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Random kernel k-nearest
neighbors regression

Patchanok Srisuradetchai*† and Korn Suksrikran†

Department of Mathematics and Statistics, Thammasat University, Pathum Thani, Thailand

The k-nearest neighbors (KNN) regression method, known for its nonparametric

nature, is highly valued for its simplicity and its e�ectiveness in handling

complex structured data, particularly in big data contexts. However, this method

is susceptible to overfitting and fit discontinuity, which present significant

challenges. This paper introduces the random kernel k-nearest neighbors (RK-

KNN) regression as a novel approach that is well-suited for big data applications.

It integrates kernel smoothing with bootstrap sampling to enhance prediction

accuracy and the robustness of the model. This method aggregates multiple

predictions using random sampling from the training dataset and selects subsets

of input variables for kernel KNN (K-KNN). A comprehensive evaluation of

RK-KNN on 15 diverse datasets, employing various kernel functions including

Gaussian and Epanechnikov, demonstrates its superior performance. When

compared to standard KNN and the random KNN (R-KNN)models, it significantly

reduces the root mean square error (RMSE) and mean absolute error, as well as

improving R-squared values. The RK-KNN variant that employs a specific kernel

function yielding the lowest RMSE will be benchmarked against state-of-the-

art methods, including support vector regression, artificial neural networks, and

random forests.

KEYWORDS

bootstrapping, feature selection, k-nearest neighbors regression, kernel k-nearest
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1 Introduction

The recent increase in machine learning research has highlighted the significance

of ensemble techniques and regression models, which have demonstrated enhanced

predictive capabilities. This trend is observable across a wide range of domains and

use cases, as evidenced by the current research landscape. Li et al. (2023) conducted a

comprehensive study in the field of agriculture, analyzing meteorological patterns and

soybean yield statistics from various counties and weather stations within China’s primary

soybean cultivation regions. They utilized a stacking ensemble framework to construct a

predictive model for soybean yield estimation, employing algorithms such as k-nearest

neighbor (KNN), random forest (RF), and support vector regression (SVR). Jiang et al.

(2023) developed a stacking ensemble model that integrates RF, KNN regression, gradient

boosting regression (GBR), and a meta-learner, specifically linear regression (LR), to

predict greenhouse gas emissions from irrigated rice farms. Bian and Huang (2024)

developed a novel fuzzy modeling approach using an enhanced evidence theory integrated

with KNN for dynamic and accurate air pollution estimation.

In the energy sector, El-Kenawy et al. (2021) introduced an improved ensemble model

for predicting solar radiation levels. This model operates in two stages: data preparation

and ensemble training. It is enhanced through KNN regression, and its effectiveness is

evaluated using a dataset from Kaggle. Compared to existing benchmarks, the unique
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advantages of this model are evident. In a related study, Chung

et al. (2019) explored various machine learning techniques to

predict charging patterns, analyzing factors such as duration

and energy consumption from historical data. They developed

the Ensemble Predicting Algorithm (EPA) by integrating diverse

techniques to enhance predictive accuracy. Sharma and Lakshmi

(2023) proposed a model that initially segments the values of

the target variable into multiple categories. Then, a unified KNN

model, which merges both weighted attribute KNN and distance-

weighted KNN, is applied. The weighting for each attribute is

determined through information gain. This model is employed

to predict the target variable’s value for each test instance.

Their primary aim was to use various KNN-focused models to

increase the accuracy of air pollutant level predictions. Cheng

et al. (2014) introduced a novel KNN methodology based on

sparse learning, designed to address the limitations of previous

KNN approaches, such as using a fixed k value for all test

instances and overlooking sample correlations. This strategy

adjusts test samples and uses training samples to identify the

optimal k value for each instance. Subsequently, the refined

KNN method, with the optimized k value, is applied to various

tasks, including categorization, regression, and imputation of

missing values.

Song and Choi (2023) introduced innovative integrated

models within the finance industry, aimed at forecasting

both short-term and long-term closing prices of major stock

market indices: DAX, DOW, and S&P500. They proposed

an enhancement involving the calculation of the mean of

the highest and lowest prices of these indices to improve

accuracy. In a separate domain, Dimopoulos et al. (2018)

conducted a comparative study on the effectiveness of machine

learning vs. traditional risk ratings in estimating the risk of

cardiovascular disease.

KNN regressions have also been discovered for environmental

research. Jafar et al. (2023) conducted a study to compare the

effectiveness of multiple linear regression with 19 different

machine learning techniques. These algorithms included

regression, decision trees, and boosting mechanisms. The

analyzed models included LR, least angle regression (LAR),

Bayesian ridge chain (BR), ridge regression (Ridge), KNN, extra

tree regression, and the notably robust XGBoost. In a related

effort, Srisuradetchai and Panichkitkosolkul (2022) employed an

ensemble machine learning approach that incorporated KNN,

MLR, RF, SVR, and other algorithms to predict PM2.5 levels in

Bangkok. This ensemble learning method was further applied by

Srisuradetchai et al. (2023) to forecast daily new confirmations of

COVID-19 cases.

KNN regression has been enhanced through its combination

with other algorithms. Ghavami et al. (2023) introduced an

innovative ensemble prediction technique named COA-

KNN, which integrates the Coyote optimization algorithm

(COA) with KNN to enhance the accuracy of fatigue and

rutting predictions in reclaimed asphalt pavement mixtures.

When compared to established prediction models, including

RF, GB, decision tree regression (DTR), and MLR, COA-

KNN demonstrated superior performance across various

metrics. Similarly, Song et al. (2018) developed a potent

regression learning approach termed the distance-weighted

KNN algorithm. This algorithm aims to elucidate the nonlinear

relationships between input structural parameters and resultant

motor performances.

In the expanding field of KNN classification, particularly

in the context of big data, Bermejo and Cabestany (2000)

pioneered an adaptive soft KNN classifier that estimates posterior

class probabilities, showcasing improved handwritten character

recognition. Meanwhile, Deng et al. (2016) optimized KNN

classification for large datasets using a hybrid approach

of k-means clustering and KNN classification. Ingram and

Munzner (2015) proposed the Q-SNE algorithm, a dimensionality

reduction technique tailored for document data, significantly

enhancing the layout quality of large document collections.

Similarly, Pramanik et al. (2021) reviewed the applications and

challenges of big data classification, discussing the imperative

of systematic data processing for knowledge discovery

and decision-making. Saadatfar et al. (2020) addressed the

computational challenges of applying KNN to big data by

clustering data into smaller, manageable partitions. Abdalla and

Amer (2022) introduced NCP-KNN, a variation that reduces

search complexity and excels in high-dimensional classification,

promising efficiency for large datasets. Finally, Ukey et al. (2023)

delivered a comprehensive survey on exact KNN queries over

high-dimensional data.

Kernel functions are employed in KNN, as demonstrated

by Zheng and Cao (2008), who explored the use of kernel

functions in KNN for Holter waveform classification. Enriquez

et al. (2019) devised and examined a methodology for identifying

faults in power transformers using a KNN classifier with a

weighted classification distance. Rubio et al. (2009) introduced a

parallel implementation of the sequential kernel-weighted KNN

algorithm in Matlab, specifically designed for cluster platforms.

Ali et al. (2020) developed a group model utilizing the KNN

algorithm, employing samples and random features to generate

predictions by pooling various models. Bay (1999) also explored

a similar concept, aiming to enhance nearest neighbor classifiers

through the utilization of a combination of multiple models, each

emphasizing random features. However, these studies, including

research conducted by García-Pedrajas and Ortiz-Boyer (2009),

Steele (2009), and Li et al. (2014), primarily aimed to enhance

classifiers by utilizing a random subset of input variables without

considering the utilization of kernel functions. For the KNN time

series model, Srisuradetchai (2023) proposed a new approach for

interval forecasting that combines the KNN time series model

with bootstrapping.

This study enhances random KNN regression by incorporating

kernel methods. While traditional random KNN regression is

effective with various data types, it may not detect intricate

patterns that are crucial for accurate predictions. The method

introduced here, named Random Kernel KNN regression

(RK-KNN), employs random feature selection, bootstraps data

samples, and applies kernel functions to weight distances. This

paper evaluates RK-KNN across 15 datasets and compares

its performance with state-of-the-art methods, including

random forest, support vector regression, and artificial

neural networks.
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2 Theoretical background

2.1 Kernel functions

Kernel functions are used to weigh the contributions of

each point based on its distance from the query point. While

traditional KNN uses uniform weights, kernel functions allow

these weights to vary, often improving performance. Here are

some widely used kernels that can be applied in KNN regression

(Schölkopf and Smola, 2001; Tsybakov, 2009; Beitollahi et al.,

2022):

• Gaussian (Radial Basis Function) kernel:

Perhaps the most popular kernel, the Gaussian kernel, has

a bell-shaped curve and can assign weights to points in the

input space based on their distance from the query point, with

this influence rapidly declining as the distance increases, as

shown in Equation (1).

K(x, x′) = exp

(

−
∥

∥x− x′
∥

∥

2

2σ 2

)

, (1)

where σ 2 is the standard deviation (bandwidth).

• Epanechnikov kernel:

This kernel is parabolic and is often used because of its

computational efficiency. It assigns more weight to nearby

FIGURE 1

Comparison of di�erent kernel functions, all centered at zero and using a bandwidth of one.

FIGURE 2

KNN regression model with k = 9 applied to synthetically generated data.
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TABLE 1 Datasets employed for model evaluation in RK-KNN regression with di�erent kernels.

Dataset n p Responses

D1 Student performance (Cortez, 2014) 649 30 Math scores

D2 Student performance (Cortez, 2014) 649 30 Portuguese scores

D3 Wisconsin Prognostic Breast Cancer

(Wolberg et al., 1995)

198 34 Recurrence time

D4 Properties of poly-aromatic hydrocar-bons

(PAH) (Todeschini et al., 1995)

80 113 Effectiveness of the PDGFR inhibitors

D5 Platelet derived growth factor receptor

(PDGFR) (Guha and Jurs, 2004)

79 304 Biological activity reported as

IC50values

D6 Triazines (Hirst et al., 1994) 186 60 Inhibitory activity of triazine

compounds

D7 Phenethyl (Kubinyi, 1993) 22 629 Phenethyl derivatives

D8 Topo (Feng et al., 2003) 8,885 267 Toxic effects from the compound

structure

D9 Tecator (Borggaard, 1992; Thodberg, 1996) 240 125 Fat content of a meat sample

D10 Fric4 (Friedman, 1999) 1,000 100 Artificially generated responses from the

model.

D11 HappinessRank (Helliwell et al., 2017) 235 9 Happiness scores from The World

Happiness Report

D12 AutoHorse (OpenML, 2024) 201 69 Price

D13 Residential Building (Rafiei, 2018) 372 108 Actual sales prices

D14 Communities and Crime (Redmond, 2009) 1,994 100 Total number of violent crimes per

100K population

D15 Pumadyn (Alcalá-Fdez et al., 2011) 8,192 32 Angular acceleration of one of the robot

arms

points than to points further away, but unlike the Gaussian

kernel, it becomes zero beyond a certain distance, as defined

in Equation (2).

K(x, x′) = 3

4

(

1−
∥

∥x− x′
∥

∥

2

h2

)

for
∥

∥x− x′
∥

∥ < h, (2)

and K(x, x′) = 0 otherwise, where h is the bandwidth.

• Uniform kernel:

The uniform kernel gives equal weight to all points within

a certain range of the query point and no weight to points

outside this range. It is the simplest form of kernel and is

equivalent to the traditional KNN method when used with a

fixed radius, as expressed in Equation (3).

K(x, x′) = 1

2h
for
∥

∥x− x′
∥

∥ < h, (3)

and K(x, x′) = 0 otherwise, where h is the bandwidth.

• Triangular kernel:

The triangular kernel assigns weights that decrease linearly

with distance from the query point. It is zero beyond

the kernel’s bandwidth, as shown in Equation (4).

K(x, x′) = 1−
∥

∥x− x′
∥

∥

h
for
∥

∥x− x′
∥

∥ < h, (4)

and K(x, x′) = 0 otherwise, where h is the bandwidth.

• Quartic (Biweight) kernel:

This kernel is similar to the Epanechnikov kernel but

assigns weight with a smooth, bell-shaped curve, which

reaches zero at the kernel’s bandwidth, as defined in Equation

(5).

K(x, x′) = 15

16



1−
(
∥

∥x− x′
∥

∥

h

)2




2

for
∥

∥x− x′
∥

∥ < h, (5)

and K(x, x′) = 0 otherwise, where h is the bandwidth.

• Tricube kernel:

The tricube kernel is a higher-order kernel with compact

support, meaning it assigns a weight of zero to any point

outside a certain range of the query point. It is smoother and

has heavier tails than the quartic kernel, according to Equation

(6).

K(x, x′) = 70

81



1−
(
∥

∥x− x′
∥

∥

h

)3




3

for
∥

∥x− x′
∥

∥ < h, (6)

and K(x, x′) = 0 otherwise, where h is the bandwidth.
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TABLE 2 Performance evaluation of KNN, R-KNN, and RK-KNN with

various kernel functions across datasets (bold values represent the best

performance).

Method RMSE MAE R2

D1 KNN 4.1878 3.1845 0.2055

R-KNN 3.7979 2.7844 0.6291

RK-KNN with kernel:

Gaussian 3.7976 2.7844 0.6287

Epanechnikov 3.7975 2.7846 0.6288

Uniform 3.7979 2.7844 0.6304

Triangular 3.7949 2.7828 0.6284

Quartic 3.7971 2.7848 0.6275

Tricube 3.7982 2.7856 0.6273

D2 KNN 2.8320 2.0736 0.2579

R-KNN 2.5161 1.7633 0.6392

RK-KNN with kernel:

Gaussian 2.4875 1.7457 0.6434

Epanechnikov 2.4873 1.7445 0.6432

Uniform 2.4878 1.7450 0.6434

Triangular 2.4852 1.7429 0.6436

Quartic 2.4867 1.7441 0.6431

Tricube 2.4874 1.7447 0.6429

D3 KNN 31.9275 27.5843 0.1452

R-KNN 32.0872 27.8724 0.1352

RK-KNN with kernel:

Gaussian 32.0903 27.8737 0.1348

Epanechnikov 32.0473 27.8755 0.1341

Uniform 32.0335 27.8629 0.1352

Triangular 32.0549 27.8799 0.1333

Quartic 32.0614 27.8793 0.1330

Tricube 32.0629 27.8772 0.1331

D4 KNN 0.103200 0.088300 0.7049

R-KNN 0.100200 0.081800 0.7194

RK-KNN with kernel:

Gaussian 0.100027 0.082446 0.7202

Epanechnikov 0.099257 0.081848 0.7247

Uniform 0.099807 0.082148 0.7224

Triangular 0.098940 0.081626 0.7260

Quartic 0.098797 0.081580 0.7265

Tricube 0.098812 0.081613 0.7265

D5 KNN 0.1811 0.1302 0.4476

R-KNN 0.1749 0.1242 0.4726

RK-KNN with kernel:

Gaussian 0.1745 0.1239 0.4752

Epanechnikov 0.1733 0.1228 0.4818

Uniform 0.1749 0.1242 0.4726

(Continued)

TABLE 2 (Continued)

Method RMSE MAE R2

Triangular 0.1729 0.1223 0.4844

Quartic 0.1723 0.1217 0.4879

Tricube 0.1722 0.1216 0.4886

D6 KNN 0.1391 0.1028 0.2026

R-KNN 0.1321 0.0970 0.2691

RK-KNN with kernel:

Gaussian 0.1320 0.0969 0.2696

Epanechnikov 0.1320 0.0969 0.2702

Uniform 0.1321 0.0970 0.2691

Triangular 0.1318 0.0967 0.2720

Quartic 0.1319 0.0968 0.2713

Tricube 0.1319 0.0969 0.2705

D7 KNN 0.1461 0.1233 0.8585

R-KNN 0.1454 0.1225 0.8563

RK-KNN with kernel:

Gaussian 0.1444 0.1223 0.8566

Epanechnikov 0.1406 0.1188 0.8646

Uniform 0.1429 0.1213 0.8635

Triangular 0.1400 0.1180 0.8651

Quartic 0.1389 0.1171 0.8652

Tricube 0.1387 0.1169 0.8655

D8 KNN 0.0290436 0.0203419 0.0320561

R-KNN 0.0280759 0.0195862 0.0519505

RK-KNN with kernel:

Gaussian 0.0280758 0.0195861 0.0519602

Epanechnikov 0.0280756 0.0195860 0.0520021

Uniform 0.0280759 0.0195862 0.0519789

Triangular 0.0280745 0.0195852 0.0520842

Quartic 0.0280753 0.0195857 0.0520282

Tricube 0.0280756 0.0195860 0.0520045

D9 KNN 4.9607 3.6138 0.9043

R-KNN 4.8846 3.5413 0.9189

RK-KNN with kernel:

Gaussian 4.8699 3.5324 0.9192

Epanechnikov 4.8446 3.5176 0.9197

Uniform 4.8839 3.5412 0.9189

Triangular 4.8103 3.4896 0.9205

Quartic 4.8101 3.4962 0.9204

Tricube 4.8204 3.5057 0.9202

D10 KNN 0.9900 0.7839 0.0421

R-KNN 0.9532 0.7586 0.1469

RK-KNN with kernel:

Gaussian 0.9532 0.7586 0.1464

(Continued)
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TABLE 2 (Continued)

Method RMSE MAE R2

Epanechnikov 0.9525 0.7580 0.1440

Uniform 0.9526 0.7581 0.1468

Triangular 0.9526 0.7579 0.1436

Quartic 0.9525 0.7579 0.1407

Tricube 0.9524 0.7578 0.1382

D11 KNN 0.3953 0.3048 0.8877

R-KNN 0.3802 0.2838 0.8999

RK-KNN with kernel:

Gaussian 0.3799 0.2837 0.9000

Epanechnikov 0.3760 0.2818 0.9023

Uniform 0.3767 0.2821 0.9020

Triangular 0.3754 0.2814 0.9025

Quartic 0.3753 0.2815 0.9026

Tricube 0.3756 0.2818 0.9024

D12 K-NN 3,051.2 2,105.2 0.8507

R-KNN 2,983.6 1,960.6 0.8810

RK-KNN with kernel:

Gaussian 2,961.1 1,949.2 0.8824

Epanechnikov 2,919.6 1,928.6 0.8848

Uniform 2,983.6 1,960.6 0.8810

Triangular 2,879.4 1,907.3 0.8871

Quartic 2,871.2 1,904.3 0.8872

Tricube 2,877.5 1,907.5 0.8869

D13 KNN 730.86 486.82 0.5993

R-KNN 710.57 475.59 0.6254

RK-KNN with kernel:

Gaussian 710.20 475.36 0.6255

Epanechnikov 710.71 475.52 0.6247

Uniform 710.57 475.55 0.6254

Triangular 707.66 473.38 0.6272

Quartic 710.54 475.21 0.6243

Tricube 712.53 476.36 0.6224

D14 KNN 0.143249 0.0968667 0.62008

R-KNN 0.141207 0.0969202 0.64373

RK-KNN with kernel:

Gaussian 0.141195 0.0969090 0.64377

Epanechnikov 0.141183 0.0968933 0.64380

Uniform 0.141207 0.0969201 0.64373

Triangular 0.141162 0.0968674 0.64385

Quartic 0.141160 0.0968671 0.64387

Tricube 0.141171 0.0968790 0.64385

(Continued)

TABLE 2 (Continued)

Method RMSE MAE R2

D15 KNN 0.027170 0.021513 0.189703

R-KNN 0.026824 0.021045 0.343268

RK-KNN with kernel:

Gaussian 0.026820 0.021042 0.343363

Epanechnikov 0.026806 0.021032 0.343543

Uniform 0.026822 0.021044 0.343268

Triangular 0.026802 0.021029 0.343651

Quartic 0.026790 0.021020 0.343954

Tricube 0.026784 0.021016 0.344055

All kernel functions, as plotted in Figure 1, have a bandwidth of

one. The Gaussian kernel is depicted as a smooth curve peaking at

the center. The Epanechnikov kernel displays a parabolic shape that

cuts off at the bandwidth’s edge. The uniform kernel provides equal

weight within a fixed bandwidth and falls to zero beyond it. The

triangular kernel’s weight decreases linearly with distance, ending

at the bandwidth limit. The quartic kernel features a bell shape

that smoothly tapers to zero, while the tricube kernel has a more

pronounced peak with a faster decline.

2.2 K-nearest neighbor regression

KNN regression is a type of non-parametric method used for

predicting the continuous outcome of a new data point based

on the outcomes of its nearest neighbors in the feature space.

It does not make any assumptions about the underlying data

distribution and is particularly useful when dealing with complex

data structures (Hastie et al., 2009). Given a dataset with n points,

(x1, y1), (x2, y2), ..., (xn, yn), where each xi represents a vector of

features and each yi represents the corresponding continuous

outcome, KNN regression predicts the outcome ŷ for a new data

point x based on the outcomes of its k nearest neighbors in the

feature space. The mathematical formulation of KNN regression

includes (Altman, 1992):

• Distance metric: the first step in KNN regression is to

determine the “closeness” of data points in the feature space,

which requires a distance metric. The most common choice is

the Euclidean distance, though other metrics like Manhattan

or Minkowski can also be used. The distance d between two

data points x and xi is calculated by using Equation (7) for

Euclidean distance.

d(x, xi) =
√

(x− xi)T(x− xi) (7)

• Finding neighbors: for a given data point x, find the k points

in the dataset that are closest to x based on the distance metric.

These points are termed KNN.

• Prediction: The predicted outcome ŷ is calculated as

the average of the outcomes of the k-nearest neighbors.
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FIGURE 3

Comparative performance of RK-KNN with di�erent kernel functions, R-KNN, and KNN regressions on multiple datasets using RMSE rankings.

FIGURE 4

Comparative performance of RK-KNN with di�erent kernel functions, R-KNN, and KNN regressions on multiple datasets using MAE rankings.

Mathematically, this can be represented as:

ŷ = 1

k

∑

i∈Nk

yi. (8)

In Equation (8), Nk contains the indices of the k closest (in l2
distance) of x1, ..., xn to x.

Figure 2 illustrates the example of the KNN regression with k

= 10, where the dataset was synthetically generated from model

Y = sin(x)+ sin(2x)+ ε. It can be observed that KNN regression

makes no assumptions about linearity and fits the data well. The

predictions for new data points are based on the average outcomes

of the 9 nearest points from the training data.

2.3 Kernel k-nearest neighbor regression

Kernel k-Nearest Neighbor (K-KNN) regression extends

the conventional KNN regression algorithm, an instance-based

learning method, by incorporating kernel functions. This
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FIGURE 5

Comparative performance of RK-KNN with di�erent kernel functions, R-KNN, and KNN regressions on multiple datasets using R2 rankings.

integration allows the algorithm to weigh the contributions of each

point’s neighbors based on their distance, effectively smoothing

out predictions and improving the model’s ability to handle

complex, non-linear relationships (Tan et al., 2020; Yao et al.,

2021). Given a dataset with n points (x1, y1), (x2, y2), ..., (xn, yn),

where each xi represents a vector of features and each yi represents

the corresponding continuous outcome, the prediction ŷ for a

new data point x is calculated not just by averaging the outcomes

of its k but by taking a weighted average, where the weights are

determined by a kernel function based on the distance between x

and each xi.

The kernel function K in Equation (9) applied in this context is

a symmetric function that satisfies certain mathematical conditions

(like positivity and integrability) with the general form K :R
d→ R,

where d is the dimension of the input space. The kernel function K

must satisfy

∫

K(t) dt = 1,

∫

t K(t) dt = 0, 0 <

∫

t2 K(t) dt < ∞.

(9)

The choice of kernel function can significantly influence the

regression outcome, as different kernels impose different structures

on the data (Hofmann et al., 2008). The prediction ŷ in K-KNN

regression is then given by:

ŷ =
∑

i∈Nk
K(x, xi) · yi

∑

i∈Nk
K(x, xi)

. (10)

In Equation (10) K(x, xi) is the kernel function evaluating the

similarity (or smoothness) between the target point x and each

neighbor xi.

2.4 Cross-validation for optimal
parameters

It is imperative to determine the optimal k for the neighbors

and the best-suited bandwidth for the kernel function in the context

of each bootstrap sample. This step ensures that the model is

not just fitted to the training data but also generalizes well to

unseen data.

Utilizing ν−fold cross-validation, the original training set is

randomly partitioned into ν equal-sized subsamples. Of the ν

subsamples, a single subsample is retained as the validation data for

testing the model, and the remaining ν − 1 subsamples are used as

training data. The cross-validation process is then repeated ν times

(the folds), with each of the ν subsamples used exactly once as the

validation data. For each fold and each candidate combination of

parameters (specific k and bandwidth), themodel is trained, and the

prediction error (e.g., RMSE) on the validation fold is computed.

The average error across all ν folds is then calculated for each

combination (Wong and Yang, 2017; Wong and Yeh, 2020).

3 Proposed method

Combining bootstrap sampling, choosing features at random,

and using kernel methods in a KNN model is employed to

make standard KNN better at prediction. Given a training dataset

LD(X;Y), where X is a p-dimensional feature matrix with n

observations and Y is the corresponding response variable, the

objective is to predict the response ŷ for a new observation x0
in the test dataset. Note that in KNN regression, it is essential to

preprocess all predictors to ensure they are unitless. The step for

random kernel KNN (RK-KNN) regression is as follows:

1) Bootstrap Sampling for KNN
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TABLE 3 Performance evaluation of best KNN-typed learner, RF, ANN,

and SVR (bold values represent the best performance).

Method RMSE MAE R2

D1 Random Kernel KNN 3.7949 2.7828 0.6284

Random Forest 1.9710 1.1991 0.8105

Artificial Neural

Network

2.8195 2.1649 0.6123

Support Vector

Regression

2.9470 1.9306 0.5864

D2 Random Kernel KNN 2.4852 1.7429 0.6436

Random Forest 1.2806 0.8084 0.8384

Artificial Neural

Network

1.7284 1.2457 0.7065

Support Vector

Regression

1.7219 1.0574 0.7138

D3 KNN 31.9275 27.5843 0.1452

Random Forest 34.0136 28.8079 0.0326

Artificial Neural

Network

46.5660 37.2240 −0.8355

Support Vector

Regression

34.8618 28.7294 −0.0121

D4 Random Kernel KNN 0.0987 0.0815 0.7265

Random Forest 0.1048 0.0854 0.6867

Artificial Neural

Network

0.2081 0.1484 −0.5068

Support Vector

Regression

0.1401 0.1057 0.6459

D5 Random Kernel KNN 0.1722 0.1216 0.4886

Random Forest 0.1826 0.1297 0.2731

Artificial Neural

Network

4.9656 1.5578 −1,988.9871

Support Vector

Regression

0.1945 0.4237 0.2521

D6 Random Kernel KNN 0.1318 0.0967 0.2720

Random Forest 0.1243 0.0912 0.3758

Artificial Neural

Network

0.2709 0.1862 −1.9643

Support Vector

Regression

0.1398 0.1003 0.2095

D7 Random Kernel KNN 0.1387 0.1169 0.8655

Random Forest 0.1486 0.1208 0.3686

Artificial Neural

Network

3.3553 2.2652 −2,239.9117

Support Vector

Regression

0.2118 0.1659 −0.2131

D8 Random Kernel KNN 0.0280 0.0195 0.0520

Random Forest 0.0297 0.0201 0.0526

Artificial Neural

Network

0.1546 0.0746 −29.6140

Support Vector

Regression

0.0376 0.0297 −0.5931

(Continued)

TABLE 3 (Continued)

Method RMSE MAE R2

D9 Random Kernel KNN 4.8103 3.4896 0.9205

Random Forest 1.5273 1.0882 0.9883

Artificial Neural

Network

3.8876 2.6226 0.9292

Support Vector

Regression

11.1648 7.9844 0.4088

D10 Random Kernel KNN 0.9524 0.7578 0.1382

Random Forest 0.3749 0.2891 0.8640

Artificial Neural

Network

1.0516 0.8608 −0.0693

Support Vector

Regression

0.9534 0.7723 0.1211

D11 Random Kernel KNN 0.3753 0.2815 0.9026

Random Forest 0.3839 0.2803 0.8846

Artificial Neural

Network

0.5566 0.4287 0.7311

Support Vector

Regression

0.3022 0.1816 0.9238

D12 RK-KNN with Quartic 2,871.2 1,904.3 0.8872

Random Forest 2,145.3 1,470.5 0.8921

Artificial Neural

Network

12,614.1 11,164.4 −2.2913

Support Vector

Regression

7,493.0 4,895.2 −0.1041

D13 RK-KNN with

Triangular

707.66 473.38 0.6272

Random Forest 246.12 129.67 0.9564

Artificial Neural

Network

198.85 116.84 0.9712

Support Vector

Regression

1,252.86 805.01 −0.0971

D14 Random Kernel KNN 0.141160 0.0968671 0.64387

Random Forest 0.136293 0.0939809 0.64433

Artificial Neural

Network

0.196391 0.1486414 0.26220

Support Vector

Regression

0.142445 0.1037052 0.61202

D15 Random Kernel KNN 0.026784 0.021016 0.34405

Random Forest 0.007750 0.006169 0.93407

Artificial Neural

Network

0.066096 0.052390 −3.87338

Support Vector

Regression

0.030218 0.023477 −0.00120

Bootstrap sampling is integral to ensemble methodologies,

particularly bagging. It involves generating B unique datasets

from the original training data, D, each termed Db (where b =
1, 2, . . . ,B) by sampling n observations with replacement. In

mathematical notation,

Db =
{(

x
∗
1, y

∗
1

)

,
(

x
∗
2, y

∗
2

)

, . . . ,
(

x
∗
n, y

∗
n

)}

. (11)
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In this study, B is set to 1,000.

2) Random Feature Selection

Incorporating a feature randomness aspect akin to Random

Forests, each bootstrap sample Db, as shown in Equation (11),

undergoes a feature selection process where only a random subset

of d features (where d < p) is considered for model training.

During the training phase for each Db, the algorithm does not

utilize the full feature set. Instead, it randomly selects a subset,

contributing to model diversity within the ensemble (Breiman,

2001). In this study, d is set to p/2, p/5, and
√
p, and the best d

is determined from one that yields the lowest RMSE or MAE or

highest R2.

3) Kernel Enhancement in KNN

We add the Gaussian, Epanechnikov, uniform, triangular,

quartic, and tricube kernels to a standard KNN in this paper.

Within KNN, kernel functions can adjust neighbor contributions,

giving more weight to nearer neighbors. Suppose Nk(x0) denotes

the set of k nearest neighbors to a query point x0, determined using

a subset of d features. The kernel-weighted response estimate is

given by:

ŷ =
∑

xi∈Nk(x0)
K(x0, xi) · yi

∑

xi∈Nk(x0)
K(x0, xi)

. (12)

In Equation (12), K(x0, xi) is the kernel function evaluating the

closeness of points x0 and xi, and yi are the response values of the

neighbors. Note that all xi are needed to be rescaled to be in [0, 1].

This scaling not only helps remove unit dominance but also easily

helps determine the bandwidth value of the kernel functions.

4) Determining Optimal k and Bandwidth

The optimal k and bandwidth parameters are those that

minimize the average prediction error estimated through a 5-

fold cross-validation. Let’s denote the set of candidate k values

as {k1, k2, ..., kr} and the set of candidate bandwidths as

{h1, h2, ..., hs}. The objective is to find the optimal kopt and hopt
that yield the lowest estimated prediction error:

(

kopt , hopt
)

= arg min
ki ,hj

CV
(

ki, hj
)

. (13)

In Equation (13), CV
(

ki, hj
)

represents the cross-validation error

estimated over multiple random splits of the dataset into training

and validation sets. Because all variables are scaled between 0 and 1,

the distance between any two points will also fall within a bounded

interval. This boundedness allows for the selection of h based on the

maximum distance within the k-nearest neighbors for each query

point, specifically for k = 2, 3, 5, 7. This method ensures that h

is sufficiently large to encompass all neighbors in the calculation,

thus being responsive to the local structure of the data and

accommodating areas of varying density. The optimal
(

kopt , hopt
)

is found from the grid {k1, k2, ..., kr} × {h1, h2, ..., hs}.

5) Ensemble Prediction

The ensemble’s predictive power is harnessed by aggregating

the individual KNN models’ outputs. If each model provides a

prediction ŷb for x0. The final prediction is an aggregate statistic

(e.g., mean) of these predictions, as shown in Equation (14):

ŷfinal =
1

B

∑B

b=1
ŷb. (14)

The pseudocode below (Algorithm 1) concretizes the sequence

of steps—from bootstrap sampling to the ensemble prediction—

that collectively forge our proposed method.

Input:

• Training dataset D =
{(

xi, yi
)}

for i = 1 to N,

where xi is the p-dimensional feature vector and

yi is the target value

• Number of bootstrap samples B (e.g., 1,000)

• A preselected kernel function K

• Candidate values for k and bandwidth h

Output:

Ensemble RK-KNN model for predicting

response ŷ for new observations.

1. Preprocess all predictors in D to ensure

they are unitless and scale to [0, 1]

2. Initialize an ensemble model list E = [ ]

For b = 1 to B do:

3. Generate a bootstrap sample Db from D

by sampling with replacement.

4. Randomly select a subset of d features

( d < p, options: p/2, p/5,
√
p)

5. For each combination of d, perform the

following steps to find the model mb

with the lowest cross-validation error

on Db:

5.1). Determine the optimal k and

bandwidth h that minimize the

prediction error using 5-fold

cross validation

5.2). Train a K-KNN model mb on Db

using the selected kernel

function K, optimal k, and

optimal bandwidth h

6. Add the trained model mb to the

ensemble E

For a new observation x0:

7. For each model mb in E, predict the response ŷb

using the kernel-weighted average of the

k-nearest neighbors in Db

8. Aggregate the predictions { ŷb } from all B

models to obtain the final prediction ŷfinal by

averaging: ŷfinal = 1
B

∑B
b= 1 ŷb.

Algorithm 1. RK-KNNmodel for predicting responses.

4 Evaluation datasets and results

This section is dedicated to presenting the datasets used

for benchmarking and the outcomes of the empirical evaluation
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FIGURE 6

The RMSE distribution across all eight methods for dataset D10.

conducted to assess the effectiveness of the RK-KNN regression

approach. Additionally, state-of-the-art methods, including RF,

ANN, and SVR, will be compared with the RK-KNNmodels.

4.1 Datasets for benchmarking

For assessing the new approach alongside existing leading

techniques, we utilize 15 distinct datasets. These collections of

data are acquired from multiple publicly accessible platforms. An

overview of each dataset is presented in Table 1, detailing the

number of observations (n), the number of predictor variables (p),

and the meaning of the response variable.

4.2 Performance evaluation

The performance of the RK-KNN method, when compared

to the standard KNN and R-KNN, across datasets D1 to D15,

is summarized in Table 2. It reveals the effectiveness of the RK-

KNN method in enhancing predictive accuracy. The RK-KNN

method, particularly when employing specific kernels, consistently

outperforms the standard KNN in terms of root mean square error

(RMSE), mean absolute error (MAE), and R-squared (R2) values.

Overall, the triangular kernel emerges as the most effective,

closely followed by the Tricube kernel. This observation is

supported by instances across multiple datasets; for example, in

dataset D1, the triangular kernel achieves an RMSE of 3.7949, an

MAE of 2.7828, and an R2 of 0.6304, surpassing the performance

of classical KNN. Similarly, in dataset D6, the triangular kernel

demonstrates superior results with an RMSE of 0.1318, an MAE of

0.0967, and an R2 of 0.272.

The Gaussian and Epanechnikov kernels tend to not give the

lowest RMSE or MAE but still perform notably well compared to

the traditional KNN and R-KNN. The uniform kernel sometimes

shows superiority compared to the other kernel functions.

Rankings are assigned to the methods from one to eight based

on the values of RMSE, MAE, and R2. The lowest RMSE or MAE

values receive a rank of one, indicating the best performance, while

for R2, the highest value is awarded a rank of one. The rankings for

RMSE, MAE, and R2 are summarized in Figures 3–5, respectively.

These graphs demonstrate that the RK-KNN regression models

generally achieve lower ranks, indicating better performance

compared to the R-KNN and traditional KNN regression models.

Specifically, for RMSE, the average ranks for RK-KNNwith quartic,

triangular, tricube, Epanechnikov, Gaussian, and uniform kernels

are 1.93, 2.27, 3.13, 3.80, 5.20, and 5.27, respectively. In contrast,

the R-KNN and traditional KNNmodels have average ranks of 6.40

and 7.53, respectively.

For MAEs, RK-KNN models with triangular and quartic

kernels exhibit nearly identical rankings, with average ranks of

2.33 and 2.67, respectively. The rankings for other methods are

consistent with those observed for RMSE. The sequence features

RK-KNN with tricube, Epanechnikov, Gaussian, and uniform

kernels, followed by R-KNN and KNN, with respective average

ranks of 3.27, 4.07, 5.07, 5.20, 6.00, and 7.07.

For R2, the RK-KNN model using the triangular kernel shows

the best performance, achieving the lowest average rank of 2.60.
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FIGURE 7

The RMSE distribution across all eight methods for dataset D12.

It is followed by the RK-KNN models with quartic, tricube,

Epanechnikov, uniform, and Gaussian kernels. R-KNN and KNN

lag behind, with average ranks for R2 being 3.13, 3.73, 4.07, 4.33,

4.67, 5.47, and 7.40, respectively.

4.3 Comparisons with state-of-the-art
methods

The KNN models exhibiting the lowest RMSEs were

benchmarked against RF, ANN, and SVR across fifteen diverse

datasets, as detailed in Table 3. KNN-typed learners showed

superior performance in datasets D3, D4, D5, D7, and D8,

representing a third of the datasets. However, they were notably

outperformed by RF in nine datasets (D1, D2, D6, D9, D10, D12,

D13, D14, and D15) and by ANN and SVR in the remaining

datasets. Although RK-KNN regression did not achieve the lowest

RMSE in all datasets, it remains a competitive option, particularly

against SVR and ANN. This is especially evident in datasets D5

and D8, which contain a high number of features, where RK-KNN

was preferred over the other models.

5 Conclusion and discussion

This study validates the efficacy of integrating kernel functions

with a random process, which includes both bootstrapping and

feature selection, across 15 datasets. Our comprehensive evaluation,

based on criteria such as RMSE, MAE, and R2, underscores the

superiority of the RK-KNN approach, especially when employing

quartic, triangular, and tricube kernel functions. These kernels

have consistently demonstrated performance enhancements across

various case studies.

Specifically, in dataset D10, RK-KNN regression markedly

improves prediction accuracy. The RMSE distributions depicted in

Figure 6 reveal that standard KNN exhibits higher RMSE compared

to other methods, with all parameter configurations for RK-

KNN outperforming standard KNN. However, achieving optimal

performance across datasets may require a comprehensive search

to identify the best parameters for the selected kernel functions.

As shown in Figure 7, while the lowest RMSE values for RK-

KNN across all kernel functions are superior to those of KNN,

the medians of RMSEs for some kernels, like the Gaussian kernel,

exceed the median RMSE of KNN. This variability indicates a

critical need for tuning the optimal bandwidth and k-value to

consistently achieve the lowest RMSE.

Moreover, the computational cost and scalability of the

RK-KNN algorithm’s cross-validation process are effectively

managed through vectorized distance computations, which

enhance calculation speed and reduce runtime. Standardization

of features further contributes to this efficiency by simplifying

the distance metric computation. A well-controlled grid search

for parameter tuning, along with the ability to independently

execute bootstrapping and feature selection steps, ensures

computational tractability. Practical applications across multiple

datasets have demonstrated that the cross-validation step, a critical

aspect of the RK-KNN algorithm, is not prohibitively time-

consuming. Therefore, the RK-KNN method is computationally
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efficient and well-suited for the analysis of large-scale

data environments.
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