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Tuberculosis (TB) is a chronic and pathogenic disease that leads to

life-threatening situations like death. Many people have been a�ected by

TB owing to inaccuracy, late diagnosis, and deficiency of treatment. The early

detection of TB is important to protect people from the severity of the disease

and its threatening consequences. Traditionally, di�erent manual methods have

been used for TB prediction, such as chest X-rays and CT scans. Nevertheless,

these approaches are identified as time-consuming and ine�ective for achieving

optimal results. To resolve this problem, several researchers have focused on

TB prediction. Conversely, it results in a lack of accuracy, overfitting of data,

and speed. For improving TB prediction, the proposed research employs the

Selection Focal Fusion (SFF) block in the You Look Only Once v8 (YOLOv8,

Ultralytics software company, Los Angeles, United States) object detectionmodel

with attention mechanism through the Kaggle TBX-11k dataset. The YOLOv8 is

used for its ability to detect multiple objects in a single pass. However, it struggles

with small objects and finds it impossible to perform fine-grained classifications.

To evade this problem, the proposed research incorporates the SFF technique

to improve detection performance and decrease small object missed detection

rates. Correspondingly, the e�cacy of the projected mechanism is calculated

utilizing various performance metrics such as recall, precision, F1Score, and

mean Average Precision (mAP) to estimate the performance of the proposed

framework. Furthermore, the comparison of existing models reveals the

e�ciency of the proposed research. The present research is envisioned to

contribute to the medical world and assist radiologists in identifying tuberculosis

using the YOLOv8 model to obtain an optimal outcome.

KEYWORDS

tuberculosis, Yolov8 model, Selection Focal Fusion block, attention mechanism and

object detection, computer-aided diagnosis

1 Introduction

Globally, tuberculosis (TB) is a severe public health concern caused by Mycobacterium

tuberculosis. It significantly affects the human lungs (pulmonary TB), (Kotei and

Thirunavukarasu, 2024) but also other parts of the body such as the spine,

brain, and kidneys (extrapulmonary TB) (Wang et al., 2024). Usually, TB spreads

by air; it transmits from one person to another through coughs and sneezes.
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It can be detected through different tests, like blood tests, sputum

tests, imaging studies, or skin tests (Maipan-uku et al., 2024). It is

crucial to identify it at an early stage and control it with proper

treatment. Besides, bacteria are considered themost common cause

of TB in healthcare settings (Amin et al., 2024). Henceforth, TB

is considered to be the leading cause of death among infectious

diseases. Chest radiography is playing a vital role in detecting TB at

a low cost. Resource-constrained countries are bearing the burden

of TB. However, the insufficient availability of expert readers is

considered a major concern hampering the application of chest

radiography (Hwang et al., 2024). To evade the prediction problem,

an effective disease prediction mechanism is needed to avoid the

consequences. Recently, most researchers have utilized Artificial

Intelligence (AI)-related (Acharya et al., 2024) technology for the

disease prediction of TB and non-TB for the capability of better

cost-saving techniques and greater scalability. Furthermore, AI

technology can systematize prediction problems and monitor the

data efficiently. It can identify abnormalities in the data while

in access. These AI benefits with Machine Learning (ML) and

Deep Learning (DL) methods (Rahman et al., 2020) provide

several benefits for classification mechanisms in TB prediction at

various stages.

Congruently, several prevailing models have attempted to

accomplish better TB and non-TB prediction. For instance, the

existing model, a fine-tuning deep neural network, has been used to

perform lesion detection for tuberculosis. The utilized task dataset

and the results have shown that the convolutional neural network

(CNN) model has attained a better mean Area Under Curve

(AUC), which represents the better efficiency of the prevailing

model (Lu et al., 2022). Similarly, the conventional model

has deployed detection mechanisms for Pulmonary Tuberculosis

lesions and utilized the TBX-11 dataset. The outcomes of the

conventional model have attained 0.5 Intersection Over Union

(IoU) of average precision, and the recall rate has attained 77.6%

(An et al., 2022). Correspondingly, Computer-Aided Diagnosis

(CAD) utilizing computer vision methods and advanced DL

models has been used to improve the accuracy using the YOLOv7

object detection architecture. It has used the TBX-11 dataset

and employed data augmentation and class weighting techniques

to notice the imbalance present in the dataset. The promising

results have shown that the conventional model has attained 0.587

mean Average Precision (mAP) (Bista et al., 2023). Likewise, the

prevailing model has deployed a TB detection framework and

utilized the Montgomery and Shenzhen datasets. The conventional

model was evaluated with a k-fold cross-validation technique and

attained 0.97 and 0.99 of AUC for the Montgomery and Shenzhen

datasets, respectively (Ayaz et al., 2021). Similarly, the prevailing

model has developed DL classification and segmentation models

(Iqbal et al., 2022) for precise and accurate detection of TB on chest

X-ray (CXR) images with the vision of infection utilizing Gradient-

weighted Class Activation Mapping (Grad-CAM) heat maps. It

has utilized the NIAID TB portal dataset (Ekins and Freundlich,

2011; Acharya et al., 2022) and has applied the Xception model.

The results have attained better recall, F1 score, accuracy, and

precision (Sharma et al., 2023). Accordingly, classical models have

accomplished satisfactory results, but they lack a few limitations,

such as mAP, recall, precision, speed, and overfitting of data.

To solve this problem, the proposed research utilizes certain

procedures to improve the performance of the YOLOv8 model for

TB and non-TB prediction. Initially, the TBX-11 dataset is loaded

into the mechanism where the images are utilized to enhance the

proposedmodel’s performance. It is processed with image label pre-

processing to improve the consistency and efficiency of the image

data. Correspondingly, after the image processing, it is forwarded

to pre-processing with augmentation. It transfers the utilized data

to augmented samples to improve efficiency. Then, processed

data is divided into training, validating, and testing data to train

the present model and evaluate its performance. Accordingly,

the training data are used for the prediction with Selection

Focal Fusion (SFF) in the YOLOv8 model with an attention

mechanism. After the prediction mechanism, the validating set

is used for performance calculation in the present framework.

Additionally, the efficiency of the projected model is calculated

utilizing performance metrics to examine the proposed prediction

performance. The major contribution of the projected model is

discussed in the following:

• To utilize YOLOv8 for the prediction of tuberculosis with

the Kaggle TBX-11k dataset to enhance the accuracy and

computation in the present research.

• To employ the SFF technique in the YOLOv8 model

with attention mechanism for prediction of active TB,

latent TB, healthy and sick, but non-TB for enhancing the

prediction efficiency.

• To calculate the efficiency of the projected system with

performance metrics such as precision, recall, mAP,

and F1 score.

1.1 Paper organization

The paper’s organization is significant for communicating the

research findings in a coherent manner. It is organized on the basis

of analyzing the existingmethods and the approaches applied under

the prediction of Active Tuberculosis (ATB), latent TB, and non-TB

in Section 2. Section 3 provides the proposed methodology for the

current research. Moreover, the results accomplished through the

current system are illustrated in Section 4. The outcomes of future

research using the current approach are depicted in Section 5.

2 Literature review

This section explains the analysis of various existing models

of ML and DL techniques for the prediction of TB and non-

attack in the non-TB classification systems. Furthermore, the

problem mentioned in the prevailing research is also identified.

The conventional model has evaluated its diagnostic performance

utilizing ML techniques (Anand et al., 2021) in differentiating

ATB from Latent Tuberculosis Infection (LTBI). It has employed

the Gradient Boostng Machine (GBM) model for accurate

identification of ATB. The results have shown that the GBM

model has attained 89.81% accuracy (Luo et al., 2021). Similarly,

the prevailing model has detected Pulmonary Tuberculosis (PTB)
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and Extrapulmonary Tuberculosis (EPTB) using ML algorithms.

It has employed clinical and imaging data from hospitals and

incorporated the Decision Tree algorithm. The result has shown

that the Decision Tree (DT) algorithm has attained 95.5%

classification accuracy (Kaur and Sharma, 2021). In the same way,

the existing model has demonstrated a TB detection mechanism

(Heyckendorf et al., 2021) utilizing advanced DL models. It has

utilized EfficientNetB3 and the CNN model (Dey et al., 2022) for

the classification, along with the available CXR dataset. The result

has shown that the model has attained 98.7% accuracy (Nafisah

and Muhammad, 2024). Correspondingly, the conventional model

has diagnosed the ATB from multiplex serological data. It has

utilized Machine Intelligence Learning Optimiser (MILO) for the

prediction performance. It has incorporated secondary and tertiary

datasets and has resulted in 86% accuracy (Rashidi et al., 2021).

Contrarily, the existing model has enhanced the weight voting

ensemble learning method to aid in diagnostic development for

predicting TB infection at an early stage. It has used TB gene

expression data for diagnosis. The results have shown that ensemble

classifiers, Support Vector machine (SVM), and Naive Bayes (NB)

have attained 95, 92, and 87% accuracy, respectively (Osamor and

Okezie, 2021).

Congruently, the conventional system has presented a solution

for identifying TB by utilizing Bayesian-based CNN (B-CNN).

It has been evaluated with two TB benchmark datasets called

Shenzhen and Montgomery. The results have revealed that B-CNN

(Yusoff et al., 2021) has attained 86.46 and 96.4% accuracy on

both datasets, respectively (Abideen et al., 2020). Contrastingly, the

classical model has combined clinical indicators and metabolomics

along with ML for a precise identification of Smear-Negative

Pulmonary Tuberculosis (SNPT) (Xie et al., 2020) and Smear-

Positive Pulmonary Tuberculosis (SPPT). The outcome has shown

that the model has achieved 83–93% accuracy (Hu et al., 2022). In

parallel, the prevailing model has presented an automatic cough

classification for TB (Sathitratanacheewin et al., 2020) and utilized

ML methods such as KNN, MLP, LR, CNN, and SVM. It has

used nested cross-validation (Singh et al., 2021). Among these

ML methods, LR has outperformed with 84.54% accuracy (Liu

et al., 2017; Pahar et al., 2021). Simultaneously, the conventional

method has suggested a DL binary classifier for TB and non-TB

diagnosis utilizing chest X-rays. It has employed a 2-step binary

DT and has been trained through CNN on the PyTorch frame.

The prevailing model has used the Shenzhen dataset, and results

have shown 98 and 80% accuracy at both the first and second

steps, respectively (Yoo et al., 2020). Similarly, the conventional

mechanism has developed a TB and non-TB detection and Drug-

Resistant Categorization Diagnosis Decision Support System (TB-

DRC-DSS) (Zhu et al., 2023) using the DL ensemble model

(Rajaraman and Antani, 2020) with different CNN architectures

such as Dense-Net121, mobileNetV2, and EfficientNetB7. It has

incorporated the Shenzhen, (Rajaraman et al., 2021) Kaggle,

Montgomery, (Le et al., 2022) and Portal datasets. The results

have revealed that TB-DRC-DSS has attained 92.8% accuracy

(Prasitpuriprecha et al., 2022).

In contrast, the prevailing mechanism has applied automatic

AI detection for screening a huge populace and has evaluated

its feasibility. It has helped in diagnosing TB utilizing CXR

radiographs. The outcomes of the conventional model have shown

that the AI detection model has attained 85% accuracy (Nijiati

et al., 2021). Similarly, the existing model has presented a deep

CNN approach for diagnosing TB utilizing CXR images. It has

employed a histogram matching method with CXR images (Verma

et al., 2020) for improving detection and accuracy performance

for TB detection. The results have shown that the respective

mechanism has attained better accuracy and F1 scores (Ignatius

et al., 2023). Similarly, the existing system has presented automatic

TB detection using an enhanced DL model with CXR images.

For the process, the respective model has used the Shenzhen

China (SC) (Yang et al., 2022) and Montgomery County (MC)

datasets. The results have shown that the conventional model has

attained better accuracy (Simi Margarat et al., 2022). Contrarily,

the prevailing model has developed CAD for the classification of

TB disease using an X-ray dataset. It has incorporated an Artificical

Neural Network (ANN) with SVM for better classification and

has attained 94.65 accuracy (Pathak et al., 2022). Concomitantly,

the prevailing model has detected TB using LightTBNet, a

lightweight, efficient, and fast deep CNN (Sahlol et al., 2020)

from the CXR images. It has been evaluated with two publicly

available datasets. The results have shown 90.6% accuracy, a

90.7% F1 score, and a 96.1% ROC curve (Capellán-Martín et al.,

2023).

Similarly, the conventional model has predicted a bacteriologic

confirmation of Mycobacterium TB in children and infants. It

has employed ML models for the development of prediction

performance. It has used a new dataset, and the result has

shown that the prevailing mechanism has attained better values

in accuracy metrics (Smith et al., 2023). Contrarily, the suggested

model has diagnosed TB from real-world cough recordings and has

incorporated the conventional ML models for better prediction. It

has utilized a huge dataset of TB and non-TB audio recordings

(cough). The outcome has shown satisfactory results (Kafentzis

et al., 2023). Contrastingly, the traditional model has assessed

an enhancement of image in TB detection utilizing DL methods.

It has evaluated image enhancement algorithms, namely, High-

Frequency Emphasis Filtering (HEF), Unsharp Masking (UM), and

Contrast Limited Adaptive Histogram Equalization (CLAHE). It

has used a TB image dataset, and the results have revealed that

the prevailing method has attained 89.92% accuracy (Munadi et al.,

2020).

2.1 Problem identification

• Several existing studies have been focused on predicting TB

and non-TB. However, limited research has focused on the

ATB, healthy, LTBI, sick, and non-TB classifications (Kaur and

Sharma, 2021).

• Accuracy is an important performance metric utilized to

examine the model’s performance. Nevertheless, existing

models lack accuracy rates and prediction rates (Osamor and

Okezie, 2021).

• Due to its primary cause, in TB prediction research, feature

selection has been lacking in conventional research (Capellán-

Martín et al., 2023).
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FIGURE 1

Symptoms of TB and non-TB.

3 Materials and methods

In the present world, the severity of TB disease is increasing

in most countries. It affects the lives of massive numbers of

people. To evade the severity of the disease and the consequences

of TB, it is important to recognize the disease. Though the

prevailing research is a time-consuming and expensive process,

several studies are focused on TB prediction but lack detection

rates, overfitting data, and accuracy. To improve the TB

prediction, the respective model employed SFF in the YOLOv8

model to classify ATB, LTBI, and non-TB, sick and healthy,

through the TBX-11k dataset. Congruently, it is necessary to

recognize the major cause of disease for enhanced classification,

as TB is the most hazardous lung disease that affects the

respiratory system.

Tuberculosis is a contagious bacterial infection that can

be caused by bacteria called Mycobacterium tuberculosis

complex, which is considered one of the oldest diseases. It

primarily affects the lungs of humans and is the leading

cause of death worldwide. Generally, TB is spread through

the air while the infected person sneezes or coughs. The

bacteria can be transmitted from one person to another.

Some of the common symptoms of TB encompass chest pain,

fatigue, chronic cough, fever, night sweats, weight loss, and

coughs with blood. Figure 1 depicts the symptoms of TB

and non-TB.

Primarily, TB causes severe health problems if it is not treated

or if you with a weak immune system. It leads to injury to

the lungs and spreads to other parts of the organs like the

spine, kidneys, and brain in some cases. The major reason

for TB is Mycobacterium tuberculosis. It is defined as when a

person inhales this bacteria, it can be transmitted to the lungs

and multiply, which leads to infection. Moreover, the immune

system responds by forming granulomas, which are known as

small nodules that contain infection. In several cases, bacteria

remain dormant for years without any symptoms. Conversely,

the immune system gets weak, and infection causes illness and

becomes active. Though it has severity, TB is a preventable and

treatable disease. Early prediction, appropriate treatment, and

medication adherence are significant in preventing and managing

TB transmission. To overcome the existing research problems, the

proposed model employed SFF in the YOLOv8 model to classify

ATB, LTBI, and non-TB, sick and healthy, through the TBX-

11k dataset. Figure 2 depicts the illustrative representation of the

dataset creation.

The proposed mechanism utilizes the TBX-11k dataset to

predict TB through the X-ray images. It uses the advantages

and incorporates SFF in YOLOv8 to enhance the prediction

performance of TB. To calculate the efficiency of the proposed

mechanism, performance metrics like precision, F1-score,

recall, and accuracy are utilized in projected research. The

proposed TB and non-TB prediction mechanisms are depicted in

Figure 3.

Figure 3 signifies the present model, which is comprised of

several stages, including the selection of datasets, the image label-

pre-processing method, training and testing split, and prediction

with SFF in the YOLOv8 model. The detailed description of each

stage in the proposed system is discussed below:

3.1 Dataset selection

The proposed system uses the TBX-11k dataset from the Kaggle

website for the prediction of TB and non-TB in X-ray images, which

is publicly available. For assessing the proposed mechanism, the

TBX-11k dataset is used in this model, as outlined in Figure 3.

Furthermore, the dataset includes the data of both TB and non-

TB, and it comprises 11,200 X-ray image samples. There are five

divisions in this dataset: Sick but non-TB, Healthy, Active TB,
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FIGURE 2

Illustrative representation of dataset creation.

FIGURE 3

Proposed mechanism of the YOLOv8 model.

Latent TB, and uncertain TB. It can be split into a training set,

a validation set, and a testing set. The website line of the Kaggle

TBX-11k dataset is given below:

https://www.kaggle.com/datasets/usmanshams/tbx-11/data.

3.2 Image label pre-processing

The image label pre-processing process refers to the preparation

of image data for classification or labeling tasks. Typically, these

steps involved normalizing and transforming the images to confirm

that they were suitable for further processing. Image label pre-

processing techniques include normalization, resizing, cropping,

color-space conversion, and augmentation. Moreover, the pre-

processing techniques support improving the consistency and

efficiency of the image data and make it more suitable for the

labeling and classification processes. In the projected research, the

image label pre-processing method is used to convert the features

of the dataset to a common scale, enhancing the accuracy and

performance of the prediction.
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TABLE 1 Hyperparameters training.

Hyperparameters Value

Epochs 100

Batch size 16

Image size 640

Optimizer Auto

Momentum 0.937

3.3 Pre-processing with augmentation

The process of pre-processing with augmentation is denoted

as a set of techniques that were utilized to modify and enhance

the data before it was used for the training process. Augmentation

methods are implemented to improve the quantity and diversity

of training data that enhance the generalization ability and

performance of the model. Moreover, the process involved relating

different modifications and transformations to existing data and

creating augmented samples. Transformations such as scaling,

rotating, cropping, adding noise, flipping, and changing the

contrast and brightness of images.

3.4 Data splitting

In the YOLOv8 model, data splitting is the process of dividing

the dataset into discrete subsets for processes such as training,

validation, and testing. It is a common activity in ML for evaluating

the model’s performance to prevent overfitting and unseen data.

The training set is utilized to train the YOLOv8 model, and the

validation set is used to tune the hyperparameters of the model

and observe its performance. The testing set is to calculate the final

performance of the trained model on unseen data. Table 1 depicts

the hyperparameters and their values for training.

3.5 Object detection

The YOLOv8model is defined as an object detection algorithm.

It aims to detect and classify the objects accurately. It is referred

to as an improvement model on previous versions of the YOLO

model that offers better accuracy and performance. Moreover, the

model evaluation is based on mAP, which is considered one of the

most utilized evaluationmetrics for object detection. ThemAP took

the average precision (AP) on classes and computed them at the

pre-mentioned IoU threshold. The proposed model assesses the

generalization and robustness capabilities of models by mAP scores

that are calculated among the diverse test scenarios, highlighting

the significance of the YOLOv8model in TB and non-TB detection.

3.5.1 Conventional YOLOv8 model
YOLOv8 is a cutting-edge and advanced model that provides

higher detection speed and accuracy. The YOLOv8 is known as a

real-time object detection mechanism that utilizes a single Neural

Network (NN) to predict class probabilities and bounding boxes

directly from entire images in a single evaluation. Significantly, it

is based on Darknet architecture and uses layers of convolutional

layers along with skip connections to enhance speed and accuracy.

The YOLOv8 model incorporates different improvements from

previous versions, like advanced data augmentation techniques

and feature pyramid networks, to attain better performance in the

task of object detection. Figure 4 illustrates the architecture of the

existing YOLOv8 model.

Figure 4 deliberates the architecture of conventional YOLOv8,

a DL model. It is capable of processing the inputs in different

forms, such as real-time camera images, videos, and images.

Moreover, it comprises convolutional layers (conv), concatenation

layers (concat), and three max pooling layers. Though it performed

with satisfactory results, it lacked accuracy and speed. Thus, the

proposed model incorporates several techniques to improve the

performance of the proposed model.

3.5.2 Proposed YOLOv8 model
The YOLOv8 model is known as a popular object detection

algorithm that is utilized in system vision tasks encompassing

TB detection. Primarily, it is designed for object detection; thus,

the proposed research is adopted for predicting TB. This model

is known for its fast inference speed, which allows for the

processing of the image data rapidly and is particularly useful in

the diagnosis process. The YOLOv8 model has the ability to detect

multiple objects in a single pass. It is beneficial in cases where

TB abnormalities or lesions are presented in various areas of the

lungs or other affected organs. In addition, the model provides

relatively high accuracy in object-detecting tasks, which has been

trained on huge datasets, and uses Deep Neural Networks (DNN)

to identify TB. Though the YOLOv8 model performs better, it

struggles with small objects and finds an inability to perform

fine-grained classifications. To evade this problem, the proposed

research incorporates the SFF technique to improve the detection

performance and decrease the small object missed detection rates.

Figure 5 illustrates the architecture of the YOLOv8 model.

Figure 5 signifies the architecture of the proposed YOLOv8

model, which incorporates improvements for high detection

accuracy while maintaining high efficiency and speed. Several

key modifications include the Cross-Stage Partial Bottleneck (C2f

module) and the detection head, including independent branches,

activation functions, and loss functions. The C2f module is

incorporated to merge high-level features with contextual data

effectively. It is achieved by concatenating the bottle net block

output, which contains two 3×3 convolutions along with residual

associations. The YOLOv8 model adopted the detection head for

eliminating the requirement for pre-defined anchor boxes and

predict the object centers directly. Figure 6 shows the schematic

diagram of the C2f module.

Figure 6 illustrates the schematic diagram of the C2f module

and the bottleneck of the proposed model. The C2f module is

utilized to improve quality after feature fusion. It is known as

an improvement of the original C3 module, which is considered

a benefit of the YOLOv8 model with high gradient information.

It decreases one convolutional layer and makes use of the
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FIGURE 4

Architecture of the conventional YOLOv8 model.

bottleneck module to extend the gradient branch to acquire

high gradient flow data when ensuring lightweight. The main

idea of the given structure is to improve time of multi-scale

fusion and the probability of attaining a higher detection accuracy

rate. Since the model is lightweight, B3-N3 and B4-N4 are

included, and one unit is used. The respective process can be

explained below.

Net out5 = C2f (Concate(Conv(Net in5 ), Bout5 ), n)

Net outin = C2f (Concate
(

Conv
(

Net ini
)

, Boutin , Poutin

)

, n)

where Conv and C2f are represented as conforming module

operations. Net, B, and P corresponded to backbone feature

maps, as PAN and FPN, respectively; n denotes the number

of C2f uses. On the other hand, the attention mechanism

called Decoupled Fully Connected (DFC) avoids the prevailing

attention algorithms for feature capture at long distances

and computational complexity. Its execution is deliberated in

Equations (1) and (2).

Y
′

= X ∗Feat1∗1 (1)

Y = Concat([Y
′

, Y ′∗Featdep]) (2)

where Featdepis represented as a depth-wise convolution.

The depth-wise convolution acts upon feature maps to

attain a linear transformation process. In addition, the

DFC attention mechanism is used directly as a deeply

separable structure, with the simplest structure being to

acquire an attention map along with information. The

particular measuring process is expressed in the following

Equations (3) and (4):

∝
′

hw =

H
∑

h
′
=1

FeatH
h,h

′
,w

⊙

Xh
′
w
′ h = 1, 2, ..., H, w = 1, 2, . . . ,W

(3)

∝hw =

W
∑

w
′
=1

FeatWw,h,w′

⊙

∝
′

hw′ h = 1, 2, ..., H, w = 1, 2, . . . ,W

(4)

where Feat refers to the depth-wise separable convolution

process, which is classified into vertical and horizontal directions;

∝
′

is an attentionmap in the vertical direction and∝ is an attention

map on ∝
′

in the horizontal direction. Therefore, feature vectors

are transformed linearly to estimate three matrices, namely V, K,

and Q. The calculation process is expressed in Equations (5)–(7).

Q = Xrev WidQ (5)

K = XrevWidrev (6)

V = X
′

WidV (7)

Then attention to relation from place to place is obtained

through structuring a directed graph to localize its related region.

The particular implementation is as follows: V and Q for each place

are processed by region to obtain the levels Qr and Kr. After that, Qr

and Kr dot products are estimated to obtain the adjacency matrix
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FIGURE 5

Architecture of the proposed YOLOv8 model.

FIGURE 6

Schematic diagram of the C2f module (A) and bottleneck (B) of the present model.
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and Adjrev is used to calculate the inter-place correlation, and the

equation is

Adjrev = Qrev
(

Krev
)T

Further, Adjrev is clipped and the minimum relevant token in

Adjrev is filtered out at a coarse-grained level. The top k relevant

regions in Adjrev have been recollected to acquire a matrix of

routing index, Irev which is deliberated in Equation (8).

Irev = topkIndex(Arev ) (8)

Subsequently, at a fine-grained level, token-to-token attention

is utilized. This attention is focused on k routing regions that are

indexed and collecting all the V and K tensors in k regions to obtain

V foc and K foc that are calculated through Equations (9) and (10).

Kfoc
= focal(K, Irev) (9)

Vfoc
= focal(V, Irev ) (10)

The collected V foc and K foc are processed along with the

attention. A Local Context Enhancement (LCE) term is employed

to obtain the output tensor. The formula is deliberated in

Equation (11).

Out = Attention
(

Q, Kfoc, Vfoc
)

+ LCE (V) (11)

For the size of the input feature h × w × c, the required SFFs

are utilizing the size of regular convolution k × k in Equation (12).

C represents the number of channels of input data.

SFFsConv = h × w × k2 × c2 (12)

A deep convolutional kernel makes the sliding operations over

the input channel space to estimate the output channel features.

The SFFs for deep convolution are estimated as the output channel

features that are calculated through Equation (13).

SFFsDWConv = h × w × k2 × c (13)

Correspondingly, deep convolution requires other

computational costs and point-by-point convolution to

compensate for decreasing accuracy after the convolution

function. It introduces Partial Convolution (PConv), which utilizes

regular convolution to process the operation on continuous

features in the input channel. cp is the channel number in input

features. The formula for measuring SFFs of pConv is indicated in

Equation (14).

SFF sPConv = h × w × k2 × c2p (14)

cp, ¼ of a number of feature channels (input) c, the SFFs of

pConv are 1/16 of the conventional convolution. This decreases

the number of memory accesses when minimizing the parameters.

Firstly, pConv has been utilized to swap the two 1 x 1 convolutional

layers in the SFF block, which enhances the receptive field when

making the original module more efficient and faster. Secondly,

residual concatenation has been added to the last two convolutional

layers in the block to develop the output information features

and decrease the effective feature loss. It can optimize the present

model’s performance. Due to the anchor-free idea usage, the

YOLOv8 loss function is greatly different from the previous

YOLOv5 series. The optimization was comprised of two parts,

namely regression and classification. The regression part utilizes

the Boundary Box Regression Loss (BBRL) and Distribution Focal

Loss (DFL), and the classification loss utilizes Binary Cross Entropy

Loss (BCEL). The loss function is expressed in the following

Equation (15):

funcloss = λ1funcBCEL + λ2funcDFCL + λ3 funcBBRL

+ λ3 funcOut (15)

The loss of prediction set is necessarily the cross-entropy loss,

and the calculation can be deliberated in Equation (16).

funcBCEL = weg[class](−x[cls]+ log(
∑

j

exp(x[j]))) (16)

where cls is a number of categories, weg[class] refers to each

class weight, and x refers to the probability value after the sigmoid

activation. DFL is an optimization of the focal loss function that

generalizes discrete outcomes of classification into unremitting

outcomes through integration. Hence, the calculation is expressed

in the following Equation (17).

funcDFL (Si, Si+1)

= −
((

yi+1 − y
)

log (Si) +
(

y − yi
)

log (Si+1)
)

(17)

where yi and yi+1 represent values from the left and right sides

that are near the consecutive labels y. Simultaneously, while the

prediction box contains a high degree of coincidence with the target

box, the loss function made the model obtain better generalization

capability with less training intervention through weakening the

geometric factors penalty. A 2-layer attention mechanism and

active non-monotonic FM apparatus are utilized. The expression

is provided in Equations (18) and (19).

funcBBRL

= (1 −
WidiHegi

Su ) exp(
(xp − xgt)

2
+(yp − ygt)

2

(

Wid2g + Heg2g

)∗ )γ (18)

γ =
β

δαβ−δ
(19)

where β refers to the abnormality degree of the predicted

box. The small degree of abnormality denotes that the anchor box
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quality is higher. Henceforth, β is used to build the non-monotonic

focal number assigned small gradient gains for predicting large

outliers’ boxes. α and δ are referred to as hyperparameters; xp
and yp denote coordinate values of the prediction box, xgt and

Ygt represent ground truth coordinate values. The corresponding

wid and heg values denote the width and height of the two boxes,

respectively. The process can be expressed as

Su = widheg + widgtheggt −WidiHegi.

3.5.3 SFF
The Selection Focal Fusion (SFF) block is utilized in the

proposed research. It is a technique utilized in the YOLOv8 model

that is popular in object detection algorithms. It improves the

accuracy of detection by selectively fusing features from three layers

of the network. In the YOLOv8 model, a network architecture

consists of multiple detection layers at various scales. Each of the

detection layers is accountable for detecting objects of various

sizes. SFF is applied to three detection layers and employs an

attention mechanism for featuring the image data to improve

their performance. Furthermore, focal aggregation classifies the

images at both horizontal and vertical levels and provides the

attention mechanism that is presented for the optimization of the

backbone network that enhances the attention of the model to

critical information. The proposed SFF substantially decreases the

missed detection rates of small objects and improves the detection

performance of the present model.

3.5.4 Prediction phase
The prediction phase is a commonly used technique by

researchers to determine the efficiency of the proposed system. In

the prediction phase, the algorithm is processed using the test data,

which will reveal the performance of the present model. Finally,

the system’s efficiency is calculated using certain performance

matrices, such as mAP, F1-score, precision, and recall, to evaluate

the efficiency of the projected model.

4 Results

4.1 EDA

Exploratory Data Analysis (EDA) supports examining the

process of data comprehension in detail and aids in learning

different characteristics of data. It helps in representing the

data statistically. Various visual representations are deliberated

for the identification of patterns and styles, such as heat maps,

histograms, box plots, bar charts, and scatter plots. Furthermore,

EDA is significantly utilized for outliers, anomalies, error detection,

and other suspicious patterns or assumptions in the data.

Therefore, it can be utilized for data comprehension before creating

assumptions. Figure 7 shows the sample data used in the proposed

research, which consists of lungs.

Figures 7, 8 deliberate the sets of training and validation of

image data from the dataset. From Figure 8, the validation set of

images shows the level of TB in the lungs; Figure 9 signifies the

information about manually labeling objects in the dataset. Here,

the red box indicates active TB, salmon pink indicates healthy, the

yellow box indicates sick, and the orange box indicates latent TB.

Figure 9 shows the analysis of the dataset, which is surmised.

The dataset is comprised of a huge number of small objects that

can exist in an uneven and dense distribution. The first subfigure

illustrates the number of objects of each type in the dataset. The

second subfigure shows the distribution of center point coordinates

of objects in bounding boxes in the dataset. The third subfigure

represents a scatter plot of the corresponding height and width of

the object in the bounding box. Moreover, Figure 10 presents the

correlogram label.

Figure 10 deliberates the correlogram label. A correlogram

is known as a graphical representation that shows correlation

coefficients among variables in the dataset. Moreover, the label

in the correlogram denotes features or variables that are being

examined. The YOLOv8 model endured training on the TBX-11k

dataset for its challenging X-ray samples and limited data. Figure 9

shows the xywh of the dataset, where x and y are positions and h

and w refer to height and width. The estimation has encompassed

training and validation sets, which reveal the classification and

box prediction loss on the validation set. Figure 11 represents the

learning curves of box classification and prediction loss for training

and validating the dataset.

Figure 11 depicts the learning curves of box classification and

prediction loss for training and validating the dataset. To address

the overfitting, the annotated data aimed to augment the size of

the samples for improved generalization. During the training, it

is important to notice that optimal weights are saved and the

checkpoint weights are retained for deployment. Despite this,

Figure 11 shows the better performance of the proposed model,

attaining a prediction loss below 0.06 and a classification loss below

0.1 on the validation set, displaying its proficiency in localizing and

identifying the lesions in lung images.

4.2 Performance metrics

Performance metrics are primarily used for observing the

efficiency of the projected research by utilizing various metrics like

recall rate, precision, mAP, and F1-score value.

4.2.1 Recall
The term recall is deliberated as the reclusive of the production

metric that estimates the total of accurate positive categories

made out of all the optimistic categories. It is calculated with the

following equation:

Recall =
True_Pos

False_Neg+ True_Pos

4.2.2 Precision
The term precision is denoted as the covariance unit of

technique, which results from the appropriately recognized
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FIGURE 7

Train batch images.

FIGURE 8

Validation batch images.

cases (TruePos) to the total group of cases that are accurately

categorized (TruePos + FalsePos). It includes the repeatability and

reproducibility of the capitals. Equation (20) depicts the formula

for precision.

Precision =
True_Pos

False_Pos+ True_Pos
(20)

4.2.3 F1-score
The F1-score is represented as a measure of the appropriate

mean rate of recall and precision value. The mathematical equation

for the F1-score is depicted in Equation (21).

F1− score = 2×
Recall× Precision

Recall+ Precision
(21)
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FIGURE 9

Labeling of objects in a dataset.

FIGURE 10

Correlogram label.

4.2.4 mAP
Mean Average Precision (mAP) is computed utilizing

Equation (2). It is a broadly accepted performance metric

for models of object detection. The mAP is evaluated

by considering the mean of AP for each of the classes.

AP for each class k is determined by measuring the area
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FIGURE 11

Curves of box classification and prediction loss for validating and training sets.

FIGURE 12

Prediction results of existing YOLOv8 model. (A) X-ray with both healthy and sick regions. (B, C) X-ray with active TB and latent TB.

FIGURE 13

Prediction results of the proposed YOLOv8 model. (A) X-ray with healthy lung. (B) X-ray with sick region. (C) X-ray with latent TB.
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TABLE 2 Validating results of proposed system.

Class Images Instances Box (P) R mAP50 mAP50-95

All 357 449 0.711 0.622 0.657 0.475

Active_TB 357 207 0.773 0.56 0.676 0.32

Healthy 357 182 1 0.995 0.995 0.994

Latent_TB 357 41 0.176 0.146 0.107 0.0567

Sick 357 19 0.895 0.789 0.849 0.529

under the precision-recall curve. mAP offers a single score

that considers precision, recall, and IoU, avoiding bias

in performance.

mAP =
1

n

k=n
∑

k=1

APk

4.3 Experimental results

This section discusses the results accomplished by the proposed

mechanism for predicting Active TB, Sick but non-TB, Healthy,

and Latent TB with the Kaggle TBX-11k dataset. Furthermore,

the outcomes obtained in the internal comparison of the present

research YOLOv8 model and existing data. Figures 12, 13 signify

various illustrations of lungs and the prediction results of the

proposed research.

Figure 12 represents the existing sample image data from the

TBX-11k dataset. After the implementation, the prediction results

are shown in Figure 13. It predicted active TB, latent TB, sick, and

healthy among the X-ray images. Here, the lavender box indicates

healthy, the light blue box indicates sick, the violet box indicates

active TB, and the dark blue box indicates Latent TB in Figure 12.

The results for both healthy and sick were 0.47%, which is less

than the proposed model. However, Figure 13A shows a healthy

lung, and (b) shows a sick lung with a 0.80% better prediction. The

latent_TB in Figure 12 predicts 0.65% whereas, whereas latent_TB

in Figure 13C results in 0.83% of. Likewise, the active_TB results

in 0.36%, 0.73%, 0.69%, and 0.45% in Figure 12, whereas the

proposedmodel in Figure 13 results in 0.76%, which shows a higher

prediction than the existing model. While validating, the results

are attained at 0.2ms of speed, 2.0ms of inference of pre-process,

0.0ms of loss, and 1.1ms of post-process per image. Furthermore,

Table 2 depicts the validating results of the proposed system.

Table 2 illustrates the proposed system for validating results.

It highlights the overall prediction results that comprised 449

instances, 0.711 of precision, 0.622 of recall, 0.657 of mAP50, and

0.475 of mAP50-95. Additionally, it shows results for predictions

such as active TB, Latent TB, healthy, and sick.

4.4 Comparative analysis

The section illustrates the comparative analysis of the proposed

mechanism with the existing approaches depending on the

TABLE 3 Comparative analysis of proposed research (Bista et al., 2023).

Model All classes
(mAP@0.5)

YOLOv7 Base model with class imbalance 0.249

Base model with image weights 0.211

Base model along with minority class

image augmentation

0.280

Putting it all together and evolving the

hyperparameter

0.587

YOLOv8 Base model 0.627

Selective Focal Fusion (SFF) Block in

YOLOv8

0.657

TABLE 4 Comparative outcomes of proposed system.

All classes at mAP Proposed
model

Existing
model

F1 confidence 0.66 0.63

Precision confidence 1 0.96

Recall confidence 0.76 0.71

Precision-recall confidence 0.65 0.62

performance metrics. Table 3 deliberates the comparative analysis

of YOLOv8 with the YOLOv7 model at mAP values.

From Table 3, the base model of YOLOv8 has attained 0.627

mAP values, whereas the proposed model of SFF in YOLOv8

has attained 0.657 mAP values. It is proven that the present

model attains 0.37 higher than the base model, which represents

its efficiency. Additionally, Table 4 discusses the comparative

outcomes of the proposed system.

In Table 4, the comparative outcomes of the existing and

proposed models are presented. It shows the proposed research has

attained better outcomes than the prevailing model in all classes

at mAP values. It attained 0.03 of F1 confidence, 0.04 of precision

confidence, 0.05 of recall confidence, and 0.03 of precision-recall

confidence more than the prevailing model. Additionally, Figure 14

deliberates the performance metrics comparison.

Figure 14 illustrates that the proposed model attained better

values than the prevailing model in all classes at mAP values. It

attained 0.66 of F1 confidence, 1 of precision confidence, 0.76 of

Recall confidence, and 0.65 of precision-recall confidence, which is

more than the prevailing model values.
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FIGURE 14

Performance metrics comparison.

FIGURE 15

Confusion matrix and normalized confusion matrix.

4.5 Performance analysis

The performance of the proposed algorithm is examined using

evaluation metrics like Recall, Precision, F1-score, and accuracy.

Likewise, a Confusion Matrix (CM) is utilized for identifying

the performance of the proposed research. It encapsulates and

envisages the performance of the classification algorithm. Hence,

the CM signifies how many predictions are right and wrong as per

the class. Figure 8 deliberates the CM of the respective system.

Figure 15 shows the CM of the proposed research. It represents

the actual and correct prediction of the model. Figures 16, 17

show the F1 confidence curve and Precision confidence curve,

respectively. Correspondingly, the confidence curves are associated

with performance metrics that illustrate the performance of the

proposed mechanism at various confidence levels.

The F1-score is a measurement of the accuracy of the proposed

model in classification tasks, taking into account both recall and

precision. It combines these two metrics into a single value to

obtain a balanced evaluation. Figure 17 deliberates the precision

confidence curve; which focuses on positive prediction proportions

made by the proposed research. The p-confidence curve shows

the relationship between the precision value and the threshold

value. Similarly, Figure 18 refers to the precision-recall curve, and

Figure 19 exemplifies the recall-confidence curve.

Figure 18 deliberates the trade-off between recall and precision.

Precision refers to the proportions of correctly classified positive

instances out of all instances that are classified as positive. Recall

refers to the correctly classified positive instances proportions out

of the entire actual positive instances. The PR curve shows how the

precision and recall points change as the classification threshold

value varies. Similarly, in Figure 19, the recall-confidence curve

denotes the association between the confidence threshold and the

recall of the proposed research. They both help in assessing the

ability of the proposed research to identify the positive instances
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FIGURE 16

F1-curve.

FIGURE 17

P-curve.

correctly and provide a precise understanding of its confidence

threshold performance.

5 Discussion

The contributions of the respective research and the utilized

dataset are indicated in this section. Various types of research are

focused on the prediction of TB through its CXR images (Ekins and

Freundlich, 2011; Acharya et al., 2022), cough, and different tests

like blood tests, sputum tests, imaging studies, skin tests (Maipan-

uku et al., 2024), etc. In order to decrease the severity of the disease,

it is important to diagnose the disease at an early stage by predicting

TB. According to that, the primary cause of TB is Mycobacteria,

which affects the human respiratory system. All the functions of

the lungs will be affected, like chronic coughs, sneezes, sweating,

chest pain, and fever. Correspondingly, predicting tuberculosis is

necessary to consider a precise treatment to reduce the disease’s

consequences. For this purpose, the proposed mechanism focused

on predicting Active TB, Latent TB, Healthy and Sick but non-

TB through the Kaggle TBX-11k dataset. This dataset is comprised

of chest radiograph samples that are related to TB and non-

TB. Moreover, mAP is the prime metric for object detection.

The proposed prediction model, with the advantage of efficient

results from a smaller dataset, attains an mAP of 0.657, which is

higher than other prevailing models. Besides, the dataset used is

insufficient for prevailing research. For this reason, the respective

model is examined with the traditional models, which reveal
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FIGURE 18

PR-curve.

FIGURE 19

R-curve.

the efficiency of the proposed research. In the comparison, the

proposed method achieved higher mAP values than conventional

models and can assist radiologists and experts in providing effective

TB prediction. Besides, it is envisioned to improve the life quality

of TB patients.

6 Conclusion

Tuberculosis is a pathogenic and deadly disease caused by

bacterial Mycobacteria. It mostly affects the human respiratory

system and can even lead to death. Many people have been

affected by TB owing to inaccuracy, late diagnosis, and deficiency

of treatment. Hence, early and accurate diagnosis is a significant

solution to preventing and checking tuberculosis. Applying

technologies to support the medical business plays a primary

role in improving accuracy and speed in prediction methods. A

CXR is a major diagnostic tool utilized to screen for disease.

However, the visual inspection accuracy through human experts

is time-consuming and limited. To resolve this problem, the

proposed research on SFF in the YOLOv8 model aimed to

overcome the limitations and improve the prediction accuracy for

TB detection, thereby reducing transmission risks and facilitating

early intervention. Correspondingly, the utilization of the YOLOv8

architecture enabled TB pattern prediction and accurate detection

in CXR images. The TBX-11k dataset is used to demonstrate

its effectiveness in distinguishing sick but non-TB, active TB,

Latent TB, and healthy cases. The data imbalance is mitigated

through data augmentation and class weights methods that are

comprised of image augmentation and focal loss, which result in

robust generalization and improved performance of the proposed

framework. After integrating the SFF into the YOLOv8 model,
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the respective research findings indicate that the projected system

attained a promising mAP value of 0.657 on the validation set,

making it an assistive tool for radiologists. Constantly, the outcome

of the comparative analysis signifies that the respective model has

outperformed the existing models. Though the proposed model

performed efficiently, it did not encompass the large data due

to the limited resources available at the time, and limited data

are considered limitations. The usage of a wide range of data

and associating it to the analysis and understanding the TB

characteristics and patterns can be reached in future research.
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