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Introduction: Air quality is directly a�ected by pollutant emission from vehicles,

especially in large cities and metropolitan areas or when there is no compliance

check for vehicle emission standards. Particulate Matter (PM) is one of the

pollutants emitted from fuel burning in internal combustion engines and

remains suspended in the atmosphere, causing respiratory and cardiovascular

health problems to the population. In this study, we analyzed the interaction

between vehicular emissions, meteorological variables, and particulate matter

concentrations in the lower atmosphere, presenting methods for predicting and

forecasting PM2.5.

Methods: Meteorological and vehicle flow data from the city of Curitiba, Brazil,

and particulate matter concentration data from optical sensors installed in the

city between 2020 and 2022 were organized in hourly and daily averages.

Prediction and forecasting were based on two machine learning models:

Random Forest (RF) and Long Short-Term Memory (LSTM) neural network. The

baselinemodel for predictionwas chosen as theMultiple Linear Regression (MLR)

model, and for forecast, we used the naive estimation as baseline.

Results: RF showed that on hourly and daily prediction scales, the planetary

boundary layer height was the most important variable, followed by wind gust

andwind velocity in hourly or daily cases, respectively. The highest PM prediction

accuracy (99.37%) was found using the RFmodel on a daily scale. For forecasting,

the highest accuracy was 99.71% using the LSTMmodel for 1-h forecast horizon

with 5 h of previous data used as input variables.

Discussion: The RF and LSTM models were able to improve prediction and

forecasting compared with MLR and Naive, respectively. The LSTM was trained

with data corresponding to the period of the COVID-19 pandemic (2020 and

2021) and was able to forecast the concentration of PM2.5 in 2022, in which

the data show that there was greater circulation of vehicles and higher peaks

in the concentration of PM2.5. Our results can help the physical understanding

of factors influencing pollutant dispersion from vehicle emissions at the lower

atmosphere in urban environment. This study supports the formulation of new

government policies to mitigate the impact of vehicle emissions in large cities.
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particulate matter, air pollution, vehicle emissions, optical sensor, neural network,
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1 Introduction

Vehicle emissions represent one of the primary sources of

air pollution in urban areas globally, with road traffic emissions

constituting a significant portion of the particulate matter (PM)

present, especially at the roadside (Charron et al., 2007). Particulate

matter (PM) emissions from vehicles, which account for 56%

of PM, encompass various sources, including exhaust emissions

(Khazini et al., 2023). These emissions predominantly contribute

to fine PM, known as PM2.5, which refers to particles with

an aerodynamic diameter <2.5 µm. Additionally, PM emissions

arise from the re-suspension of dust and wear and tear of

vehicle components such as brakes, tires, and clutches, primarily

contributing to the coarse mode of PM (PM2.5 - PM10) (Abu-

Allaban et al., 2003; Thorpe and Harrison, 2008; Kam et al., 2012;

Pant and Harrison, 2013).

The population living in cities is exposed to high concentrations

of PM, and the United Nations estimates that the world population

living in urban areas will increase approximately 12% between 2022

and 2050 (United Nations, 2019). With this increase, the rise in

vehicle fleets and the characteristics of cities will potentially affect

the concentration of pollutants. The existence of a large number of

buildings and scarcity of vegetation, associated with geographical

and meteorological factors in urban environments, influence the

diffusion, transformation, deposition, and removal of pollutants in

the atmosphere (Abhijith et al., 2017; Harrison, 2018; Barwise and

Kumar, 2020; Shakya et al., 2023).

Despite being known for its advances in urban mobility,

Curitiba (Brazil) has observed an increase in the number of cars

per inhabitant, which is higher than the population growth, and

a decrease in the number of public transport users (Fochesatto

et al., 2023). In 2023, the vehicle fleet in Curitiba was the

fifth largest in the country, comprising more than 1.7 million

vehicles, mostly cars, which accounted for approximately 66%

of the fleet, followed by motorcycles, accounting approximately

10% of the fleet (BRASIL, 2023). Andrade et al. (2012) showed

that the main sources of PM in Curitiba were vehicle emissions,

which is responsible for most of the PM2.5 emitted. Mercuri

et al. (2023) showed that the flow of vehicles in Curitiba is

directly related to the concentration of particulate matter on urban

roads.

Several studies have proposed models to predict PM

concentration (Brokamp et al., 2018; Shang et al., 2019; Xiao

et al., 2020), but identifying the key factors influencing these

predictions remains a challenging problem. Prediction and

forecasting are often used interchangeably, but in our research,

the terms have a clear distinction. In this study, forecasting

refers to the process of estimating fine particle concentration

in the future based on past observation data. On the other

hand, prediction refers to estimating PM2.5 concentration in

the same time step as the input variables used to make the

prediction.

The Random Forest algorithm is one of the most common

models used for PM estimation. It has been increasingly used

in studies predicting the concentration of atmospheric pollutants,

with different temporal and spatial resolutions (Reichstein et al.,

2019; Stafoggia et al., 2019; Xu et al., 2019), and it makes it

possible to select variables of interest that can influence the

concentration of PM2.5, calculating the importance of each one

in the model and classifying them. Recently, there have been

few studies using Recurrent Neural Networks (RNN) and their

variations for air quality forecasting. Among these, long short-term

memory (LSTM) takes into account the temporal dependencies

in PM2.5 concentration records and has been increasingly applied

(Bekkar et al., 2021; Dhakal et al., 2021; Guo et al., 2022).

Perez et al. (2020) used a neural network (NN) model and

a linear model to predict the maximum 24-h PM2.5 average in

Chile, and the authors found a higher accuracy using the neural

network model. Hooyberghs et al. (2005) described the design

of an NN prediction tool for ambient PM concentrations in

Belgium; based on measurements from 10 monitoring sites from

1997 to 2001 and on simulations of meteorological parameters,

they identified the boundary layer height (BLH) as the most

important input variable. Li et al. (2020) evaluated and compared

the performance of six common machine learning algorithms

(MLAs), including Random Forest (RF), for predicting hourly

street-level of PM2.5 concentrations at three roadside stations

in Hong Kong, showing that RF was the MLA with the

highest predictive accuracy and R2 values greater than or equal

to 0.95. Kamińska (2018) applied RF to predict NO, NO2,

and PM2.5 values in Wrocław, Poland. In the research, traffic

volume, temporal characteristics, and meteorological conditions

(wind speed and direction, temperature, pressure, and relative

humidity) were considered as predictors; the author showed that

in warmer periods, RF produces a better fit and that the most

important predictors for PM2.5 concentrations were meteorological

conditions, especially temperature and wind.

This study aims to use machine learning models (Random

Forest and LSTM neural network) to estimate the concentration

of PM2.5 in Curitiba, Brazil. The models to access PM2.5

concentrations were developed using data from optical sensors

installed in the city between 2020 and 2022, meteorological

variables, boundary layer height, vehicle flow count, and

particulate matter concentration as input variables. We seek

to identify the importance of different input variables and

compare PM2.5 prediction and forecasting model performances.

The study is organized as follows: Section 2 describes

the data related to vehicle counting, PM2.5 concentration,

meteorological conditions, and boundary layer height, presents

an overview of the machine learning models and a description

of performance evaluation metrics; Section 3 contains the

modeling results and discussion; and Section 4 summarizes the

conclusions.

2 Materials and methods

This section is divided in four parts: subsection 2.1) a

description of the solution developed by the authors to measure

PM2.5 concentrations and the dataset construction based on vehicle

count, meteorological, and boundary layer height data; subsection

2.2) a description of the Random Forest model used for PM

prediction; subsection 2.3) an overview of the LSTM Neural

Network architecture applied for PM forecast; and subsection

2.4) the performance metrics applied to evaluate the quality of

predictions.
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FIGURE 1

Location of SDS011 sensor points, vehicle count, meteorological stations, and ERA5 data in the city of Curitiba and metropolitan region (Colombo).

FIGURE 2

Daily profile with hourly averages of the dataset variables: (A) PM2.5 concentration, air temperature, and relative humidity; (B) vehicle count, BLH, and

solar radiation; (C) wind gust, wind velocity, and wind direction; (D) precipitation and air pressure. Shaded areas represent confidence interval of 95%.

2.1 Vehicle, meteorological, and particle
data

Particulate matter measurement was performed using an

SDS011 sensor coupled to a Raspberry Pi single-board computer.

This sensor employs optical technology and uses laser scattering

to obtain the concentration of particulate matter between 0.3µm

and 10µm, including inhalable particles classified as PM2.5 (World

air quality index project, 2008). It represents a low-cost, low-power

consumption measurement method with adaptability to different

locations and climatic conditions, indicating the potential use for

monitoring networks in various locations within a city or country

(Liu et al., 2019; Tagle et al., 2020). The SDS011 sensors were

deployed at 14 locations in the city of Curitiba (see Figure 1), which
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TABLE 1 Summary of prediction and forecast performance results.

Model MAE
(µg/m3)

MAPE
(%)

RMSE
(µg/m3)

R²
(-)

ACC
(%)

Prediction

MLR (hourly) 6.65 1.39 9.93 0.22 98.61

RF (hourly) 5.06 0.93 7.79 0.52 99.07

MLR (daily) 4.99 0.70 6.89 0.46 99.30

RF (daily) 4.33 0.63 6.21 0.56 99.37

Forecast

Naive (hourly) 3.46 0.29 5.46 0.88 99.70

LSTM (hourly) 3.60 0.31 6.02 0.86 99.69

Naive (daily) 7.22 0.56 9.65 0.41 99.44

LSTM (daily) 6.82 0.52 9.03 0.39 99.48

Forecasts used window size equal to one (hour or day) and PM2.5 concentration as input data.

FIGURE 3

RF predictions against measured PM2.5 concentration in Curitiba for the validation period considering: (A) hourly averages and (B) daily averages.

was characterized by predominantly paved streets and residential

areas (Rodrigues et al., 2023, 2024). The data used in this study refer

to the period from 1 January 2020 to 31 December 2022 .

The vehicle count data were obtained from the Perkons

company, covering four points in the city (Figure 1) from

1 January 2020 to 4 October 2022. The total vehicle count

(including motorcycles, cars, and trucks) was used to represent

the average hourly or daily vehicle count in the city. In

addition to the number of vehicles, meteorological variables

and the variation in the height of the boundary layer are

expected to influence the concentration and dispersion of PM

in the atmosphere. Therefore, air temperature (◦C), relative

humidity (%), atmospheric pressure (mB), global radiation (kJ

m−2), wind speed (m/s), wind direction (◦), wind gust (m/s),

and precipitation data (mm) were obtained from the National

Meteorological Institute (INMET) from two automatic weather

stations: station A807 located at the Polytechnic Centre of the

Federal University and station B806 located in the city of

Colombo.

European Centre for Medium-Range Weather Forecasts

(ECMWF) global climate atmospheric reanalysis data (ERA5) were

utilized to obtain the variation in the planetary boundary layer

height in Curitiba. The reanalysis combines model data with

observations across the world, including satellite and radiosonde

datasets and various observational datasets from the World

Meteorological Organization’s Global Telecommunication System

(GTS) (Hersbach et al., 2020; Li et al., 2023). The ERA5 data cover

the entire globe, on a 1440× 721 grid with 0.25◦ latitude and 0.25◦

longitude resolution, a vertical resolution of 37 standard pressure

layers, an hourly temporal resolution, and is computed by the

bulk Richardson number method (a measure of the atmospheric

conditions) (Hersbach et al., 2020; Guo et al., 2021). Figure 1

illustrates the location of Curitiba in Brazil and indicates the

SDS011 sensor points, vehicle count locations, meteorological

stations, and the site used for downloading ERA5 data.

2.2 PM2.5 prediction using Multiple Linear
Regression and Random Forest

The Multiple Linear Regression (MLR) model was used

as the baseline for predicting PM2.5. An MLR extends simple

linear regression to include more than one explanatory variable,

producing a multivariate model. The equation for the line in
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FIGURE 4

Test data time series of measured and predicted PM2.5 concentration in Curitiba using RF. Fine particles and vehicle count data were resampled using

(A) hourly and (B) daily averages.

MLR modeling takes the form of Equation 1, where for i = n

observations, yi is the dependent variable, xi is the explanatory

variable, β0 is the y-intercept (constant term), βp is the slope

coefficients for each explanatory variable, and ǫ is the model’s error

term (also known as the residuals).

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ǫ (1)

The Random Forest (RF) algorithm has been used to predict

environmental variables concentrations, it is a classification and

regression algorithm that integrates multiple decision trees through

ensemble learning (Jeung et al., 2019). The RF model performs a

random sampling of the original dataset using the decision tree as

the basic random forest classifier resulting in n different sample

datasets. These datasets are used to build n different decision tree

models, with the final findings depending on the average value

of these decision tree models (Kamińska, 2019; Luo et al., 2023).

Essentially, the RF is constructed by a large number of trees, and

the algorithm calculates the average result of all trees, as shown in

Equation 2, where f̂ (x) is the result of the RF non-linear regression,

K is the number of trees, and T(x) is the result of each regression

tree.

f̂ (x) =
1

K

K∑

k=1

T(x) (2)
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FIGURE 5

RF importance of the input variables for predicting PM2.5 concentration in Curitiba considering: (A) hourly averages and (B) daily averages.

In this study, the RF model was created for predicting

the hourly and daily mass concentrations of PM2.5 (dependent

variable) using meteorological, vehicle count, and boundary

layer height variables described in Section 2.1 as predictive

(independent) variables. After calculating hourly and daily averages

and cleaning missing data, the dataset was divided into 80% of

training and 20% of test datasets. This division was made using

a method to split arrays or matrices into random train and test

subsets with a random state that controls the shuffling applied to

the data before applying the split to ensure reproducible output

across multiple function calls. A total of 1,000 decision trees were

used to apply the random forest regression method, which is a

meta estimator that fits a number of decision tree regressors on

various sub-samples of the dataset and uses averaging to improve

the predictive accuracy and control over-fitting. The performances

of the MLR baseline estimation and RF model were calculated and

compared for hourly and daily averages, as well as the importance

of each predictor variable in the RF model.

2.3 PM2.5 forecast using naive model and
long short-term memory neural network

The long short-term memory (LSTM) is one of the Recurrent

Neural Network (RNN) models most widely used in air quality

forecasting because it considers the temporal dependencies

observed in PM2.5 concentration time series (Huang and Kuo,

2018; Bekkar et al., 2021). It was created to solve problems

of long-term dependencies, which general RNNs cannot learn,

and gradient vanishing or explosion in backpropagation, which

means that the learning speed of the previous hidden layers is

slower than the deeper hidden layers in RNNs, even leading to a

decrease in accuracy rate as hidden layers increase (Huang and

Kuo, 2018; Yadav et al., 2020; Bekkar et al., 2021). Meanwhile,

LSTM has longer memory and can learn from inputs that are

separated from each other by long time lags (Bekkar et al.,

2021).

An LSTM has three analogical gates based on the sigmoid

function, which works on the range between 0 and 1. The input

gate controls the writing of input information, the forget gate

determines whether the information is saved or released from the

memory at each decision point, and the output gate decides what

information to output (Huang and Kuo, 2018; Bekkar et al., 2021).

To compare LSTM network’s performance, Naive prediction’s

performance was build and used as reference. Naive forecasting

models are based on the repetition of a historical observation solely,

without trying to explain the underlying causal relationships that

produce the variable being estimated (Shim et al., 2011; Ciechulski

and Osowski, 2024). Our version of Naive model considers the

forecast equal to the latest observation in a time series (Gleser,

1990), which means that the PM2.5 concentration was taken as the

same as the previous hour (or day) on the current hour (or day).

Following the same procedure as for the RFmodel, missing data

were cleaned, hourly and daily averages were calculated, and 20%

of data were used in Naive’s forecasting representing the test data,

comprising the period from 17 March 2022 to 4 October 2022. The

forecast errors were calculated and used as the reference for LSTM

model, as described in the next section of performance metrics. The

target for the LSTM model was PM2.5 concentration values at the

subsequent timestep, i.e., the forecast horizon was set to 1 h or 1

day. We have varied the number of timesteps for the LSTM to look

backward (window size) while predicting from 1 to 35. We have

tested and compared different window sizes and hidden units while

predicting, and the first 80% of the time series was used for training

and the last 20% of data was used for testing the model. The LSTM

final architecture has 2 and 3 hidden layers with 64 neurons each

for hourly and daily models, respectively.

Data were preprocessed using a method to standardize features

by removing the mean and scaling to unit variance. A standard

LSTM code was written and optimized using the PyTorch package;

we have used mean squared error (squared L2 norm) for the loss

function and Stochastic Gradient Descent for the optimizer. The

LSTM performance errors were calculated and compared with

Naive’s model.

2.4 Performance evaluation metrics

The mean absolute error (MAE), mean absolute percentage

error (MAPE), root mean square error (RMSE), coefficient of
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determination (R2), and an accuracy metric were used to assess

the prediction and forecast quality and compare the results of

MLR with RF and of Naive estimation with LSTM. In Equations 3–

6 below, n is the sample size, oi and pi represent the measured

and predicted value, respectively, and ō denotes the mean of all

measured values.

MAE (mean absolute error) is the arithmetic mean of the

absolute deviations between the measured and predicted values of

the sample, as shown in Equation 3.

MAE =
1

n

n∑

i=1

∣∣pi − oi
∣∣ (3)

The mean absolute percentage error (MAPE) expresses the

prediction or forecast error as a percentage and can be calculated

from Equation 4.

MAPE =
1

n

(
n∑

i=1

∣∣∣∣
pi − oi

oi

∣∣∣∣

)
100 (4)

RMSE (root mean square error) of a sample is the quadratic

mean of the differences between the observed values and predicted

ones. It reflects the prediction accuracy and its calculation formula

is shown in Equation 5.

RMSE =

√√√√ 1

n

n∑

i=1

(
pi − oi

)2
(5)

The coefficient of determination (R2) reflects the proportion of

all variations of the dependent variable that can be explained by the

independent variable through the regression relationship and can

be calculated by Equation 6.

R2 = 1−

n∑
i=1

(
oi − pi

)2

n∑
i=1

(oi − ō)2
(6)

The accuracy metric (ACC) is a percentage value, which

depends on the MAPE and is calculated using Equation 7.

ACC = 100−MAPE (7)

3 Results and discussion

Figure 2 shows the daily profile of each variable with the lines

representing the average in each hour of the day. From Figure 2B, it

can be observed that the number of vehicles is an important source

of particle emission in Curitiba, and that the PM2.5 concentration

has one peak approximately 7 a.m. and another near 8 p.m. We

note the effect of solar radiation in heating the surface, generating

more dispersion and, consequently, vertical air mass movement, as

represented by the increased wind velocity during the day. Changes

in relative humidity and winds may also affect particle dynamics.

TABLE 2 Description of scenarios and input variables used in each LSTM

hour forecast model.

Scenario Input variables (hourly averages)

H1 PM2.5

H2 PM2.5 , BLH

H3 PM2.5 , BLH, wind gust

H4 PM2.5 , BLH, wind gust, relative humidity, air
temperature

H5 PM2.5 , BLH, wind gust, relative humidity, air
temperature, vehicle count, precipitation, wind
direction

Multiple linear regression (MLR) for hourly time scale PM2.5

prediction, which is indicated by the dependent variable PMH
2.5

(µg/m3), is shown in Equation 8. The following independent

variables from Equation 8 are hourly averages: TH is air

temperature (◦C), UH is relative humidity (%), WH
s is wind speed

(m/s), WH
d

is wind direction (◦), WH
g wind gust (m/s), RH is

global radiation (kJ m−2), PHa is atmospheric pressure (mB), PH is

precipitation data (mm), VH is vehicle count, and HH is planetary

boundary layer height (m).

PMH
2.5 = +62.2933− 0.3691TH

− 0.2896UH

−0.3037WH
s + 0.0080WH

d − 1.1688WH
g − 0.0011RH

−0.0147PHa + 0.0868PH + 0.0020VH
− 0.0070HH (8)

MLR for daily time scale prediction of PM2.5 concentration,

which is indicated by the dependent variable PMD
2.5 (µg/m3), is

described by Equation 9. The following independent variables from

Equation 9 are daily averages: TD is air temperature (◦C), UH

is relative humidity (%), WD
s is wind speed (m/s), WD

d
is wind

direction (◦), WD
g wind gust (m/s), RD is global radiation (kJ

m−2), PDa is atmospheric pressure (mB), PD is precipitation data

(mm), VD is vehicle count, and HD is planetary boundary layer

height (m).

PMD
2.5 = −25.5351− 0.3300TD

−0.4206UD
− 4.0462WD

s + 0.0162WD
d

+0.5726WD
g − 0.0041RD + 0.0881PDa − 0.0635PD

+0.0006VD
− 0.0194HD (9)

Table 1 summarizes the errors for test data using hourly and

daily averages for the studied models (Random Forest andMultiple

Linear Regression used for prediction, LSTM, and Naive models

used for forecasting). All forecasts shown in Table 1 used window

size equal to one (hour or day) and PM2.5 concentration as input

data.

Figures 3, 4 show the RF results of test data for hourly

and daily averages. Figure 3 presents a dispersion plot with

predicted values on x-axis and measured values on y-axis,
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FIGURE 6

LSTM 1-h forecast performance metrics for di�erent input scenarios as we increased the looking back window size. The metrics are: (A) Accuracy (B)

MAE (C) MAPE, (D) RMSE and (E) R2.

with the 1:1 line, and Figure 4 also shows the time series

of predicted and measured PM2.5 concentration and the

vehicle count data on the right y-axis. Figure 4 shows a

decrease in the number of vehicles in the city of Curitiba in

2020, which probably contributed to the observed decrease in

PM concentration.

RF model accuracy was higher compared with MLR in all

cases, as well as MAE, MAPE, and RSME errors decrease and

R2 value increase. The daily average of the RF model provided

the highest accuracy value, reaching 99.37%. For both time scale

predictions, there was a reduction in errors and an increase in

the R2 value and accuracy using the RF model. By using the RF

model, there was a greater increase in accuracy compared with

MLR on the hourly scale, increasing the value by 0.46%, while

the increase on the daily scale was only 0.07%. The increase

in the R2 value and the decrease in errors when using the RF

model were also more noticeable on the hourly scale than on the

daily scale.
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TABLE 3 Summary of Naive and LSTMmodel’s performance results for di�erent scenarios using daily averages of input variables and window size equal

to 1 day.

Scenario Input
variables

MAE
(µg/m3)

MAPE
(%)

RMSE
(µg/m3)

R²
(-)

ACC
(%)

Naive model

- PM2.5 7.22 0.56 9.65 0.41 99.44

LSTM model

D1 PM2.5 6.82 0.52 9.03 0.39 99.48

D2 PM2.5 , BLH 6.80 0.52 8.85 0.41 99.48

D3 PM2.5 , BLH, wind
velocity

6.75 0.50 8.94 0.42 99.50

D4 PM2.5 , BLH, wind
velocity,
vehicle count,

6.91 0.52 9.18 0.38 99.48

D5 PM2.5 , BLH, wind
velocity,
vehicle count,
relative humidity

6.83 0.53 8.89 0.41 99.47

FIGURE 7

Test data time series of measured and predicted daily concentration of PM2.5 in Curitiba using LSTM with window size equal to 1 day.

The RF algorithm was able to select the most important

variables for predicting PM2.5. Figure 5 shows the most important

predictors used by RF model for hourly and daily averages. The

importances in RF are computed as the mean and standard

deviation of accumulation of the impurity decrease within each

tree.

Boundary layer height was the most important variable, and

relative humidity was the third most important for both time

scale predictions: hour and day. There was a distinction between

the other variables considering the hourly and daily averages,

especially wind gust and wind speed, which exchanged between the

second and second-to-last most important variables. Precipitation

remained the least important variable, and vehicle count rose from

the fifth most important variable to the third in the analysis of daily

averages.

Initially analyzing the hourly average, the accuracy value for the

LSTM model was very close to Naive’s, but it was found that the

accuracy, R2, and associated errors changed according to the size

of window (look back period) and the number of hidden layers. It

was also checked whether increasing the number of input variables

could improve the performance of LSTM compared with Naive for

hourly and daily scenarios, which are described in the following.

In hourly timescale scenarios, the most important variables

found in the RF model were added in stages as inputs to different

LSTMmodels, starting with the BLH. Variables of equal importance

were added in a single step, for example, relative humidity and
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temperature. Table 2 explains the different scenarios (H1, H2,

H3, H4, and H5), and input variables were added to the LSTM

models. Figure 6 shows the evolution of errors as the look back

period increases for the five different inputs scenarios using

three hidden layers, hidden dimension of 64, and 150 epochs of

training.

The highest accuracy (99.71%) was found in scenarios H3 and

H4 with a window size of 5, as observed in Figure 6A. Figure 6C

shows that the lowest MAPE, 0.29%, value was found for the Naive

model and LSTM with scenarios H4 and H5, while the other values

varied between 0.30 and 0.31%. R2 reached a maximum value of

0.89 on all occasions for scenario H5 with a window size greater

than or equal to 10, as shown in Figure 6E. Figure 6B shows that

the MAE errors remained below the MAE value found in the Naive

model for an LSTM window size equal to or greater than 5, and

Figure 6D shows that the RMSE values were always lower by using

LSTM, compared with Naive, for scenario 5 with a window size

equal to or greater than 10.

Similar to the analysis of hourly averages, the most important

variables found in the RF model with daily averages were added

to the LSTMmodel, maintaining the same window size and using 3

hidden layers, hidden dimension of 64, and 150 epochs for training.

Table 3 describes each scenario for the daily time scale (D1, D2, D3,

D4, and D5), the input variables, and the LSTM and Naive model’s

evaluation metrics.

For daily scenarios, the accuracy and R2 values were higher

for the LSTM model, and MAE, MAPE, and RSME errors were

lower when compared with the Naive approximation. When the

number of inputs was increased with a window size of 1 day,

there was a variation in the error and accuracy values. The highest

accuracy and lowest MAPE were obtained in scenario D3 using

three inputs: PM2.5 concentration, boundary layer height, and

wind velocity. Figure 7 shows measured PM2.5 concentration and

predicted concentrations using LSTM on a daily scale with PM2.5

concentration as input (scenario D1).

In 2022, vehicle count and particulate matter concentrations

were higher than in 2021 and 2020. This behavior is associated with

the COVID-19 pandemic, in which vehicle circulation decreased

due to the lockdown in the City of Curitiba. Consequently,

there was a decrease in PM2.5 concentration peaks during 2020–

2021. Even though the LSTM was trained with lower values,

corresponding to the period of the pandemic, the model was able

to forecast the PM2.5 concentration in 2022.

4 Conclusion

The data gathered in this research provide important

information about the City of Curitiba, Brazil, especially the

relationship between number of vehicles and concentration of fine

particles. Using the dataset created, the models for prediction and

forecasting indicated that Random Forest and LSTM model were

good estimators of PM2.5 concentration.

Model’s performance was analyzed using measured data from

Curitiba, while several inputs were tested. RF had better results for

prediction compared with MLR, reaching 99.37% of accuracy at

daily time scale. The lowest accuracy in prediction was the one that

considered the hourly time scale using MLR. In general, models

at daily scale performed better compared with models at hourly

scale. The RF model identified boundary layer height as the most

important input variable for both time scales and precipitation as

the less important. Variations in wind conditions, vehicle count,

air temperature, and relative humidity contributed significantly to

predictions at hourly and daily scales.

The inputs recognized as most important in RF prediction

(BLH, wind intensity, humidity, and vehicle count) were also

important for LSTM forecast. The results of the LSTM model

showed sensible variation depending mainly on model’s looking

back window size and inputs, sometimes reaching or exceeding

the values found in the Naive model, with a maximum accuracy of

99.71% found on hourly scale with window size equal to 5 h. LSTM

model had better performance compared withNaive’s in forecasting

at daily scale. Because of its ability to exploit the sequential nature

of the data, LSTM network have the tendency to outperform Naive

model.

Data showed the influence of COVID-19 pandemic on

vehicle circulation and fine particulate matter concentration

in Curitiba, with lower values in 2020 and 2021, followed

by an increase in 2022. LSTM neural network was trained

with pandemic data and was able to generate good

forecasts for PM2.5 concentration in 2022, a post pandemic

period.

RF and LSTM proved to be good models for the prediction

of fine particles and forecasting in Curitiba, respectively. Our

results help the physical understanding of factors influencing

pollutant dispersion from vehicle emissions at the lower

atmosphere in urban environment. As a suggestion for future

studies, we recommend the application and comparison of

other models to predict and forecast PM2.5, as well as testing

larger window sizes to verify if it is possible to improve the

performance of the model. It is also suggested to include vehicle

information categorized by type or fuel as input variables of the

models.
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