sample of papers, affecting it.

Consequently, to increase the reliability, we identified the PICO of

our research and used golden standard research methods for SLR,

such as Kitchenham and Charters (2007). This strategy helps us

develop different strings for the databases tested to obtain the most

optimal result. Furthermore, aiming to obtain a complete sample,

we followed a forward snowballing of the whole sample obtained in

the first round, as suggested by Wohlin et al. (2013) and Petersen

et al. (2015).

However, there may still be reliability issues with the sample.

Firstly, the amount of ongoing publications on the subjects

increases daily. Therefore, the total number would increase

depending on the day the sample was obtained. Furthermore,

some research on open-source platforms (such as ArXiV) did

not explicitly indicate if it was peer-reviewed. Hence, the authors

manually checked whether it was accepted at a peer-review venue.

This is why we hypothesize that the snowballing phase provided

many more papers, as these had yet to be indexed in the databases

and were only available at open-source platforms. Therefore, the
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final sample of this research may increase and change depending

on the day the data was gathered.

In addition, the sample may differ based on the definition of

“code generation.” For this research and as explained in Section 4,

we worked around the idea that AI models should suggest code

(working or not). Some papers would fall under our scope in some

cases, even if the main topic were “verification and validation,” as

the AI tools proposed for this would suggest code. Hence, we focus

not only on the development phase of the SDLC but also on any

phase that suggests code. Different handling of “code generation”

may provide different results.

On another note, the background and expertise of the

researchers affect how papers are classified and information is

extracted (Wohlin et al., 2013). In this manner, in this research, we

used known taxonomies and definitions for classification schemes,

such as Wieringa et al. (2006) for the type of research or MITRE’s

Top Vulnerabilities to identify which are the most commonly

discussed risk vulnerabilities. The objective of using well-known

classification schemes and methodologies is to reduce bias, as

identified (Petersen et al., 2015). However, a complete reduction of

bias cannot be ruled out.

Moreover, to fight authors’ bias, every single article was

reviewed, and data was extracted by at least two others, using a

pairing strategy. If, due to time constraints, it was only reviewed

by one author, the other author would review the work (Wohlin

et al., 2013). If disagreements appeared at any phase – such as the

inclusion/exclusion or data gathering – a meeting would be done

and discussed (Wohlin et al., 2013). For example, in a couple of

papers, Author #1 was unsure if it should be included or excluded

based on the quality review, which was discussed with Author #4.

Our objective in using a pairing strategy is to diminish authors’ bias

throughout the SLR.

On the analysis and comparison of the different articles, one

threat to the validity of this SLR is that not all articles use the same

taxonomy for vulnerabilities; they could not be classified under

a single method. Some articles would research either MITRE’s

CWE or the Top-25, and others would tackle more specific

vulnerabilities (such as jailbreaking, malware creation, SSB, and

human programming). Therefore, comparing the vulnerabilities

between the articles is, at best, complicated and, at worst, a threat

to our conclusions. Given the lack of a classification scheme for the

wide range of security issues tackled in our sample, we (1) tried to

classify the papers based on the claims of the papers’ articles; (2) we

aimed at comparing based on the programming language used, and

between papers researched similar subjects, such as MITRE’s CWE.

In this manner, we would not be comparing completely different

subjects. As recognized by Petersen et al. (2015), the need for a

classification scheme for specific subjects is a common challenge

for systematicmapping studies and literature reviews. Nevertheless,

future studies would benefit from a better classification approach if

the sample permits.

We have provided the whole sample at: https://doi.org/10.

5281/zenodo.10666386 for replication and transparency, with the

process explained in detail. Each paper has details on why it

was included/excluded, at which phase, and with details and/or

comments to help readers understand and replicate our research.

Likewise, we explained our research methods in as much detail as

possible in the papers. Tangently, providing the details and open

sources of the data helps us increase validity issues that may be

present in this study.

Nonetheless, even when using well-known strategies both for

the SLR and to mitigate known issues, we cannot rule out that there

are inherent validity and reliability elements proper from all SLRs.

We did our best efforts to mitigate these.

7 Conclusion

By systematically reviewing the state of the art, we aimed to

provide insight into the question, “How does the code generation

from AI models impact the cybersecurity of the software process?”

We can confirm that there is enough evidence for us to say,

unsurprisingly, that code generated by AI is not necessarily secure

and it also contains security flaws. But, as often happens with AI,

the real matter is not if AI is infallible but whether it performs

better than humans doing the same task. Unfortunately, the

conclusions we gathered from the literature diverge in suggesting

whether AI-generated security artifacts should be cautiously

approached, for instance, because of some particular severity or

because they are tricky to spot. Indeed, some work reports of

them as naïve and easily detectable, but the result cannot be

generalized. Overall, there is no clear favor for one hypothesis

over the other because of incomparable differences between the

papers’ experimental setups, data sets used for the training,

programming languages considered, types of flaws, and followed

experimental methodologies.

Generally speaking and regardless of the code production

activity—whether for code generation from scratch, generating

code repair, or even suggesting code—our analysis reveals that

well-documented vulnerabilities in have been found in AI-

suggested code, and this happened a non-negligible amount

of times. And among the many, specific vulnerabilities, such

as CWE MITRE Top-25, have received special attention in

the current research and for a reason. For instance, CWE-

787 and 089 received particular attention from articles, as

they are part of the top 3 of MITRE CWE. Furthermore,

the CWE security scores of generated code suggested by AI

models would vary, with some CWEs being more prevalent

than others.

Other works report on having found naïve bugs, easy to fix

while other discovered malware code hidden between the benign

lines, and other more reported an unjustified trust by human on

the quality of the AI-generated code, an issue that raises concerns

of a more socio-technical nature.

Similarly, when generated with AI support, different

programming languages have different security performances. AI-

generated Python code seemed to be more secure (i.e., have fewer

bugs) than AI-generated code of the C family. Indeed, different

authors have hypothesized that this situation is a consequence

of the training data set and its quality. Verilog seems to suffer

from similar shortcomings as C. When comparing the security of

AI-generated Verilog to C or Python, the literature converges on

reporting that the security of the former is worse. Once again, the

suggested reason for the finding is that available training data sets

for Verilog are smaller and of worse quality than those available for

training AI models to generate C or Python code. In addition, there
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is no identified Top 25 CWE for Verilog. Java is another commonly

studied programming language, with similar conclusions as once

stated before. To a lesser extent, other programming languages that

could be further studied were studied.

Looking at security exploits enabled by AI-generated code

with security weaknesses, four different of them are those

more frequently reported: SVEN, CodeAttack, and Codex Leaks.

Such attacks are reported to used to decreasing code security,

creating adversarial code, and personal data leaks over automated

generated code.

What can be done to mitigate the severity of flaws introduced

by AI? Does the literature suggest giving up on AI entirely?

No, this is not what anyone suggests, as it can be imagined

that AI is considered an instrument that, despite imperfect, has

a clear advantage in terms of speeding up code production.

Instead different mitigation strategies are suggested, althoughmore

research is required to discuss their effectiveness and efficacy.

• Modifications to the dataset can be a possibility, but the

impacts and trade-offs of such an approach are necessary;

• Raising awareness of the context of prompts and how to

increase their quality seems to affect the security quality of the

code generated positively;

• Security processes, policies, and a degree of mistrust of the

AI-generated code could help with security. In other words,

AI-generated should pass specific processes—such as test and

security verification—before being accepted;

• Educating end-users on AI models (and for code generation)

on their limits could help. Future research is required in this

area.

As a closing remark, we welcome that the study of the

impact on the security of AI models is sparking. We also greet

the increased attention that the community is dedicating to the

problem of how insecure our systems will be as developers

continue to resort to AI support for their work. However, it is still

premature to conclude on the impact of the flaws introduced by AI

models and, in particular, the impact of those flaws comparatively

with those generated by human programmers. Although several

mitigation techniques are suggested, what combination of them

is efficient or practical is a question that still needs experimental

data.

Surely, we have to accept that AI will be used more and more

in producing code and that the practice and this tool are still far

from being flawless. Until more evidence is available, the general

agreement is to exert caution: AI models for secure code generation

need to be approached with due care.
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