
TYPE Original Research

PUBLISHED 30 October 2024

DOI 10.3389/fdata.2024.1422546

OPEN ACCESS

EDITED BY

Arslan Musaddiq,

Linnaeus University, Sweden

REVIEWED BY

Weifeng Sun,

Dalian University of Technology, China

Bahman Arasteh,

University of Istinye, Türkiye

*CORRESPONDENCE

Li Han

hanli@zzuli.edu.cn

RECEIVED 24 April 2024

ACCEPTED 09 October 2024

PUBLISHED 30 October 2024

CITATION

Han L, Zhu S, Zhao H and He Y (2024) An

enhanced whale optimization algorithm for

task scheduling in edge computing

environments. Front. Big Data 7:1422546.

doi: 10.3389/fdata.2024.1422546

COPYRIGHT

© 2024 Han, Zhu, Zhao and He. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

An enhanced whale optimization
algorithm for task scheduling in
edge computing environments

Li Han*, Shuaijie Zhu, Haoyang Zhao and Yanqiang He

College of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou,

China

The widespread use of mobile devices and compute-intensive applications has

increased the connection of smart devices to networks, generating significant

data. Real-time execution faces challenges due to limited resources and

demanding applications in edge computing environments. To address these

challenges, an enhanced whale optimization algorithm (EWOA) was proposed

for task scheduling. A multi-objective model based on CPU, memory, time, and

resource utilization was developed. The model was transformed into a whale

optimization problem, incorporating chaotic mapping to initialize populations

and prevent premature convergence. A nonlinear convergence factor was

introduced to balance local and global search. The algorithm’s performance was

evaluated in an experimental edge computing environment and compared with

ODTS,WOA, HWACO, andCATSA algorithms. Experimental results demonstrated

that EWOA reduced costs by 29.22%, decreased completion time by 17.04%,

and improved node resource utilization by 9.5%. While EWOA o�ers significant

advantages, limitations include the lack of consideration for potential network

delays and user mobility. Future research will focus on fault-tolerant scheduling

techniques to address dynamic user needs and improve service robustness

and quality.

KEYWORDS

multi-objective optimization, whale optimization algorithm, task scheduling, edge

computing, optimization in edge computing

1 Introduction

Based on the Ericsson Mobile Report (Cisco, 2023), in the third quarter of 2023, 163

million new 5G subscriptions were added, reaching a total of 1.4 billion. Mobile network

data traffic experienced a 33% growth between Q3 2022 and Q3 2023. By the end of 2029,

it is anticipated that 5G mobile subscriptions to surpass 5.3 billion, and the average global

mobile data consumption per smartphone is expected to reach 56 GB per month. In order

to develop 5G wireless technology and enable network transmission with exceptionally

high rates of data, extremely low latency, minimal energy usage, an outstanding experience,

and the security of user data (Ghobaei-Arani et al., 2020), edge computing is proposed as

an efficient solution (Li et al., 2021). In edge computing, overloaded computation tasks can

be scheduled by edge devices to the edge servers. This enables the full utilization of edge

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2024.1422546
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2024.1422546&domain=pdf&date_stamp=2024-10-30
mailto:hanli@zzuli.edu.cn
https://doi.org/10.3389/fdata.2024.1422546
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2024.1422546/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

servers in terms of computation and storage, ultimately enhancing

the delivery of real-time services. In edge computing, the

critical problem is selecting the appropriate edge server for the

computation requester based on the network state and edge server.

The crucial factor in selecting the right edge server depends

on whether the applicant, equipped with the compute function,

comprehends the services available in its vicinity (Zhao et al.,

2021). Edge computing apps depend on an administrative server

for proxies to choose the right side server. Task scheduling plays

an important part in increasing resource utilization and providing

high-quality services to users. Task scheduling techniques have

surfaced as one of the most popular topics in edge computing

(Hazra et al., 2020). An effective task scheduling strategy can adapt

flexibly to the dynamic edge and cloud computing environments,

successfully decreasing the time needed for users to submit

assignments and enhancing the efficiency of resource utilization

(Barika et al., 2021). In edge computing environments, task

scheduling has found extensive applications in scenarios such

as the Internet of Things (IoT), the Internet of Vehicles (IoV),

and intelligent transportation. The utilization of edge computing

scheduling not only addresses the constraints of the existing host

network but also plays a crucial role in achieving efficient task

allocation Figure 1 illustrates the application scenarios of compute-

intensive task scheduling in edge environments. In Figure 1, the

Internet of Vehicles (IoV) supports various communicationmodes,

including vehicle-to-sensor (V2S), vehicle-to-infrastructure (V2I),

and vehicle-to-vehicle (V2V). In this setup, vehicles connect to

Roadside Units (RSUs) of matched edge servers to execute real-time

or critical computational tasks. Service users, such as vehicles and

terminals, can access computational and storage services from the

Edge Computing Servers (ECSs) of base stations (BSs) located in

their proximity. When a vehicle user submits a task to be scheduled

by the base station, the scheduling algorithm determines whether to

schedule the computation task to the service queue at the node end

of the base station or to the vehicle service queue. Subsequently, the

Scheduling Strategy for the task is implemented by the edge server,

and then it returns to the user.

In recent years, task scheduling has become a significant

research topic. The main challenge faced by edge cloud task

scheduling technology is determining the optimal strategy for

allocating resources to nodes. This is crucial formeeting consumers’

QoS expectations and enhancing overall server performance.

Numerous studies have introduced task scheduling strategies;

however, the majority predominantly focus on factors like

execution time or task scheduling cost. Notably, there is a scarcity of

attention given to issues such as server-side resource overloading,

which arises from the concurrent processing of large volumes

of computationally intensive data. The innovation of this paper

lies in proposing a task scheduling strategy that integrates user

QoS requirements with server resource node characteristics. The

aim is to improve resource utilization, reduce scheduling time

and cost, optimize the configuration of container resource nodes,

enhance user experience, and effectively address the issue of

resource overload. Specifically, this paper focuses on task resource

utilization, cost, and execution time within an edge computing

system for a given task. These steps are crucial to ensuring that

the configuration of container resource nodes is optimized as much

as possible.

The problem is defined as follows: in an edge computing

environment, given a task set I = {I1, I2, I3 · · · Ii}, and a resource

node set R = {R1,R2,R3, · · · ,Rr}, where each task i has specific

resource requirements (e.g., CPU, memory, bandwidth), and each

resource node r has limited computing capacity and resource

constraints. The goal is to design a task scheduling algorithm

that minimizes the total scheduling cost Tcti,r , minimizes the task

completion time t
complete
i,r , and maximizes the resource utilization

Rmax, all within the constraints of task completion time and

budget. To achieve this, an enhanced whale optimization algorithm

(EWOA) is proposed, which enhances global search capability and

avoids premature convergence by introducing chaotic mapping

and a nonlinear convergence factor. The algorithm optimizes task

scheduling based on the whale foraging model, ultimately yielding

near-optimal solutions. In summary, the primary advantages of this

research are the ones that follow:

1. A multi-objective optimization model for task scheduling is

devised, taking into account resource utilization, cost, and time.

This model specifically tackles resource constraints on edge

servers.

2. An enhanced whale optimization algorithm for task scheduling

(EWOA) is proposed in this paper. To prevent task scheduling

from converging into local optima and enhance the sensitivity of

population initialization, a chaotic mapping model is employed.

Applying chaos theory enhances sensitivity to initial conditions,

resulting in a broader range of optimal scheduling strategies.

Additionally, a nonlinear convergence factor is introduced

to fine-tune the balance between local and global search,

addressing the slow convergence issue in the traditional whale

algorithm.

3. This paper establishes the experimental environment for edge

computing and EWOA is contrasted with similar methods

such as CATSA, WOA, HWACO, and ODTS. The numerous

experiment results show that the EWOA algorithm cost is

decreased by 29.22%, the average time to completion is

decreased by 17.04%, and the node resource utilization is

enhanced by 9.5%.

The remaining sections of the paper are structured as follows:

Section 2 reviews related works. Section 3 introduces the model

of the EWOA algorithm for task scheduling. Section 4 describes

the design of the EWOA algorithm for task scheduling. Section 5

details the implementations of the EWOA algorithm for task

scheduling. Section 6 provides an overview of the experimental

environment and its configuration. Section 7 comprises the analysis

and summary of the experiment. Lastly, Section 8 concludes

the paper.

2 Related work

Task scheduling is a crucial technology in edge computing,

involving the process of optimizing and transferring tasks to

suitable resource repositories for execution. Extensive research has

been conducted on task scheduling strategies by scholars from

various countries.

To improve latency: The methodology proposed by Miao

et al. (2020) first calculates the volume of data to be managed

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

FIGURE 1

Application scenarios for computationally intensive task scheduling in edge environments.

by device resource nodes, assuming each job can be divided

into two sub-tasks. The study then examines the feasibility of

migrating specific sub-tasks between computing nodes to reduce

the latency of each job. While this approach improves system

response time, its limitation is the inability to adapt to task

scheduling requirements across different scenarios dynamically. He

et al. (2016) proposed a particle swarm optimization algorithm

for the adaptive multi-objective job scheduling methodology.

This approach efficiently allocated system resources to tasks,

minimizing both time and average energy consumption. However,

it has the disadvantage of not being able to schedule tasks

dynamically. Shrimali and Patel (2021) proposed a multi-objective

optimization policy that reduces latency by efficiently managing

cloud resources. While this approach enhances task execution

and system responsiveness, the key challenge is balancing energy

efficiency with maintaining optimal performance. To tackle the

optimization challenges related tomultiple objectives and workflow

scheduling of tasks, Mohammadzadeh et al. (2021) presented a

multi-objective optimization approach grounded in the Pareto

optimum solution, which was employed to address the multi-

objective scheduling problem of workflow tasks. The strength of

this approach lies in the amalgamation of a greedy algorithm

and a search algorithm, effectively overcoming the limitations

of each and demonstrating the algorithm’s advantages in high-

dimensional scenarios. However, the method has drawbacks,

such as high algorithmic complexity, which increases the

difficulty of implementation and comprehension. Arasteh (2023)

proposed a hybrid approach for software module clustering

(SMC) that combines five different chaos-based metaheuristic

algorithms, including Bat, Cuckoo, Teaching—Learning-Based

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

Optimization, Black Widow, and Grasshopper algorithms. This

method addresses the NP-complete problem of software module

clustering by improving clustering quality and convergence speed

while maintaining stability across different executions. The main

advantage of this approach is its adaptability for both small and

large software systems and the enhancement of clustering quality

through chaos theory. In the context of task scheduling, this hybrid

method could optimize the scheduling of tasks by improving

the quality of task grouping, minimizing inter-task dependencies,

and ensuring efficient resource allocation, thus enhancing overall

scheduling performance and reducing execution time.

In order to increase resource utilization: Keshanchi et al.

(2017) introduced a job scheduling method dependent on a

genetic program, utilizing a heterogeneous earliest completion

time search. However, a drawback of this method is the extended

time required for solution detection. Sanaj and Prathap (2021)

presented a hybrid job scheduling algorithm for cloud computing

that combines Ant Colony Optimization (ACO) and whale

optimization algorithm (WOA). Experimental results indicate

the algorithm actually outperforms ACO and WOA algorithms

in cloud rescheduling. However, the study did not address

key aspects such as energy consumption and fault tolerance,

which are critical in real-time cloud operations. A load-balancing

approach aimed at maximizing revenue from edge computing was

introduced by Ma et al. (2021). The approach involves allocating

computational resources with the highest number of available

cores and the lowest energy consumption to newly arrived tasks.

However, the study assumes negligible data transmission times

due to 5G networks and does not fully explore the impact of

transmission delays, which could affect performance in larger-

scale MEC deployments. Singh et al. (2021) proposed the QRAS

(QoS-based Resource Allocation and Scheduling) algorithm for

efficient task scheduling in cloud computing environments. This

approach leverages Ant Colony Optimization (ACO) to optimize

cloud resource allocation, improving execution cost and resource

utilization. However, its emphasis on minimizing execution costs

and resource use does not fully address energy consumption

or the adaptability of the approach in dynamic, real-time cloud

environments. Arasteh et al. (2022) outlined a method combining

Grey Wolf Optimization (GWO) and Genetic Algorithm (GA) for

software module clustering. It enhances modularization quality

by increasing cohesion and reducing coupling, offering faster

convergence and higher success rates. This method can also

improve resource utilization in task scheduling by optimizing task

grouping and minimizing dependencies, leading to more efficient

resource allocation and scheduling.

Task Scheduling Strategies: Jing et al. (2021) provided a

scheduling algorithm for QoS-aware, and the exploration results

indicate that the algorithm can effectively enhance performance

and achieve high reliability. While it excels in reliability, there is

room for further optimization in task completion time. Rathore

et al. (2020) employed the WOA and Huffman coding method

for wireless sensor networks, offering innovative approaches to

resource scheduling in cloud computing. However, a key limitation

of the study is that it assumes an idealized underwater environment,

neglecting potential real-world factors such as sensor node failures

or varying water currents. Chen et al. (2021) suggested a particle

swarm optimization algorithm (PSO) utilizing crossover and

mutation operators to facilitate population renewal. The approach

optimizes the offloading of DNN layers to reduce system energy

consumption while meeting deadline constraints. However, the

study assumes stable cloud-edge environments, which may not

fully capture the dynamic and unpredictable nature of real-

world networks. Wang et al. (2021) proposed a dependent task

offloading scheme for edge computing environments based on

Deep Reinforcement Learning (DRL). Their approach models the

task offloading problem as a Markov Decision Process (MDP),

taking into account the intrinsic dependencies among tasks

represented by a Directed Acyclic Graph (DAG). Experimental

results demonstrate that the DRL-based solution reduces both

latency and energy consumption, outperforming heuristic and

other learning-based methods. However, the study does not fully

address potential scalability challenges in larger, more complex

networks. Luo et al. (2020) employed an immediate time edge

scheduling approach based on order-level demand. This approach

considers both real-time order insertion and arrival order insertion,

ensuring the fulfillment of personalized customer demands.

The model demonstrates strong performance in shop floor-level

metrics, including completion time, energy consumption, and

resource utilization. Wen et al. (2020) outlined task scheduling

based on Software-Defined Networking (SDN). Data centers based

on SDN can flexibly schedule user requests without relying on

custom load-balancing devices. Load balancing was achieved with

a scalable minimum connection approach, addressing scheduling

issues in industrial workflow applications. Zhang et al. (2019)

presented the Decentralized Multi-Service Provider Resource

Allocation (DMRA) scheme for resource allocation in multi-

SP Mobile Edge Computing (MEC) environments. The goal of

DMRA is to maximize the total profit of all service providers

(SPs) while ensuring efficient resource utilization in a densely

deployed network. The proposed algorithm addresses the resource

allocation problem by transforming it into a user equipment

(UE) and base station (BS) matching problem, achieving better

service quality and profit for SPs compared to other existing

methods. However, one limitation is that the study does not

consider the impact of real-world network variations, such as

dynamic changes in user demands or network conditions, which

could affect the scalability and adaptability of the proposed

solution in practical deployments. Zade et al. (2021) introduced

the SAEA (Security-Aware and Energy-Aware) task scheduling

strategy for cloud computing environments, utilizing the Parallel

Squirrel Search Algorithm (PSSA). This approach addresses

the trade-off between security and energy consumption while

optimizing performance metrics such as makespan and execution

time. However, the study primarily focuses on static cloud

environments and does not fully account for the dynamic nature

of real-time cloud systems, where rapid fluctuations in resource

demands may impact task scheduling performance. Hatami and

Arasteh (2020) devised a software module clustering method

based on the Ant Colony Optimization (ACO) algorithm. By

utilizing ACO, this method searches a module dependency graph

(MDG) of large-scale software systems to cluster interdependent

modules together, addressing the NP-complete problem of software

module clustering. Compared to traditional heuristic methods,

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

this approach overcomes issues such as being prone to local

optima and slow convergence. Its advantages include generating

high-quality, stable clusters and achieving faster convergence.

In the context of task scheduling, this method optimizes task

dependencies and scheduling order, avoiding dependency conflicts

during the scheduling process, improving scheduling efficiency,

and finding globally optimal scheduling solutions. Arasteh et al.

(2023) proposed a discretized Sand Cat Swarm Optimization

(SCSO) algorithm for re-modularizing program source code.

This method improves software module clustering by increasing

cohesion, reducing coupling, and enhancing clustering quality.

It offers faster convergence and better stability for NP-complete

problems. This approach could also be applied to task scheduling,

optimizing task grouping and resource use while minimizing

dependencies for more efficient scheduling. To provide a clearer

comparison of the various task scheduling approaches discussed in

this section, the characteristics of each approach are summarized

in Table 1.

Numerous studies have proposed scheduling task approaches,

yet a significant portion of the research primarily focuses on factors

like task delay or cost, often overlooking critical issues such as

resource overloading at the edge server-side caused by the excessive

quantity of concurrently processed data. In addition, many existing

algorithms suffer from slow convergence and the risk of getting

trapped in local optima, limiting their effectiveness in dynamic and

high-dimensional environments. To address these challenges, this

paper combines the characteristics of the server resource nodes

and the user’s QoS service requirements and proposes an enhanced

whale optimization algorithm (EWOA) for task scheduling in edge

computing environments. The EWOA improves upon traditional

algorithms by introducing chaotic mapping to diversify population

initialization and a nonlinear convergence factor to balance global

and local search, thus preventing premature convergence and

improving resource utilization and scheduling efficiency.

3 A model of an enhanced whale
optimization algorithm for task
scheduling in edge computing
environments

The running process of task scheduling based on enhanced

whale optimization under the edge computing architecture is

illustrated in Figure 2. PM indicates physical machine and VM

denotes container. When users send task requests, the router will

determine whether these tasks should be executed at the edge or

processed in the centralized cloud. It will allocate all i tasks to r

container nodes in a reasonable manner. The router will construct

the target fitness function grounded in the nodes’ task resource

utilization, time, and cost model. Subsequently, it employs the three

steps of the EWOA algorithm, which include prey search, bubble

net attack, and surrounding the prey, to determine the optimal

fitness value and the optimal task scheduling strategy.

The edge computing system environment is depicted as a

data center, or DC, composed of a group of physical computers

represented as M = {M1,M2,M3, · · · ,Mm}. These physical

resources utilize virtualization technology, allowingmultiple virtual

computers to be deployed on a single physical machine tomaximize

resource utilization and reduce device consumption. Therefore,

it is presumed that the virtual machines are the compute nodes

of the edge cloud data center. The physical computer resource

M is represented by a group of resource nodes labeled as R =

{R1,R2,R3, · · · ,Rr} and a collection of tasks designated as I =

{I1, I2, I3 · · · Ii}, i > r. The scheduling of tasks beneath the edge

cloud system for computing can be expressed with the matrix that

follows T using Equation 1, where Ti,r is an option variable and

Ti,r = 1 implies which the i-th job is executed on the r-th resource

node. and the implication of the primary parameters employed in

this research is displayed in Table 2.

T =













T11 T12 · · · T1r

T21 T22 · · · T2r

· · · · · ·
. . . · · ·

Ti1 Ti2 · · · Tir













(1)

3.1 Time model

The edge router assumes a pivotal role in determining whether

a task should be executed at the edge or transmitted to the cloud.

This decision is contingent upon the constrained computing power

of each physical machine, thereby influencing the allocation of

jobs to either the cloud or the edge. When jobs are scheduled to

the cloud or edge, the task completion time t
complete
i,r encompasses

the sum of preparation time twaiti,r , processing time t
comp
i,r , and task

transfer time tsendi,r . The processing time is further composed of the

computation time spent on a node and the data processing time on

the disk. PTi,r represents the task Ti,r processing time on the edge

server r, Which can be expressed as follows:

t
comp
i,r = PTi,r =

inst

mipsr
+

Di,r

dsr
(2)

In Equation 2, inst represents the aggregate amount of task

instructions.mipsr stands for the amount of instructions for node r

to carry out tasks within a given period.Di,r denotes the data size of

task Ti,r . dsr stands for the disk speed of node r.

The time of task transmission to the node can be defined as:

tsendi,r =
Di,r

Blog2(1+
PuLos

σ
)

(3)

In Equation 3, Los is the channel power gain. Pu indicates the

transmit power. B denotes the bandwidth. σ stands for the Gaussian

noise power in the channel. The level of service is defined as a

distance-based function Los = d−α based on a model of wireless

interference in a cellular wireless environment, according to the

literature (Rappaport, 2002), the value of α is 4. In the calculation,

σ is defined as−100dBm.

It is expected that everyMEC node on the RSU can just perform

one job each time; hence, subsequent duties issued to the identical

MEC resource node are unlikely to be completed promptly since

current tasks are being handled on the similar MEC resource

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

TABLE 1 Summary of task scheduling and resource optimization methods.

Optimization
objective

References Characteristics

Reducing latency Miao et al., 2020,

He et al., 2016,

Shrimali and Patel, 2021,

Mohammadzadeh et al., 2021,

Arasteh, 2023

(1) Proposed sub-task migration between nodes to reduce task latency.

(2) Developed a particle swarm optimizationmethod for efficient multi-objective task scheduling.

(3) Suggested a multi-objective optimization policy to reduce latency by efficiently managing

cloud resources.

(4) Proposed a Pareto-optimal solution for multi-objective task scheduling, combining greedy

and search algorithms.

(5) Developed a hybrid method using chaos-based metaheuristics to optimize task scheduling

and reduce execution time.

Increasing resource

utilization

Keshanchi et al., 2017,

Sanaj and Prathap, 2021,

Ma et al., 2021,

Singh et al., 2021,

Arasteh et al., 2022

(1) Introduced a job scheduling method using a genetic program and heterogeneous earliest

completion time search to optimize resource utilization.

(2) Presented a hybrid scheduling algorithm combining Ant Colony Optimization (ACO) and

whale optimization algorithm (WOA) to improve cloud rescheduling performance.

(3) Proposed a load-balancing approach for maximizing revenue in edge computing by allocating

computational resources with high core counts and low energy use.

(4) Developed the QRAS algorithm using ACO to optimize resource allocation in cloud

computing, enhancing execution cost and resource utilization.

(5) Combined Grey Wolf Optimization (GWO) and Genetic Algorithm (GA) to improve

software module clustering, increasing cohesion and reducing coupling, thus enhancing

resource utilization in task scheduling.

Task scheduling

strategies

Jing et al., 2021,

Rathore et al., 2020,

Chen et al., 2021,

Wang et al., 2021,

Zhang et al., 2019,

Zade et al., 2021,

Hatami and Arasteh, 2020,

Arasteh et al., 2023

(1) Provided a QoS-aware scheduling algorithm to enhance performance and reliability.

(2) Applied WOA and Huffman coding for resource scheduling in wireless sensor networks.

(3) Suggested a PSO algorithm with crossover and mutation operators to optimize DNN layer

offloading, reducing energy consumption.

(4) Proposed a DRL-based task offloading scheme for edge computing, modeling dependencies

with a DAG to reduce latency and energy consumption.

(5) Developed a DMRA scheme for resource allocation in MEC environments, improving service

quality and profit for service providers.

(6) Introduced the SAEA task scheduling strategy for cloud computing, balancing security and

energy efficiency using PSSA.

(7) Utilized ACO to solve software module clustering, optimizing task dependencies and

improving scheduling efficiency.

(8) Proposed a discretized SCSO algorithm to improve software module clustering, enhancing

task scheduling by optimizing task grouping and resource use.

node. AFTi,r is denoted as the actual moment when job Ti,r is

finished on the MEC resource node, Ti,rrepresents the i-th task of

application Tm that is processed on resource node r, and a task’s

ready time is the earliest time when all its immediate antecedents

are completed. Thus, the preparation time RTi,r of task Ti,r can be

calculated as:

RTi,r = max
Ti=1,r∈pre(Ti,r)

AFTi−1,r (4)

In Equation 4, pre(Ti−1,r) indicates the set of immediate

antecedents of task Ti,r . Ti−1,r must be completed before task Ti,r

can be begun.

In addition, assuming that r ∈ R represents a MEC resource

node on an RSU when MEC resource node r is idle, task Ti,r

can be scheduled on the MEC resource node r. If another job

is executing on MEC resource node r, then the task has to

remain in line while MEC resource node r is accessible. ATi,r

denotes the earliest time available for a task i on MEC resource

node r. A job can be launched using a MEC resource node

when it is ready and a MEC resource node is available for

that task.

The earliest starting time for a job occurs once the job

is prepared, and the MEC resource node becomes available

for that job. Therefore, the earliest starting time ESTi,r

for job Ti,r on the MEC resource node can be calculated

as follows:

twaiti,r = ESTi,r = max
{

RTi,r ,ATi,r

}

(5)

Thus, the total task completion time t
complete
i,r can be defined as:

I
∑

i=1

R
∑

r=1

t
complete
i,r = twaiti,r + t

comp
i,r + tsendi,r (6)

Furthermore, the task completion time must be within the

deadline DLi set by the user to meet the task requirements.

If t
complete
i,r ≤ DLi is true, the task can be executed on

the edge clouds. Otherwise, the task will be scheduled on

the centralized cloud. The centralized cloud guarantees task

completion due to its extensive computational resources and

scalability, efficiently handling high volumes of tasks. However,

the architecture also incorporates edge clouds to minimize

latency, enhance real-time processing, and alleviate the load

on the centralized cloud. By processing tasks closer to the

data source, edge clouds improve response times and optimize

resource utilization, which is crucial for scenarios requiring

immediate processing.

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

FIGURE 2

Running process of task scheduling based on enhanced whale optimization under edge computing architecture. The process evaluates tasks using

the Time Model (3.1), Cost Model (3.2), and Node Resource Utilization Model (3.3). The Objective Fitness Function (3.4) determines the optimal

scheduling policy, which is refined through the whale optimization algorithm’s steps: Surround Prey, Bubble Net Attack, and Prey Search.

3.2 Cost model

The total cost of centralized task processing needs to

be estimated, regardless of whether the task is scheduled

to be performed at the edge or in the centralized

cloud. The total cost Tcti,r includes the Ccti,r compute

resource cost, the Scti,r storage resource cost, and the

Bcti,r bandwidth resource cost. The total cost can be

composed as:

Tcti,r =

I
∑

i=1

R
∑

r=1

(Ccti,r + Scti,r + Bcti,r) (7)

where the compute resource cost can be represented as follows:

Ccti,r =

[

inst

mipsr
+

Di,r

dsr

]

× α (8)

In Equation 8, inst is the total task instructions count. mipsr
indicates the count of directives to be processed per unit of time

at server node r. dsr means the disk speed of node r. Di,r denotes

the data size of task Ti,r . α represents the price per unit of service

for task computation.

The cost of storage resources can be stated as:

Scti,r = stori,r × β (9)

In Equation 9, stori,r indicates the storage space for server

resource node r to allocate task i. β represents the price per unit

of service for storage allocation.

Bandwidth resource costs can be expressed as follows:

Bcti,r = bandi,r × γ (10)

In Equation 10, Bcti,r is the communication bandwidth for

resource r to execute task i. γ represents the price per unit of service

for bandwidth allocation.

Therefore, when the total cost Tcti,r is less than the budgeted

cost ubi for the user to send task i, then Tcti,r ≤ ubi, and the task is

able to be taken on the consolidated cloud.

3.3 Resource utilization model

When tasks are scheduled to the edge cloud, the edge

orchestrator monitors the system by tracking resource utilization,

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

TABLE 2 Parameter representation.

Parameters Definition

R Virtual resource node set/number

r MEC Server Resource Index r ∈ R

I Task set

Ti,r Task i is processed on resource node r

t
complete
i,r Task i completion time on resource node r

twaiti,r Task i preparation time on resource node r

t
comp
i,r Task i processing time on resource node r

tsendi,r Task i transmission time on resource node r

PTi,r Task i processing time on MEC node r

inst Total number of instructions for the task

mipsr Number of instructions for processing jobs per unit

time for resource node r

Di,r Data size of task Ti,r

dsr Disk speed of resource node r

AFTi,r Actual time for task i to complete on MEC server r

RTi,r Lead time for Task i

DLi Deadline for user request assignment requirements

pre(Ti,r) The set of direct predecessors of task Ti,r

ATi,r The earliest time available for task i on MEC resource

node r

ESTi,r Earliest beginning time of job Ti,r on MEC resource

node r

ubi Expected cost of task A implementation i

Tcti,r The total cost necessary for job i to be accomplished on

resource node r

Ccti,r Computed resource cost of job i on resource node r

Scti,r Cost of storage resources for task i on resource node r

Bcti,r Transmission bandwidth for the resource node r

executing task i

α Indicates the unit service price for task calculation

β Unit Service Price for Bandwidth Allocation

γ Unit service price for storage allocation

Pr Computing power of server nodes

Rnode Node Utilization

Rcluster Cluster Utilization

Rmax Maximum resource utilization

task completion times, and overall system performance. This

continuous monitoring facilitates dynamic adjustments in resource

allocation and task scheduling, ensuring cluster load balance and

minimizing execution time. The compute power Pr of the edge

server can be phrased as:

Pr = ω1
Pcpu

min(Pcpu)
+ ω2

Pram

min(Pram)
(11)

In Equation 11, the edge server’s CPU efficiency and memory

performance are denoted by Pcpu and Pram, respectively. ω1 and ω2

are the weighting factors, and ω1 + ω2 = 1. If the task demands

more CPU capabilities than memory resources, ω1 is specified to be

greater than ω2.

In addition, the node’s utilization rate Rnode can be expressed as:

Rnode = 100%× Unode/Snode (12)

In Equation 12, Snode is the node storage andUnode is the storage

used by users to send task requests.

Thus, cluster utilization Rcluster is described as:

Rcluster(r) = 100%× Ucluster(r)/Scluter(r) = 100%

×
∑Nnode

r=1
Unode(r)/

∑Nnode

r=1
Snode(r) (13)

To address the potential impact of excess load on cluster

performance and task failure, this paper introduces a threshold

value λ. If the cluster load surpasses this threshold, the edge

scheduler suspends the assignment of tasks to the edge servers.

Additionally, it is essential for node utilization to remain below the

defined maximum Rmax. The maximal resource utilization Rmax is

defined as:

Rmax = [λ + (1− λ)× Rcluster]× 100% (14)

The objective function for task scheduling can be rendered as:

min

{

I
∑

i=1

R
∑

r=1

[

t
complete
i,r + Tcti,r

]

}

(15)

maxRmax (16)

s.t.











t
complete
i,r ≤ DLi,r
Tcti,r ≤ ubi,r
Rnode ≤ Rmax

(17)

3.4 Constructing the fitness function

The multi-objective model assesses the cost function, taking

into account the CPU and memory of the central processor.

The fitness function is then determined by incorporating the

completion time, cost function, and resource utilization of the

service nodes. Based on the obtained adaptation values, tasks are

assigned to cloud or edge resource nodes employing the optimal

strategy. The fitness function is rendered as:

min Fit =

λ1 min
I

∑

i=1

R
∑

r=1
t
complete
i,r + λ2 min

I
∑

i=1

R
∑

r=1
Tcti,r + λ3 min 1

maxRmax

(18)

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

In Equation 18, λ1 ∈ [0, 1], λ2 ∈ [0, 1], λ3 ∈ [0, 1], and

λ1 + λ2 + λ3 = 1. It is evident that minimizing of task resource

utilization, execution cost, and completion time [i.e., a smaller

Fit(x)] leads to better optimization performance. Conversely, a

larger Fit(x) is associated with poorer optimization performance.

4 Design of an enhanced whale
optimization algorithm for task
scheduling in edge computing
environments

This section presents the task scheduling method based on

the enhanced whale optimization algorithm (EWOA), which

employs a multi-objective optimization approach utilizing time,

cost, and resource utilization models. Each model calculates the

task completion time, execution cost, and resource utilization of the

nodes. The fitness function is then used to assess the effectiveness

of the scheduling solutions. The whale optimization algorithm

optimizes task allocation through three key steps: Surround Prey,

Bubble Net Attack, and Prey Search, progressively refining the task

distribution. The final outcome is an optimal scheduling policy

that maximizes resource utilization while minimizing both cost and

time. The task scheduling flow based on the EWOA algorithm is

shown in Figure 3. The following subsections will detail each step.

4.1 Task scheduling algorithm description

Throughout the search process, the position X of the whale

is encoded as a vector of length N, where the whale’s position

corresponds to the solution Ti,r of the scheduling problem, with the

lead whale representing the current optimal solution. The leading

whale’s fitness function value indicates the optimal solution for

Fit. In this scenario, the WOA algorithm can be employed to

discover amore efficient approach for scheduling jobs in edge cloud

computing systems. That is, in t iterations of the WOA, as all

whales renew their positions, each whale’s positional information

is transmitted to the solution Ti,r of the fixed task. The whale

fitness function denotes the value of Fit(x). Using the values in

matrix Ti,r , calculate the fitness value Fit for the whale. The lead

whale will be the whale with the minimum value and will use its

position information to update the positions of the other whales

in the next iteration. Repeat these processes until the optimal

scheduling scheme is achieved. Eventually, the lead whale’s location

information will be transmitted to Ti,r . This solution will generate a

scheduling plan for optimizing tasks edge cloud computing system.

In the WOA algorithm, it is generally divided into three distinct

phases:

1. Encircling prey

The purpose of the current phase is for a task to search

for container VMs within a specific area. At the initial

stage of the algorithm, the humpback whale symbolizes the

optimal solution between the task and the virtual resource

node, and the food represents the container VM. When tasks

are unaware of the locations of virtual resources, they can

collaborate in groups to discover the location of container

VMs. Thus, the whale nearest to the virtual machine equals the

present local optimum approach. The single whale represents

the task, and others can approach this spot and gradually

encircle their prey. It is able to be displayed using the below

mathematical model:

−→
D = |C ×

−→
X∗(t)−

−→
X (t)| (19)

−→
X (t + 1) =

−→
X∗(t)− A×

−→
D (20)

In Equations 19, 20, where
−→
D represents the vector of

distances from the searching agent to the objective food.
−→
X∗(t) signifies the humpback whale’s present value,

−→
X (t)

symbolizes the vector of location. t denotes the current

iteration amount. C and A are vector coefficients that can be

symbolized as:

C = 2× d (21)

A = 2× a× d − a (22)

a = 2−
2t

Tmax
(23)

In Equations 19–21, a signifies a straight reduction from 2

to 0, and d is a randomly chosen number between 0 and 1. a

represents a linear value based on the maximum iteration times

Tmax with the iteration times t decreasing from 2 to 0.

2. Bubble-net attack

The objective of the current phase is to simulate humpback

whales executing bubble attacks. This involves designing the

whales’ feeding and bubbling behaviors by narrowing the

surround and updating the spiral position to achieve the

whale’s local optimization. Then the behavior of the whales’

bubble net attack is modeled. This phase is divided into

two steps:

1) Shrinking envelope: From Equation 22, it can be seen that

when |A| < 1, the whale will shrink the envelope. That is, the

individual whale will approach the prey at its present optimal

position and swim around it in a progressively shrinking circle.

The bigger the value of |A|, the greater the steps the whale will

take, and the reverse is true.

2) Spiral position update: Every humpback whale initially

computes its proximity to the present best whale, and

subsequently shifts along the spiral path. The location renew-al

process can be expressed as:

−→
X (t + 1) =

−→
D ′ × elb × cos(2π l)+

−→
X ∗ (t) (24)

In Equation 24,
−→
D = |

−→
X ∗ (t) −

−→
X (t)| represents a

vector, being the away from a single whale to the finest whale

(presently finest find), i.e., the separation between the virtual

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

FIGURE 3

Based on the enhanced whale optimization algorithm process.

machine and i-th task (presently optimal solution). l signifies a

randomly selected number ranging from -1 to 1, and b signifies

a constant.

To model both behaviors simultaneously, postulate that the

whale updating probability of its position according to the

spiraled path and the contraction path is set at 0.5 respectively,

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

and can be represented as:

−→
X (t + 1) =

{−→
X ∗(t)−

−→
D × A p < 0.5,

elb ×
−→
D × cos(2π l)+

−→
X ∗(t) p ≥ 0.5.

(25)

Where p designates an arbitrarily produced value between

0 and 1.

3. Prey search The goal is to ensure that the fitness function attains

an approximately globally optimal solution. When |A| > 1,

search agents repel each other. In this scenario, a randomly

chosen search agent will supplant the present optimal search

agent location. The corresponding model mathematically can be

stated as:











−→
D =

∣

∣

∣
C ×

−→
X rand(t)−

−→
X (t)

∣

∣

∣

−→
X (t + 1) =

−→
X rand − A×

∣

∣

∣
C ×

−→
X rand −

−→
X (t)

∣

∣

∣

(26)

In Equation 26,
−→
X rand stands for a random select vector

location of a search agent, signifying a randomized task.

4.2 Task scheduling algorithm based on
enhanced whale optimization

The enhanced whale optimization algorithm (EWOA) builds

upon the standard WOA by incorporating chaotic mapping to

prevent premature convergence and ensure population diversity,

along with a nonlinear convergence factor to balance local and

global search. These modifications enhance the algorithm’s ability

to efficiently allocate tasks in resource-constrained edge computing

environments, where dynamic network conditions and limited

resources require real-time, adaptive task scheduling.

4.2.1 Chaotic mapping
Most population algorithms commonly employ Gaussian or

uniform distributions for initializing individuals. However, this

approach produces an unresponsive initial population. Chaos

theory is able to render the initial circumstances more responsive

and generate a more changeable range of numbers (Sayed et al.,

2018). Consequently, numerous specialists and researchers Gupta

and Deep (2019) and Li et al. (2018) have concentrated on devising

diverse chaotic mappings to circumvent random population

initialization. The random initialization employed by the whale

optimization algorithm in population initialization can easily lead

to uneven spatial distribution and susceptibility to falling into local

optima (Kaur and Arora, 2018). Diverse population initialization

values can be achieved by employing distinct mapping functions,

ensuring uniform distribution, and broadening the search span

of whale initialization. By integrating a chaos mechanism (Teng

et al., 2019; Zhu et al., 2020), algorithmic randomness can be

minimized, preventing premature convergence and enhancing

overall performance. In this paper, Tent chaotic mapping is

employed to generate randomized chaotic sequences, thereby

constituting an initial population of whales and enhancing the

algorithm’s global search capability. The specific chaosmapping can

be shown as:

w(t + 1) =

{

2w(t), 0 < w(t) < 0.5,

2(1− w(t)), 0.5 ≤ w(t) < 1.
(27)

The improved position update, i.e., Equation 20 is improved as:

X(t + 1) = w(t) · Xrand − A · D (28)

4.2.2 Non-linear convergence factor
As evident from the fundamental whale algorithm, when |A| ≥

1, to find better-targeted prey the whale begins to enlarge the

search zone; When |A| < 1, it contracts the envelope and

approaches the prey, thereby enhancing the localization of the

algorithm. When this behavior is translated into a mathematical

model, it becomes apparent that the vector A is the crucial factor

determining the degree of optimization and the convergence speed.

From Equation 22, the most important variable influencing the

vector is a. From Equations 21–23, the value of a determines the a

fluctuations range. a can fluctuate linearly with iterations amount,

however, the relational equation of a includes random values.

Besides A, the location update Equation 26 for WOA includes a

randomly selected search agent and the coefficient C is dependent

on the random values. A mass of random number values causes

the algorithm to become excessively random, which reduces the

convergent speed and the algorithm’s precision. A small number

of random values leads to the algorithm cluster close to the

optimum value throughout iterations, thus prematurely stopping

convergence and falling into the local optimum. Thus, the second

enhancement point is improving the linearly decreasing quantity.

The objective of this paper is to boost the whale’s pre-

search capability by optimizing the algorithm’s convergence rate,

achieving a harmonious balance between the local exploitation

capabilities and the global search ofWOA. Equation 23 is expressed

after improving a as:

a = atop − abottom ×
Tmax − t

Tmax
(29)

In Equation 29, abottom represents the final value of a. The

initial value of a is denoted by atop. Tmax indicates the utmost

iteration number, and t stands for the current iteration count.

Given that whales exhibit nonlinearity during the detection phase,

a nonlinear convergence factor has been incorporated to enhance

the equilibrium between the algorithm’s local search abilities and

global search abilities.

5 Implementation of an enhanced
whale optimization algorithm for task
scheduling in edge computing
environments

5.1 Implementation of an enhanced whale
optimization algorithm for task scheduling

The enhanced whale optimization algorithm (EWOA) is

designed to handle task scheduling in dynamic, resource-

constrained environments such as edge computing. The algorithm

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

optimizes task allocation through the key steps of Surround Prey,

Bubble Net Attack, and Prey Search, ensuring tasks are distributed

efficiently across available nodes. Computations are primarily

handled by edge servers, which execute the tasks based on real-time

resource availability and system load. EWOA dynamically assigns

tasks to these edge servers by considering resource utilization,

task completion time, and execution cost. If edge resources

become limited, tasks may be offloaded to the local cloud to

prevent overload and ensure timely completion. This dynamic task

allocation mechanism ensures that the workload is balanced across

nodes and optimally distributed.

The EWOA begins by formulating the objective function for

task scheduling, taking into account node resource utilization,

cost, and task completion time. Following this, it defines

the fitness function in accordance with the target function,

ultimately pinpointing the Optimal strategy for task scheduling

through the EWOA algorithm. Refer to Algorithm 1 for the

detailed pseudocode.

5.2 Complexity analysis of an enhanced
whale optimization algorithm for task
scheduling

Time complexity is the computational effort required to execute

an algorithm and depends mainly on how many times the question

is repeated. In the fundamental whale optimization algorithm,

time complication predominantly fluence of the search dimension

(D), the number of iterations (T), and the population size (N).

Therefore, in this paper, theWOA time complication denotesO(D∗

T ∗ N). The EWOA is enhanced from the WOA by introducing

the Tent chaotic mapping, which increases the amount of O(D ∗

T ∗ N) computation. So the EWOA’s complexity is denoted as

O(2D ∗ T ∗ N), which is upper than the standard WOA. When

the optimization problem has a large spatial dimension, the time

complexity of EWOA tends to be aroundO(D∗T∗N). Furthermore,

the spatial complexity is mainly affected by population size N and

the dimension of search D and search dimension D, and the spatial

complexity of the two algorithms is denoted by O(D ∗ N).

6 Experimental environment and
configuration

6.1 Baseline algorithms

Widely recognized and commonly applied classical algorithms

were selected as baselines, including ODTS (Optimal Dynamic

Task Scheduling; Yuan et al., 2021), WOA (whale optimization

algorithm; Hosseini et al., 2021), HWACO (Hybrid Weighted Ant

Colony Optimization; Chandrashekar et al., 2023), and CATSA

(Content-Aware Task Scheduling Algorithm; Lakhan and Li, 2019).

These algorithms are well-defined and experimentally validated

in the literature, ensuring robust representativeness. The selection

of baseline algorithms considered multiple evaluation dimensions

such as task scheduling time, cost, and resource utilization to

1: Input: Task I1, I2, I3, . . . , Ii, Container Virtualization

R1,R2,R3, . . . ,Rr

2: Output: Task assignment to container optimal

solution

3: Initialization: Parameters EX∗(t), a, A, C, t, and

p

4: Begin

5: Initialize the population and set the initial

iteration count to t = 1. Use the Tent chaotic map

method to initialize the population.

6: Adaptation values obtained from sub-methods

7: Initialize the current best agent i.e., the

current optimal solution EX∗(t)

8: Update a, A, C, t, and p

9: while t ≤ Tmax do

10: Generate a random number p ∈ [0, 1]

11: if p ≤ 0.5 then

12: if |A| < 1 then

13: Update the search agent ⊲ according to

Equation 24

14: else

15: The agent selected at random updates the

search agent’s location

16: end if

17: else

18: if |A| ≥ 1 then

19: Update the search agent ⊲ according to

Equation 23

20: end if

21: end if

22: if any search agent is located outside the

search space then

23: Update EX∗(t)

24: Setting x = x+ 1

25: end if

26: t = t + 1 ⊲ Increment iteration count

27: end while

28: End

29: Submethods:

30: Begin

31: Input: Task I1, I2, I3, . . . , Ii, Virtual Machine

R1,R2,R3, . . . ,Rr

32: Output: Adaptation value

33: for each virtual machine Rj do

34: Calculate the task processing time function ⊲

according to Equation 2

35: Calculate the task transfer time function ⊲

according to Equation 3

36: Calculate the task wait time function ⊲

according to Equation 5

37: Calculate the resource cost function ⊲

according to Equation 8

38: Calculate the storage resource cost function

⊲ according to Equation 9

39: Calculate the bandwidth resource budget cost

function ⊲ according to Equation 10

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

40: Calculate the node resource utilization ⊲

according to Equation 12

41: Calculate the cluster node resource

utilization ⊲ according to Equation 13

42: Calculate the maximum resource utilization of

cluster nodes ⊲ according to Equation 14

43: Calculate the fitness value ⊲ according to

Equation 18

44: end for

45: End

Algorithm 1. An enhanced whale optimization algorithm for task

scheduling in edge computing environments.

comprehensively assess the algorithm’s performance. Additionally,

the consistency and repeatability of the baseline algorithms across

different experimental environments were crucial criteria, ensuring

stable execution within the experimental setup and providing

reliable comparative data.

6.2 Environmental setting

The software environment for this experiment uses the

Ubuntu-14.04.5 operating system, JKD version 1.8.0-11

development kit, the Hadoop version employed is the stable

Hadoop-2.7.1, OpenVPN 2.3.2, and Linux Eclipse 4.5.0 serves as

the development environment.

To simulate the real scenario of the experiments in this paper,

the experimental setup includes edge-end node servers and cloud

servers. The hardware platform comprises three main components:

edge cloud servers, cloud servers, and laptops, along with other

mobile devices. In cases where the resources within the edge cloud

cluster are inadequate and necessitate supplementation from the

public cloud, a VPN is employed to facilitate access to the resources

of the public cloud. The specific architecture of the experimental

environment is illustrated in Figure 4.

During the experiment, we leveraged AliCloud’s public cloud

resources. Table 3 outlines the specifics of instance types, CPU

specifications, and associated costs provided by the public cloud

service provider for the servers. The instance cost represents

the pricing for the cloud server, expressed in US dollars per

second ($/s).

6.3 Test data

In this paper, the experimental data originates from the

Stanford Network Analysis Project (SNAP) standard dataset

(Leskovec and Krevl, 2014). This dataset compiles information

from various sources such as social networking sites, online reviews,

online communities, and video sites. The dataset comprises various

components, including the Wikipedia network, articles, and

metadata, amounting to a total data volume of 4 GB, corresponding

to 31 Map tasks. User comments, questions, and answers, along

with online comments related to temporal networks, constitute

a data volume of 5 GB, mapped to 40 Map tasks. Additionally,

Web-Flickr and wiki-Elec, with a combined data volume of 4GB,

correspond to 31 Map tasks. This diverse dataset spans multiple

classifications and encompasses a broad spectrum of domains,

holding practical research significance.

6.4 Evaluation metrics

When evaluating the performance of EWOA algorithms, the

considered metrics are resource utilization, cost, and completion

time. These metrics are also key Quality of Service (QoS) indicators

in edge computing environments, reflecting user expectations for

timely and efficient task execution.

1. Completion Time: The maximum completion time signifies

the total duration necessary for task execution, encompassing

preparation time, task transfer time, and processing time.

Minimizing completion time is crucial to meeting real-time

demands and ensuring prompt service delivery, a core QoS

requirement in edge computing.

2. Cost: The cost associated with scheduling a task within a

container encompasses the overall expenditure on computing

resources, storage resources, and bandwidth resources.

Reducing execution costs is critical to maintaining cost-effective

service while optimizing resource use, directly impacting user

satisfaction with the service’s affordability.

3. Resource Utilization: Resource utilization represents the

efficiency with which resources are allocated and used for

scheduling tasks to containers. Maximizing resource utilization

ensures that available computational power is used effectively,

preventing overuse or underuse of resources, which is vital to

sustaining system performance and reliability.

By incorporating these QoS metrics into the fitness function,

EWOA ensures that task scheduling aligns with user expectations

for performance, cost-efficiency, and resource management.

7 Results and discussion

In this section, we present the results of our experiments and

discuss their implications with respect to the research questions

raised. The discussion is based on the findings from both small-

and large-scale tasks, focusing on the performance of EWOA in

terms of execution time, cost, and resource utilization compared

to other algorithms.

7.1 Experimental results and analysis for
small- and large-scale tasks

In this study, experiments are categorized into large-scale and

small-scale edge computing tasks. Small-scale tasks are defined

by a task count within the range [0, 100], while large-scale

tasks fall within the range [100, 1,000]. The threshold of 100

was selected based on preliminary experiments, which showed

significant changes in system performance and resource utilization

beyond this point. Each experimental condition is repeated 20

times to ensure statistical reliability. For every algorithm, we

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

FIGURE 4

Experimental test environment.

TABLE 3 Server instance type, instance cost, and CPU type.

Public cloud service
providers

Instance type CPU type Instance cost(×10−6$/s)

Ali cloud Core:8 RAM:16 GB Bandwith:60 Mbps Intel Xeon(ice lake) platinum

8369b 2.70 GHZ

35

Core:4 RAM:8 GB Bandwith:20 Mbps 11

Core:2 RAM:4 GB Bandwidth:40 Mbps 20

have recorded the best, worst, and average performance metrics

to provide a comprehensive evaluation of their stability and

effectiveness. However, the primary focus of our analysis is on the

average results, as they offer a more representative overview of

overall performance.

7.1.1 Analysis of experimental results under
small-scale tasks

Figure 5 clearly illustrates that with an increasing number of

tasks, the completion time for all four algorithms also increases.

Specifically, when the task count falls within the range [0, 30], the

WOA algorithm exhibits a slower rate of increase compared to

the ODTS and CATSA algorithms. Upon completing 40 tasks, the

EWOA algorithm is better than three other algorithms, with its

average job execution time being 7.4, 8.72, 6.84, and 4.23% lower

than that of the WOA, ODTS, CATSA, and HWACO, respectively.

This dis-crepancy arises from the fact that the algorithms presented

in this paper take system re-source utilization into account, a

factor not considered by theWOA, ODTS, and CATSA algorithms.

The EWOA algorithm holds an advantage in terms of average

completion time for small-scale tasks, owing to the edge scheduler’s

capability to monitor the state of edge servers, thereby ensuring

cluster load balance and reducing execution time.

Figure 6 illustrates that the costs associated with the WOA,

ODTS, CATSA, and EWOA algorithms are nearly identical when

the task count is 10. However, as the task count rises to 100,

the curves for all four algorithms depict a gradual increase,

demonstrating a positive correlation with the task count. In

contrast, the EWOA algorithm is more cost-effective than the

other three algorithms. This is attributed to the EWOA algorithm’s

consideration of the budget cost associated with tasks prior to their

arrival. If the total cost Tcti,r of executing a task is less than the

budget cost ubi of sending task i, then Tcti,r ≤ ubi, the task can

be executed on the centralized cloud. By allocating tasks correctly,

the EWOA algorithm can save on the total cost of task execution.

The EWOA algorithm server resource utilization outperforms

the other three algo-rithms. Figure 7 illustrates that the resource

utilization of all four algorithms increases as the task number

increases. This is attributed to the EWOA algorithm’s effectiveness

in the execution of small-scale tasks where the limited number

of tasks contributes to convenient and fast task execution. The

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

FIGURE 5

Average completion time of running the same task on a small scale.

FIGURE 6

Comparison of the total cost of performing small-scale tasks.

incorporation of chaotic mapping and nonlinear convergence

factors further accelerates the solution search, enhancing the

server’s resource utilization for task execution.

7.1.2 Analysis of experimental results under
large-scale tasks

Figure 8 clearly illustrates the execution times of the four

algorithms, showing a smooth upward trend as the number of

tasks increases. Among these, the EWOA algorithm stands out,

reducing average execution time by 27.29, 27.74, 27.66, and 26.15%

compared to WOA, ODTS, CATSA, and HWACO, respectively.

This significant improvement can be attributed to the integration of

the Tent chaos mapping in the EWOA algorithm. By incorporating

this mapping, the whale algorithm is able to avoid local optima

FIGURE 7

Comparison of resource utilization during the execution of

small-scale tasks.

FIGURE 8

Comparison of task execution time during the performance of

large-scale tasks.

during later iterations, effectively overcoming the original whale

algorithm’s tendency to get trapped in suboptimal solutions. This,

in turn, shortens the time required to find the optimal server,

leading to the enhanced performance of the EWOA algorithm.

As depicted in Figure 9, the task execution cost rises as the

task count reaches 1,000. Notably, the WOA, ODTS, CATSA,

and HWACO algorithms exhibit higher rates of cost escalation

compared to the EWOA algorithm. In contrast to the WOA,

ODTS, CATSA, and HWACO algorithms, the EWOA algorithm

achieves a reduction in economiccosts by 38.9, 38.4, 34.9, and

33.8%, respectively. This reduction is attributed to the EWOA

algorithm’s capability to address edge overloading issues by

efficiently distributing tasks with the cloud during the execution

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

FIGURE 9

Comparison of task execution cost during the performance of

large-scale tasks.

FIGURE 10

Comparison of resource utilization during the execution of

large-scale tasks.

of large-scale jobs when resources at the edge are limited.

Additionally, the EWOA algorithm effectively addresses the issue

of getting trapped in local optima that existed in the original

algorithm. This improvement leads to lower task execution costs. It

is evident that the EWOA algorithm offers several advantages over

the other algorithms.

Figure 10 unequivocally illustrates that the EWOA algorithm

surpasses the other three algorithms in resource utilization,

especially evident during the execution of large-scale tasks. This

is because of the successful integration of chaotic mapping and

non-linear convergence factors within the algorithm. This synergy

enhances the algorithm’s capacity for global-scale search, effectively

reconciles global and local search conflicts, and addresses the

common convergence issues seen in traditional whale algorithms.

These traditional algorithms often converge slowly and tend to get

trapped in local optima. The EWOA algorithm minimizes server

resource wastage and overutilization by systematically searching for

the optimal location to process each task, resulting in a reduction in

overall resource utilization.

After a thorough analysis of six sets of experimental data, our

study demonstrates that the proposed EWOA algorithm presents

significant advantages in both cost and task execution time. This

superiority is particularly pronounced in the context of scheduling

tasks within edge cloud computing environments. Additionally, the

observed stability of the benefit function across iterations indicates

that EWOA converges reliably toward optimal solutions. The

consistent performance observed across multiple runs suggests that

the algorithm effectively avoids premature convergence, allowing

for robust optimization. This reliable convergence behavior further

supports the success rate of EWOA in addressing the task

scheduling problem in edge computing environments.

7.2 Comparison of algorithms

To further quantify the distinctions between the proposed

EWOA algorithm and the baseline methods (WOA, ODTS,

CATSA, and HWACO), effect sizes were computed using Cohen’s

d for pairwise comparisons across key performance metrics,

including execution time, cost, and resource utilization. Effect

size analysis via Cohen’s d is critical for assessing the practical

significance of observed differences, with benchmarks of 0.2, 0.5,

and 0.8 indicating small, medium, and large effects, respectively.

These evaluations are vital for demonstrating not only the statistical

significance of the differences (as indicated by P-values) but also the

magnitude of these differences in terms of real-world relevance.

As shown in Table 4, EWOA achieves notable improvements

in cost efficiency, particularly in comparison to HWACO, with

a Cohen’s d of –0.74, demonstrating significant cost savings.

While the effect sizes for execution time are more modest,

ranging from –0.09 to –0.17, EWOA still offers measurable

enhancements in task completion time across all comparisons.

Additionally, the resource utilization results, with Cohen’s d

values reaching 0.26 against WOA, suggest that EWOA provides

more efficient use of resources, contributing to a well-balanced

overall performance.

As shown in Table 5, EWOA demonstrates substantial

improvements in cost efficiency, with Cohen’s d values reaching

–1.22 when compared to HWACO and –1.10 against WOA,

indicating significant cost reductions in large-scale tasks. In terms

of execution time, EWOA continues to show improvements, with

Cohen’s d values around –0.25 to –0.27, reflecting consistent but

moderate enhancements in task completion time. For resource

utilization, EWOA also provides beneficial performance, with

Cohen’s d values ranging from 0.21 to 0.38, highlighting its

effectiveness in optimizing resource use across a larger number

of tasks.

The analysis of both task sizes demonstrates that EWOA

is particularly effective in optimizing costs for large-scale tasks.

It also delivers solid performance in resource utilization and

execution time. Notably, the medium effect size observed in

Frontiers in BigData 16 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

TABLE 4 Cohen’s d e�ect size results for EWOA compared to other algorithms.

Algorithm comparison Cohen’s d
(execution time)

Cohen’s d (cost) Cohen’s d (resource utilization)

EWOA vs. WOA -0.15 -0.61 0.26

EWOA vs. ODTS -0.17 -0.48 0.17

EWOA vs. CATSA -0.17 -0.46 0.18

EWOA vs. HWACO -0.09 -0.74 0.09

TABLE 5 Cohen’s d e�ect size results for EWOA compared to other algorithms.

Algorithm comparison Cohen’s d
(execution time)

Cohen’s d (cost) Cohen’s d (resource utilization)

EWOA vs. WOA –0.27 –1.10 0.32

EWOA vs. ODTS –0.27 –0.98 0.37

EWOA vs. CATSA –0.27 –0.91 0.38

EWOA vs. HWACO –0.25 –1.22 0.21

resource utilization suggests that EWOA achieves higher efficiency

when managing larger task loads.

8 Conclusion

The increasing reliance on mobile devices and compute-

intensive applications has introduced significant challenges in edge

computing environments, particularly in terms of limited resources

and the need for efficient task scheduling. In response, this study

introduced an enhanced whale optimization algorithm (EWOA)

specifically designed for task scheduling in edge computing. By

utilizing chaotic mapping, the algorithm enhances search accuracy

and mitigates premature convergence, while the incorporation

of a nonlinear convergence factor ensures a balanced approach

between global and local search, improving the overall optimization

process. The experimental results validate the effectiveness of

EWOA, demonstrating superior performance compared to ODTS,

WOA, HWACO, and CATSA algorithms. EWOA achieved a

29.22% reduction in task scheduling costs, a 17.04% decrease in

average task completion time, and a 9.5% improvement in resource

utilization. Despite these advantages, the current implementation

has some limitations. It does not fully consider potential network

delays and the challenges posed by user mobility, which may lead

to reduced performance in highly dynamic edge environments.

Future research will focus on overcoming these limitations by

developing more resilient and fault-tolerant scheduling techniques

that can adapt to real-time changes and improve the quality of

service in edge computing scenarios.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found at: https://snap.stanford.edu/

data.

Author contributions

LH: Conceptualization, Funding acquisition, Investigation,

Project administration, Resources, Writing – review & editing. SZ:

Conceptualization, Data curation, Formal analysis, Methodology,

Software, Writing – original draft, Writing – review & editing. HZ:

Formal analysis, Methodology, Project administration, Resources,

Software, Validation, Visualization, Writing – review & editing.

YH: Data curation, Formal analysis, Methodology, Project

administration, Software, Validation, Visualization, Writing –

review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work

was supported by the National Natural Science Foundation (NSF)

under grant (No. 61802353), the Key Scientific and Technological

Project of Henan Province (No. 242102211008, 242102211091, and

242102240128), and the Zhengzhou University of Light Industry

Starry Sky Crowd Space Incubation Project (No. 2023ZCKJ208).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in BigData 17 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://snap.stanford.edu/data
https://snap.stanford.edu/data
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Han et al. 10.3389/fdata.2024.1422546

References

Arasteh, B. (2023). Clustered design-model generation from a program source code
using chaos-based metaheuristic algorithms. Neural Comput. Appl. 35, 3283–3305.
doi: 10.1007/s00521-022-07781-6

Arasteh, B., Abdi, M., and Bouyer, A. (2022). Program source code comprehension
by module clustering using combination of discretized gray wolf and genetic
algorithms. Adv. Eng. Softw. 173:103252. doi: 10.1016/j.advengsoft.2022.1
03252

Arasteh, B., Seyyedabbasi, A., Rasheed, J., and Abu-Mahfouz, A.M. (2023). Program
source-code re-modularization using a discretized and modified sand cat swarm
optimization algorithm. Symmetry 15:401. doi: 10.3390/sym15020401

Barika, M., Garg, S., Zomaya, A. Y., and Ranjan, R. (2021). Online scheduling
technique to handle data velocity changes in stream workflows. IEEE Trans. Parall.
Distribut. Syst. 32, 2115–2130. doi: 10.1109/TPDS.2021.3059480

Chandrashekar, C., Krishnadoss, P., Poornachary, V. K., Ananthakrishnan,
B., and Rangasamy, K. (2023). Hwacoa scheduler: hybrid weighted ant colony
optimization algorithm for task scheduling in cloud computing. Appl. Sci. 13:3433.
doi: 10.3390/app13063433

Chen, X., Zhang, J., Lin, B., Chen, Z., Wolter, K., and Min, G. (2021). Energy-
efficient offloading for DNN-based smart IoT systems in cloud-edge environments.
IEEE Trans. Parall. Distribut. Syst. 33, 683–697. doi: 10.1109/TPDS.2021.3100298

Cisco. (2023). Ericsson Mobility Report November 2023. Available at: https://
www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2023
(accessed April, 2024).

Ghobaei-Arani, M., Souri, A., and Rahmanian, A. A. (2020). Resource management
approaches in FOG computing: a comprehensive review. J. Grid Comput. 18, 1–42.
doi: 10.1007/s10723-019-09491-1

Gupta, S., and Deep, K. (2019). An efficient grey wolf optimizer with opposition-
based learning and chaotic local search for integer and mixed-integer optimization
problems. Arab. J. Sci. Eng. 44, 7277–7296. doi: 10.1007/s13369-019-03806-w

Hatami, E., and Arasteh, B. (2020). An efficient and stable method to cluster
software modules using ant colony optimization algorithm. J. Supercomput. 76, 6786–
6808. doi: 10.1007/s11227-019-03112-0

Hazra, A., Adhikari, M., Amgoth, T., and Srirama, S. N. (2020). Stackelberg game
for service deployment of IoT-enabled applications in 6G-aware FOG networks. IEEE
Internet Things J. 8, 5185–5193. doi: 10.1109/JIOT.2020.3041102

He, H., Xu, G., Pang, S., and Zhao, Z. (2016). AMTS: adaptive multi-
objective task scheduling strategy in cloud computing. China Commun. 13, 162–171.
doi: 10.1109/CC.2016.7464133

Hosseini, S. H., Vahidi, J., Tabbakh, S. R. K., and Shojaei, A. A. (2021). Resource
allocation optimization in cloud computing using the whale optimization algorithm.
Int. J. Nonlin. Anal. Appl. 12, 343–360. doi: 10.22075/IJNAA.2021.5188

Jing, W., Zhao, C., Miao, Q., Song, H., and Chen, G. (2021). QOS-DPSO: QOS-
aware task scheduling for cloud computing system. J. Netw. Syst. Manag. 29, 1–29.
doi: 10.1007/s10922-020-09573-6

Kaur, G., and Arora, S. (2018). Chaotic whale optimization algorithm. J. Comput.
Design Eng. 5, 275–284. doi: 10.1016/j.jcde.2017.12.006

Keshanchi, B., Souri, A., and Navimipour, N. M. (2017). An improved genetic
algorithm for task scheduling in the cloud environments using the priority queues:
formal verification, simulation, and statistical testing. J. Syst. Softw. 124, 1–21.
doi: 10.1016/j.jss.2016.07.006

Lakhan, A., and Li, X. (2019). “Content aware task scheduling
framework for mobile workflow applications in heterogeneous mobile-
edge-cloud paradigms: CATSA framework,” in 2019 IEEE Intl Conf on
Parallel and Distributed Processing with Applications, Big Data and Cloud
Computing, Sustainable Computing and Communications, Social Computing
and Networking (ISPA/BDCloud/SocialCom/SustainCom) (Xiamen: IEEE),
242–249.

Leskovec, J., and Krevl, A. (2014). SNAP Datasets: Stanford Large Network Dataset
Collection. Available at: http://snap.stanford.edu/data (accessed August, 2024).

Li, C., Zhang, Y., Sun, Q., and Luo, Y. (2021). Collaborative caching strategy based
on optimization of latency and energy consumption in MEC. Knowl. Based Syst.
233:107523. doi: 10.1016/j.knosys.2021.107523

Li, M., Zhang, H., Liu, L., Chen, B., Guan, L., and Wu, Y. (2018). A quantitative
structure-property relationship model based on chaos-enhanced accelerated particle
swarm optimization algorithm and back propagation artificial neural network. Appl.
Sci. 8:1121. doi: 10.3390/app8071121

Luo, Y., Li, W., Yang, W., and Fortino, G. (2020). A real-time edge scheduling and
adjustment framework for highly customizable factories. IEEE Trans. Industr. Informat.
17, 5625–5634. doi: 10.1109/TII.2020.3044698

Ma, Z., Zhang, S., Chen, Z., Han, T., Qian, Z., Xiao, M., et al. (2021). Towards
revenue-driven multi-user online task offloading in edge computing. IEEE Trans.
Parall. Distribut. Syst. 33, 1185–1198. doi: 10.1109/TPDS.2021.3105325

Miao, Y., Wu, G., Li, M., Ghoneim, A., Al-Rakhami, M., and Shamim
Hossain, M. (2020). Intelligent task prediction and computation offloading based
on mobile-edge cloud computing. Fut. Gener. Comput. Syst. 102, 925–931.
doi: 10.1016/j.future.2019.09.035

Mohammadzadeh, A., Masdari, M., and Gharehchopogh, F. S. (2021).
Energy and cost-aware workflow scheduling in cloud computing data centers
using a multi-objective optimization algorithm. J. Netw. Syst. Manag. 29, 1–34.
doi: 10.1007/s10922-021-09599-4

Rappaport, T. S. (2002). Wireless communications–principles and practice, (the
book end). Microw. J. 45, 128–129. Available at: https://www.microwavejournal.com/
articles/3553-the-book-end

Rathore, R. S., Sangwan, S., Mazumdar, S., Kaiwartya, O., Adhikari, K., Kharel, R., et
al. (2020). W-gun: Whale optimization for energy and delay-centric green underwater
networks. Sensors 20:1377. doi: 10.3390/s20051377

Sanaj, M. S., and Prathap, P. M. J. (2021). An efficient approach to the map-
reduce framework and genetic algorithm based whale optimization algorithm for
task scheduling in cloud computing environment. Mater. Tod. 37, 3199–3208.
doi: 10.1016/j.matpr.2020.09.064

Sayed, G. I., Darwish, A., and Hassanien, A. E. (2018). A new chaotic
whale optimization algorithm for features selection. J. Classif. 35, 300–344.
doi: 10.1007/s00357-018-9261-2

Shrimali, B., and Patel, H. (2021). Multi-objective optimization oriented policy
for performance and energy efficient resource allocation in cloud environment. TERI
Inform. Dig. Energy Environ. 20:354. doi: 10.1016/j.jksuci.2017.12.001

Singh, H., Bhasin, A., and Kaveri. P. R. (2021). QRAS: efficient resource
allocation for task scheduling in cloud computing. SN Appl. Sci. 3, 1–7.
doi: 10.1007/s42452-021-04489-5

Teng, Z. J., Lv, J. L., and Guo, L. W. (2019). An improved hybrid grey wolf
optimization algorithm. Soft Comput. 23, 6617–6631. doi: 10.1007/s00500-018-3310-y

Wang, J., Hu, J., Min, G., Zhan, W., Zomaya, A. Y., and Georgalas, N. (2021).
Dependent task offloading for edge computing based on deep reinforcement learning.
IEEE Trans. Comput. 71, 2449–2461. doi: 10.1109/TC.2021.3131040

Wen, Z., Garg, S., Aujla, G. S., Alwasel, K., Puthal, D., Dustdar, S., et al.
(2020). Running industrial workflow applications in a software-defined multicloud
environment using green energy aware scheduling algorithm. IEEE Trans. Industr.
Informat. 17, 5645–5656. doi: 10.1109/TII.2020.3045690

Yuan, H., Tang, G., Li, X., Guo, D., Luo, L., and Luo, X. (2021). Online dispatching
and fair scheduling of edge computing tasks: a learning-based approach. IEEE Internet
Things J. 8, 14985–14998. doi: 10.1109/JIOT.2021.3073034

Zade, B. M. H., Mansouri, N., and Javidi, M. M. (2021). SAEA: a security-aware and
energy-aware task scheduling strategy by parallel squirrel search algorithm in cloud
environment. Expert Syst. Appl. 176:114915. doi: 10.1016/j.eswa.2021.114915

Zhang, C., Du, H., Ye, Q., Liu, C., and Yuan, H. (2019). “DMRA: a decentralized
resource allocation scheme for multi-SP mobile edge computing,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS) (Dallas, TX:
IEEE), 390–398.

Zhao, H., Jing, X., Zhang, S., Ruan, Y., and Zhang, Z. (2021). Resource
scheduling optimization strategy of cloud-edge system. J. Shenyang Univ. 33, 41–74.
doi: 10.16103/j.cnki.21-1583/n.2021.01.006

Zhu, Z., Sheng-hua, R., and Shi-jie, Z. (2020). A novel fruit fly
optimization algorithm with chaotic step. Comput. Eng. Sci. 42:2020.
doi: 10.3969/i.issn.1007-130X.2020.04.024

Frontiers in BigData 18 frontiersin.org

https://doi.org/10.3389/fdata.2024.1422546
https://doi.org/10.1007/s00521-022-07781-6
https://doi.org/10.1016/j.advengsoft.2022.103252
https://doi.org/10.3390/sym15020401
https://doi.org/10.1109/TPDS.2021.3059480
https://doi.org/10.3390/app13063433
https://doi.org/10.1109/TPDS.2021.3100298
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2023
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2023
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1007/s13369-019-03806-w
https://doi.org/10.1007/s11227-019-03112-0
https://doi.org/10.1109/JIOT.2020.3041102
https://doi.org/10.1109/CC.2016.7464133
https://doi.org/10.22075/IJNAA.2021.5188
https://doi.org/10.1007/s10922-020-09573-6
https://doi.org/10.1016/j.jcde.2017.12.006
https://doi.org/10.1016/j.jss.2016.07.006
http://snap.stanford.edu/data
https://doi.org/10.1016/j.knosys.2021.107523
https://doi.org/10.3390/app8071121
https://doi.org/10.1109/TII.2020.3044698
https://doi.org/10.1109/TPDS.2021.3105325
https://doi.org/10.1016/j.future.2019.09.035
https://doi.org/10.1007/s10922-021-09599-4
https://www.microwavejournal.com/articles/3553-the-book-end
https://www.microwavejournal.com/articles/3553-the-book-end
https://doi.org/10.3390/s20051377
https://doi.org/10.1016/j.matpr.2020.09.064
https://doi.org/10.1007/s00357-018-9261-2
https://doi.org/10.1016/j.jksuci.2017.12.001
https://doi.org/10.1007/s42452-021-04489-5
https://doi.org/10.1007/s00500-018-3310-y
https://doi.org/10.1109/TC.2021.3131040
https://doi.org/10.1109/TII.2020.3045690
https://doi.org/10.1109/JIOT.2021.3073034
https://doi.org/10.1016/j.eswa.2021.114915
https://doi.org/10.16103/j.cnki.21-1583/n.2021.01.006
https://doi.org/10.3969/i.issn.1007-130X.2020.04.024
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	An enhanced whale optimization algorithm for task scheduling in edge computing environments
	1 Introduction
	2 Related work
	3 A model of an enhanced whale optimization algorithm for task scheduling in edge computing environments
	3.1 Time model
	3.2 Cost model
	3.3 Resource utilization model
	3.4 Constructing the fitness function

	4 Design of an enhanced whale optimization algorithm for task scheduling in edge computing environments
	4.1 Task scheduling algorithm description
	4.2 Task scheduling algorithm based on enhanced whale optimization
	4.2.1 Chaotic mapping
	4.2.2 Non-linear convergence factor

	5 Implementation of an enhanced whale optimization algorithm for task scheduling in edge computing environments
	5.1 Implementation of an enhanced whale optimization algorithm for task scheduling
	5.2 Complexity analysis of an enhanced whale optimization algorithm for task scheduling

	6 Experimental environment and configuration
	6.1 Baseline algorithms
	6.2 Environmental setting
	6.3 Test data
	6.4 Evaluation metrics

	7 Results and discussion
	7.1 Experimental results and analysis for small- and large-scale tasks
	7.1.1 Analysis of experimental results under small-scale tasks
	7.1.2 Analysis of experimental results under large-scale tasks

	7.2 Comparison of algorithms

	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

