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Undisturbed home cage recording of mouse activity and behavior has received

increasing attention in recent years. In parallel, several technologies have been

developed in a bid to automate data collection and interpretation. Thanks

to these expanding technologies, massive datasets can be recorded and

saved in the long term, providing a wealth of information concerning animal

wellbeing, clinical status, baseline activity, and subsequent deviations in case

of experimental interventions. Such large datasets can also serve as a long-

term reservoir of scientific data that can be reanalyzed and repurposed upon

need. In this review, we present how the impact of Big Data deriving from home

cage monitoring (HCM) data acquisition, particularly through Digital Ventilated

Cages (DVCs), can support the application of the 3Rs by enhancing Refinement,

Reduction, and even Replacement of research in animals.
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1 Introduction

Big Data refers to extremely large and complex datasets that require complex data

processing tools to secure storage and management, processing, and analysis. The basic

characteristics of such datasets are outlined by the “Three Vs” of Big Data, originally

described by Laney (2001). The concept of Volume refers to the vast amount of data

contributing to the build-up of Big Data. This could range from terabytes to petabytes

and beyond, but the sheer size of the dataset tends to be a key characteristic. The concept

of Velocity typically refers to the fact that data—building up Big Data—is generated,

collected, and processed at a very high speed. This can include data streaming in real-

time from various sources, including sensors. The concept of Variety refers to the various

formats encompassing a wide range of data types that are gathered to build Big Data. In

addition to the original Three Vs, several authors and data scientists have considered or

discarded many additional characteristics. For example, not all Big Data have volume,

velocity, or variety (Kitchin and McArdle, 2016). Published datasets labeled as Big Data

share many traits but vary in their characteristics and nature, acknowledging multiple

forms of Big Data. Two of them, particularly contributing to the so-called “Five Vs” of Big

Data, are worth mentioning. The first one is Veracity, referring to the quality of the data.
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Big Data can include data from unreliable sources or data with

inconsistencies, making it crucial to assess andmanage data quality.

The last and certainly not the least one is Value (Günther et al.,

2017). The ultimate goal of working with Big Data is to extract

valuable insights, make better decisions, and create value for

multiple stakeholders (Moorthy et al., 2015). The ability to turn

large volumes of data into hands-on exploitable information is a

key aspect.

The use of big data in animal research is becoming increasingly

popular, allowing us to better understand animal behavior, health,

and welfare. The amount of data generated by animal research is

growing at an exponential rate, and the use of big data can help us

make sense of this information to gain valuable insights. This is the

case with the Digital Ventilated Cages (DVC R©, Tecniplast S.p.A.,

Buguggiate VA, Italy) system, an automated home cage monitoring

(HCM) technology that allows recording of mice activity 24/7, non-

intrusively, and for an extended period. It consists of an electronic

sensing board positioned below each cage position, composed of

12 contactless electrodes that measure electrical capacitance, which

is impacted by the presence of animals. The board is connected

via a wire to a power and data connection backbone infrastructure

installed on the rack (Iannello, 2019). Each rack is then connected

to a dedicated computer, which collects raw data from all the boards

approximately 4 times per second (4Hz). The raw data are first

saved as zipped csv files, producing approximately 250MB of data

per day for a rack of 80 cage positions. All the raw data are then

enriched with metadata cage information (such as cage IDs, mice

IDs, and procedures on the cage), enabling automatic real-time

position tracking for each cage within the facility and a massive Big

Data collection from potentially thousands of cages simultaneously.

This vast amount of data is uploaded to cloud storage to ensure

data availability, integrity, and security, as well as fast and scalable

data processing and algorithm calculation. Key metrics, such as

locomotor activity, distance traveled, and index of bedding status,

are calculated from the raw data in the cloud and then provided

to a web-based software application (DVC R© Analytics, Tecniplast

S.p.A., Buguggiate VA, Italy). Other metrics can then be derived

from these (e.g., Golini et al., 2020; Fuochi et al., 2023) to generate

novel digital biomarkers that can lead to new valuable insight into

phenotypes and significantly help the application of the principles

of the 3Rs (Baran et al., 2022).

2 Big data and the 3Rs

2.1 Refinement

The concept of Refinement is the amplest and most composite

of the three Rs originally described by Russell and Burch (1959).

In fact, Refinement has been described as the Cinderella of

the 3Rs (Hau and Carver, 1994), progressively and constantly

moving out from the shadow and gaining a primary role in

enhancing animal wellbeing transversally to experimental design,

husbandry, and procedural practices. Big Data deriving from

HCM substantially contributed to the understanding of baseline

undisturbed animal activity (Fuochi et al., 2021) and disturbed

mouse behavior (Ulfhake et al., 2022). Most of all, Big Data can

substantially contribute to the promotion of Refinement through

24/7 continuous recording, securing remote data accessibility

and control, as well as high recording frequency, granting early

detection of any change in motor behavior potentially suggestive of

impairment of animal wellbeing. A study by Pernold et al. (2019)

underscores Refinement by highlighting the implementation of

a 24/7, scalable activity monitoring system that minimizes the

impact on animals. In another study, Zentrich et al. (2021) clearly

demonstrated how the DVC
R©
system could contribute to severity

assessment as effectively as gold standard clinical parameters. These

few examples already demonstrate the enormous potential for Big

Data obtained through the DVC R© system to reduce stressors and

enhance animal welfare. Refinement is evident in the ability to

detect behavioral alterations, environmental influences, and even

illness without subjecting animals to unnecessary handling or

exposure to novel environments. Collectively, this can contribute

to a more humane and improved experimental approach.

Another substantial contribution of Big Data deriving from

HCM is the potential to detect, characterize, and implement

biomarkers that can be used as earlymarkers of disease progression.

A remarkable example is a study from Golini et al. (2020), in

which a non-intrusive assessment of sleep and rest disturbances

is addressed in the SOD1G93A mouse model. Through Big Data

analysis, a digital biomarker, the Regularity Disruption Index

(RDI), is developed to quantify irregular activity patterns associated

with amyotrophic lateral sclerosis progression. This non-intrusive

approach allows continuous monitoring, contributing to the

refinement of experimental methods by detecting subtle behavioral

changes. The same analytic metric was employed to run an

unobtrusive assessment of a novel rest-related phenotype in

DMSXL mice, gaining valuable insights into potential mechanisms

and therapeutic interventions for addressing excessive daytime

sleepiness, enhancing the refinement of experimental methods,

and contributing to the welfare of the mouse model in DM1

research (Golini et al., 2023). These examples highlight that the

revolutionary aspect of Big Data is not only about the data itself

but critically about analytical methods that can be developed to

give new meaning to the data, in accordance with the principle

expressed by King (2016).

2.2 Reduction

The R of reduction seeks to minimize the number of animals

used in an experiment, to obtain information from fewer animals

or more information from the same number of animals. Common

methods to reduce animal numbers include power analysis,

pilot studies, sharing data and resources (e.g., animals, tissues,

and equipment) between research groups and organizations,

appropriate experimental design, and adequate identification of

control animals (Lee et al., 2022). The first intuitive impact of HCM

on reducing the number of experimental animals is the longitudinal

analysis, where quantitative measurements at time points common

to each animal in the experiment are repeatedly recorded over

time (“longitudinally”). Repeated measurements within the same

animal can lead to a reduction in animal use, as compared to

between-group designs, where each measurement is undertaken in

different animals.
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Importantly, in some longitudinal studies, each animal can

serve as its own control at the baseline, further reducing the

number of control animals (Kramer and Font, 2017). The core

concept of DVC R© systems is to provide a minute-by-minute

measure of undisturbed in-cage mouse activity, providing a

vast amount of data favoring a granular phenotypic analysis.

Interestingly, the highest volume of data generated may be used

to draw a macroscopic analysis of behavioral activity, such as the

reconstruction of a 24-h motor pattern (Fuochi et al., 2021) or to

investigate the variety of motor responses at a specific moment in

a mouse’s life as determined by the researcher, i.e., motor activity

following cage-change (Fuochi et al., 2021; Ulfhake et al., 2022)

or comparing these measures among animal cages under the same

standard conditions.

In addition to these examples, Big Data generated by automatic

home cage recording systems has the potential to be reused

for a completely different decision/task than for what it was

originally intended (Woodall, 2017) and to describe new biological

phenomena without the use of new animals (Fuochi et al., 2023).

The availability of open-source data repositories, collecting data

originating from in vivo research, can be accessed and used by

researchers before planning new in vivo experiments. It allows for

better orienting the scientific question and drastically reducing the

total number of animals used in experiments, saving time, effort,

and money and bringing research with animals within ethically

acceptable bounds. Furthermore, several authors also highlight how

including knowledge from historical experiments can contribute

to limiting the number of animals used in a single experiment by

recycling historical data (Walley et al., 2016; Kramer and Font,

2017). The possibility and reliability of this approach depend on

the presence of suitable data from previously performed similar

studies (Richter, 2024). In this regard, datasets derived from HCM

can provide a valid and consistent source of recyclable knowledge

thanks to its reproducibility-enhancing potential (Voikar and

Gaburro, 2020).

2.3 Replacement

Replacement refers to the use of methods that avoid or

substitute the use of animals in research (Russell and Burch,

1959). The concept of Replacement can be further divided into

“full” or “absolute” Replacement, where non-animal methods are

deployed in place of animal studies (Tannenbaum and Bennett,

2015). Alternatively, in “partial” or “relative” Replacement, non-

animal studies are undertaken before moving into animal studies,

or animals lower on the phylogenetic scale are given preference,

such as rodents in place of non-human primates or the nematode

Caenorhabditis elegans and the fruit fly Drosophila melanogaster in

place of vertebrate species (Russell and Burch, 1959). Methods for

Replacement include the use of biochemical assays and simple or

more complex cellular model systems, such as organoids or organs-

on-a-chip (Huang et al., 2021; Arjmand et al., 2023). Computer

modeling and simulations (i.e., in silico methods) provide an

increasingly important form of Replacement. Indeed, in silico

methods for Replacement have increased rapidly in the past

decade, thanks to the implementation of large, structured datasets

and advanced analytical methods developed to interrogate them

(Madden et al., 2020). Is there an opportunity for Replacement

of rodents in HCM with alternative methods? At first glance, it

would seem challenging, given that the primary focus of HCM is

to record diurnal activity across the life of the laboratory rodent.

Full replacement of this complex system with biochemical or in

vitromethods is unlikely to ever be possible. On the other hand, the

large quantities of structured data generated byHCMopen the door

toward in silicomethods that could provide a Replacement function

in two ways. First, HCM can contribute to Replacement through

“data repurposing,” thus going beyond its Reduction potential. In

this case, data generated in animals may be reused for a new

purpose beyond its initial intended objective and without the need

for further new animals. Opportunities for data repurposing can

arise when new analysis methods and algorithms are developed and

retroactively deployed on existing datasets to bring new insights

(Fuochi et al., 2023).

A second scenario is the possibility of generating Virtual

Control Groups (VCGs) in HCM experiments. VCGs are

constructed from historical data and combined with computer

simulations to generate control data that can be used as a full

or partial replacement for new controls (Strayhorn, 2021). While

most often deployed in a clinical research setting, VCGs are

increasingly being explored for use in non-clinical research [for

example, see the recently concluded IMI eTRANSAFE project

(Steger-Hartmann et al., 2020, 2023)]. By replacing control group

animals with existing randomized datasets, VCGs could reduce

animal use by an estimated 25%. VCGs are also argued to support

improvements in experiment repeatability and reproducibility, in

part by ensuring transparent reporting of data (Moresis et al., 2024).

The use of VCGs in non-clinical research is at an early stage, and

the adoption of VCGs requires careful validation, considering both

biological and statistical factors (Moresis et al., 2024). However,

with a standardized approach to data capture and storage and

highly scalable infrastructure, HCM represents an ideal context in

which to further research and advance the use of VCGs.

3 Discussion

HCM systems are primarily defined by their ability to collect

large amounts of data at a high sampling rate, long tracking

duration, and scalability. Of note, the analysis of data from

home-cage monitoring systems often requires the use of specific

software tools to handle and process large datasets, especially when

working on raw data and developing new tailored biomarkers.

Some options include R and Python, two programming languages

that offer a wide range of packages for data processing, statistical

analysis, machine learning, and visualization. Moreover, the recent

proliferation of AI chatbots such as OpenAI ChatGPT or Google

Gemini opens possibilities for facilitating data analysis even

without deep coding knowledge, both providing some basic data

summary and offering scripts to assist users in coding. Additionally,

future chatbots based on Large-language Models (LLMs) that can

turn natural language requests into machine-executable code could

be implemented for domain-specific and advanced analytical tasks

(Ye et al., 2023).
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TABLE 1 Interconnection between 5Vs, HCM data, and 3Rs.

V V in HCM
data

R Descriptive R

Volume High data volume

recording.

Multiple cages at

the same time.

Refinement,

Reduction,

Replacement.

Punctual control of

animal activity.

Longitudinal studies

with lower number

of animals.

Data repurposing.

Velocity High-speed

recording-−4 times

per second (4Hz).

Refinement. Punctual control of

animal activity.

Potential to create early

alerts with regard to

animal welfare-related

issues.

Variety Board, Running

Wheel, Food,

Water, and RH in

cage.

Refinement. Multiparameter

assessment of animal

activity and behavior.

Development of tailored

metrics, early

biomarkers, and

endpoints.

Veracity Direct raw data

recording;

integration possible

with metadata from

the cage.

Reproducibility,

Reduction,

and

Refinement.

High reliability of

data collected.

Metrics development.

Value Potential for data

banks and share.

Replacement. Perspective

developments.

In this review, we have outlined how Big Data generated by

HCM can be structured and interpreted to meet the principles

of Refinement, Reduction, and Replacement in animal research

(Table 1).

As for the Refinement, the non-intrusive but punctual control of

animal activity, along with the development of tailored biomarkers,

is an excellent achievement which, in addition to protecting the

daily wellbeing of the animal, may assist in streamlining the

management of animal facilities. The latter are often complex

infrastructures, particularly when a plurality of mutant rodent

models are housed, and thus, a differentiated and diversified welfare

assessment must be adopted. The possibility of remotely evaluating

the cage conditions (Ulfhake et al., 2022; Fuochi et al., 2023)

and taking ad hoc actions is a further enhancement in the daily

management of animal facilities.

As for Reduction, HCM can reduce the number of animals,

thanks to the possibility of longitudinally recording animal activity

by deploying repeated measures, within-animal study designs, and

reducing the number of control arms. The digital recording of

animal activity is a powerful method to maximize knowledge gain

per animal used and repurpose the data to generate new knowledge.

The data repurposing concept also fits well with Replacement

(Fuochi et al., 2023). Data from HCM studies may enable the

generation of virtual control groups or data repurposing and

the support of meta-research. Critical to ensuring the success

of these scenarios is that data collected from HCM studies is

adequately described with metadata (i.e., information about the

data). Metadata is essential for ensuring that raw or primary

data stored in data repositories is FAIR (Findable, Accessible,

Interoperable, Reusable) and enables researchers to interrogate

data and understand the potential for repurposing. A “minimal

metadata set” (referred to as “MNMS”) has recently been proposed

to describe data generated from in vivo biomedical research

experiments, with a view to enabling data repurposing (Moresis

et al., 2024). To realize the full potential of HCM data to be

used in scenarios of Replacement, as we have outlined, it will be

essential that systems capture metadata in a way that minimizes the

burden to the experimenter and that metadata follows raw/primary

data into databases where legal considerations for data sharing

have been established (Moresis et al., 2024). A key objective

for Replacement is to increase the relevance and applicability of

scientific studies to human health and disease by deploying more

predictive models. This objective is driven by ethical considerations

to reduce the use of animals in research, as well as scientific and

regulatory demands to advance and adopt validated replacement

methods (FDA report, 2021). The critical importance of validation

in alternative methods (e.g., human cellular models or organs-on-

a-chip) is also highly relevant for in silico methods that may be

used in a Replacement context for HCM studies. Progress in other

fields (Hasselgren et al., 2019) may inspire how frameworks for

performing and reporting in silico assessments with HCM studies

can ensure a transparent and consistent view of the results.

In conclusion, we have emphasized how data from HCM

supports the 3Rs principle. It is mandatory to highlight, however,

that what makes Big Data powerful is appropriate data analytical

tools. Big Data only becomes qualitatively and quantitatively

informative upon cleaning, aggregating, visualizing, and analyzing

the data in a way that enables effective interpretation. The emerging

fields of machine learning and data mining are instrumental in

helping meet the challenges facing the analytics of HCM-derived

data. It should also be highlighted that HCM-derived data can

facilitate a change in the pre-clinical researchmindset, shifting from

a primarily hypothesis-driven to a data-driven approach. H-driven

modeling brings a question into focus so that amodel is constructed

to investigate a specific hypothesis about how the system works

or why certain phenomena are observed. Data-driven modeling,

on the other hand, follows a more unbiased approach, with

model construction informed by the computationally intensive

use of data. Interestingly, Eriksson et al. (2022) recently proposed

that data- and hypothesis-driven modeling approaches can be

combined in neuroscience through a FAIR infrastructure. The

workflows they have developed promise to increase the capacity

for combining different types of models, extending models as new

data accumulates, and validating existing models. If pursued in

preclinical research settings, this kind of approach may lead to

more robust, reliable, and reproducible data and further advance

the 3Rs principle.
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