
TYPE Technology and Code

PUBLISHED 09 September 2024

DOI 10.3389/fdata.2024.1446071

OPEN ACCESS

EDITED BY

Reynold Cheng,

The University of Hong Kong,

Hong Kong SAR, China

REVIEWED BY

Weilong Ding,

North China University of Technology, China

Shaoxu Song,

Tsinghua University, China

*CORRESPONDENCE

Nicholas Kofi Akortia Hagan

nkhagan@ualr.edu

John R. Talburt

jrtalburt@ualr.edu

RECEIVED 08 June 2024

ACCEPTED 23 August 2024

PUBLISHED 09 September 2024

CITATION

Hagan NKA and Talburt JR (2024) SparkDWM:

a scalable design of a Data Washing Machine

using Apache Spark.

Front. Big Data 7:1446071.

doi: 10.3389/fdata.2024.1446071

COPYRIGHT

© 2024 Hagan and Talburt. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

SparkDWM: a scalable design of a
Data Washing Machine using
Apache Spark

Nicholas Kofi Akortia Hagan* and John R. Talburt*

Department of Information Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States

Data volume has been one of the fast-growing assets of most real-world

applications. This increases the rate of human errors such as duplication

of records, misspellings, and erroneous transpositions, among other data

quality issues. Entity Resolution is an ETL process that aims to resolve data

inconsistencies by ensuring entities are referring to the same real-world objects.

One of the main challenges of most traditional Entity Resolution systems is

ensuring their scalability to meet the rising data needs. This research aims to

refactor a working proof-of-concept entity resolution system called the Data

Washing Machine to be highly scalable using Apache Spark distributed data

processing framework. We solve the single-threaded design problem of the

legacy Data Washing Machine by using PySpark’s Resilient Distributed Dataset

and improve the Data Washing Machine design to use intrinsic metadata

information from references. We prove that our systems achieve the same

results as the legacy Data Washing Machine using 18 synthetically generated

datasets. We also test the scalability of our system using a variety of real-world

benchmark ER datasets froma few thousand tomillions. Our experimental results

show that our proposed system performs better than a MapReduce-based Data

Washing Machine. We also compared our system with Famer and concluded

that our system can find more clusters when given optimal starting parameters

for clustering.

KEYWORDS

Data Washing Machine, entity resolution, data curation, PySpark, distributed DWM,

SparkDWM

1 Introduction

One of the main goals in creating every information system is to ensure every entity
represents one and only one real-world object. This common assumption is often not
achieved due to erroneous data imputation and missing values, among other reasons. Data
management from its planning, acquisition, transformation, and disposal is termed data
curation. This process can be time-consuming and often manual. Entity Resolution (ER)
is a data curation process of determining whether two entities are referring to the same
real-world objects or not (Talburt and Zhou, 2015). Entities in this context refer to any
real-world object with a unique identity and may include equipment, employees, patients,
etc. ER is synonymous with data deduplication, record linking, and entity disambiguation,
and it is the foundation of many data curation processes, such as Master DataManagement
(MDM) and data fusion (Talburt et al., 2019).

With the growth in the volume of data over the years, the vast demand has shifted to
a more efficient way to extract the high quantity of data for analysis and decision making
in organizations. Data analytics technologies have evolved to help handle the fast growth

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2024.1446071
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2024.1446071&domain=pdf&date_stamp=2024-09-09
mailto:nkhagan@ualr.edu
mailto:jrtalburt@ualr.edu
https://doi.org/10.3389/fdata.2024.1446071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2024.1446071/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

rate of data. Two main big data analytics technologies used to
process big data are Hadoop MapReduce (Dean and Ghemawat,
2008) and Apache Spark (Zaharia et al., 2016). The use of
MapReduce and Spark in a distributed computing environment
fits the problem of ER since comparing a pair of references for
equivalence is independent of other pairs and can be carried out
in parallel (Kolb et al., 2012).

The Data Washing Machine (DWM) is a proof-of-concept
(POC) of an unsupervised ER system that uses frequency-based
blocking and stopword removal to identify and cluster equivalent
references. TheDWMconcept was birthed byAl Sarkhi and Talburt
(2019a,b) and later improved and brought to live by Talburt et al.
(2020). TheDWMas a proof-of-concept is part of the effort tomove
from a traditional and supervised data curation to an unsupervised
and automated data curation (Talburt et al., 2023) and has
produced tremendous results since its inception. The unsupervised
nature of the DWM lies on its ability to predict and use its
own optimal starting parameter to cluster equivalent references
(Anderson et al., 2023). A parameter file is a text file that contains
system configurations used by the DWM. These configurations
or parameters include but are not limited to “beta”, which is the
blocking frequency parameter; “mu,” which is a linking threshold;
“sigma,” which is a stopword removal threshold; “epsilon,”
which is a cluster evaluation threshold; “excludeNumericTokens”,
“removeDuplicateTokens”, among others.

Although the DWM POC has achieved tremendous clustering
results, the original prototype design runs in a single-threaded
mode and does not lend itself to parallelization. This single-
threaded design of the legacy DWM poses two main challenges in
an attempt to scale the prototype:

• It requires shared memory of tables and dictionaries by all
phases in the system.

• Inability to process over 1 million records due to the limited
memory and disk space in a single-threaded space.

We, therefore, solve the legacy DWM’s unscalable design
problem by using Apache Spark’s RDD and solve the use of shared
memory tables and dictionaries by extracting and utilizing intrinsic
metadata from each reference. We use HDFS to store entity
references, Apache YARN to manage computational resources such
as CPU cores and memory per node on the cluster, and RDD for
parallel and distributed data processing.

In this research, we make the following contributions:

• We introduce Spark Data Washing Machine (SparkDWM),
a PySpark-based design of a legacy DWM. We focus on
using memory to store intermediate data rather than a disk-
based approach.

• We benchmark SparkDWM with the legacy DWM and
proof that SparkDWM is a fully refactored, efficient version
of the legacy DWM, and gets the same results as the
legacy DWM.

• We compare SparkDWM with a prior MapReduce-based
DWM called HadoopDWM or HDWM and show that
SparkDWM has a better computational time than the
MapReduce-based DWM. We also compare the linking

and clustering performance of SparkDWM with another
Distributed ER system called Famer.

• We finally show SparkDWM’s scalability using publicly
available benchmark ER datasets.

2 Related work

The attempts to redesign ER systems to meet the growing
demands of big data is not foreign. Many works have been
conducted on the design of distributed ER systems.

2.1 Scalable solutions in ER

In the work of Al Sarkhi and Talburt (2020), an attempt
was made to refactor a rule-based ER system called OYSTER
(Talburt and Zhou, 2013). In the design approach, the authors
utilized frequency-based blocking and stopword removal
prior to the linking process. This is made possible by the
introduction of MatrixTokenizer which is a hash function that
implements frequency-based blocking, and MatrixComparator
which implements frequency-based stopword removal. Again,
in their scalable implementation of OYSTER, tokens are used to
re-create the reference after tokenization. The reformed reference
then contains a reference identifier, the blocking key, and the
comparison token. The authors used Hadoop MapReduce to
prove that the newly refactored OYSTER is scalable. On the
contrary, our proposed solution uses PySpark’s memory-based data
processing approach.

In prior work, we introduced a mapreduce implementation
of the DWM called Hadoop Data Washing Machine (Hagan
et al., 2024). Hadoop Data Washing Machine is a first step
toward building a complete Distributed Data Washing Machine
(DistributedDWM) using two of the most popular big data
processing frameworks. HadoopDWM uses Hadoop Distributed
File Systems (HDFS) as the storage framework, Apache YARN
as the resource management framework, and capitalizes on the
parallel nature of MapReduce for data processing. HadoopDWM
is a complete refactor of the legacy DWM by mimicking the basic
logic of the legacy DWM using MapReduce. One of the major
challenges of HadoopDWM is it requires much disk space for
reading and writing data. Our proposed solution uses a memory-
based processing approach and hence has a better performance
than the HadoopDWM system.

Famer (Saeedi et al., 2017; Obraczka et al., 2019) or the Fast
Multi-source Entity Resolution system is a distributed clustering
ER system designed for big datasets. It operates on Apache Flink
to achieve high scalability and comparison of already existing
cluster ER systems. Data from multiple sources is first blocked
using multiple blocking techniques such as standard blocking and
sorted neighborhoods to reduce the number of pairs that need to
be compared. The blocked pairs are then compared for similarity,
and similar pairs are clustered using the graph. One of the main
distinctions between Famer and our proposed SparkDWM is that
SparkDWM uses a frequency-based blocking technique to group
references that need to be compared for similarity.

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

2.2 Learning-based solutions in ER

The marriage between machine learning and big data
technologies has been a sort-after solution recently. One popular
work of incorporating machine learning algorithms in scalable
ER systems is Dedoop (Kolb et al., 2012). Dedoop efficiently
translates user-defined ER configurations into a workable and
scalable MapReduce job. The system offers multiple blocking
functions and chooses the best function based on the input data
to be processed. In Dedoop, all blocking processes occur in a
mapper function, whereas linking of equivalent references happens
in a reducer function. For the similarity comparison of references,
Dedoop uses a set of machine learning classification libraries that
classifies a pair of references as either linked or not linked. The
usage of machine learning requires extensive training and learning
of the modules in order to produce the best possible ER results.
Another machine-learning-based ER requiring extensive training
ofmodule can be found in the work of Kolb et al. (2011). Their work
uses similar processing concept as Dedoop and requires extensive
training of the linking model for better linking of equivalent pairs.

Apache Flink is a well-known distributed computing
technology for processing big data in parallel and used to scale ER
applications. Nentwig et al. (2017) utilized Apache Flink and its
graph processing API called Gelly. In Gelly graph, a set of entities
represent the vertices and the links between the entities represent
the edge of the graph. With this information, they construct a
similarity graph and formed clusters from linked entities. The
input vertices and edges are read into a Gelly graph, and a set
of transformations are applied to create a cluster of pairs that
were considered to be similar in nature. Intermediate data from
this operation are stored on disk. The researchers also used the
“TupleX” transformation in Flink to reduce the network traffic
among computational nodes during complex transformations.
Their approach requires data pre-processing before distributing
the data in Flink to be processed.

Mostly the input data used to test ER systems are rich in other
metadata that could potentially be useful in the matching process.
Blast (Simonini et al., 2016) is a system designed to utilize intrinsic
information from input data to improve blocking and matching
results in ER. Loose schema from these references is extracted
using some sort of similarity function. Token-blocking and meta-
blocking are used to group references having the same blocking key,
and only such references are compared for similarity.

2.3 Apache spark-based solutions in ER

ER has been applied extensively in the healthcare space to
ensure patients records are not wrongfully classified. One of these
application of ER in the healthcare space using a distributed
processing framework is found in the work of Wang and Karimi
(2016). Their distributed duplicate detector was built using Apache
Spark to efficiently identify and cluster equivalent references
using the k-nearest neighbor classifier. This work does data pre-
processing using Natural Language Processing (NLP) to remove all
data quality issues found in the input data. They also train part of
the input dataset for better matching among references.

The work of Pita et al. (2015) outlined processes to perform
record linking for healthcare data using Apache Spark. Their
process first requires an extensive data quality check and identifying
attributes in the data that may be more suitable for record linking.
The next step is to apply the traditional ETL process to standardize
and fix all data quality issues prior to loading it in Spark. Finally,
Spark is used to perform record linking and the system requires a
subject-matter expert to review the links formed. The researchers
perform data standardization and pre-processing before the actual
linking process, which is frowned upon in SparkDWM. Our
proposed systems is a reversed paradigm of the traditional ETL
process where we cluster first and clean next.

SparkER (Simonini et al., 2018; Gagliardelli, 2019) is another
system designed to use intrinsic metadata from references to
perform record blocking and linking. SparkER uses Spark for
efficient clustering of equivalent references and offers a wide
range of similarity comparison algorithms for linking. Prior to
the similarity computation and linking, SparkER applies meta-
blocking to group references having the same blocking key. In the
loose schema generator, attributes are partitioned using Locality-
Sensitive Hashing to group attribute values according to their
similarity. To reduce the possibility of not comparing the same
attributes more than once, the attributes with the highest similarity
score are kept. Transitive closure is applied to the kept attributes,
and all other duplicated attributes are kept in a blob partition and
an entropy score is computed for all clusters formed.

2.4 Research gap

In this sub-section, we point out some of the gaps identified
in the related works discussed in sub-Sections 2.1 and 2.2. Firstly,
the works of Al Sarkhi and Talburt (2020) and Talburt and
Zhou (2013) were for a rule-based supervised ER system called
OYSTER. The nature of OYSTER requires metadata alignment
and specification of both blocking and similarity comparison rules
using data attributes prior to job execution. For instance, linking
two references if the last name of one record is the same as the
last name of another record. The difference between their work and
our work is our work does not depend on rules for both blocking
and linking but rather uses the frequency statistics of tokens in each
reference to make blocking and linking decisions.

Secondly, the works of Kolb et al. (2012), Kolb et al. (2011),
Wang and Karimi (2016), Nentwig et al. (2017), and Simonini
et al. (2016) are all learning-based ER solutions. Just like any
other machine-learning model, the learning-based design approach
requires the training and learning of the model in other to produce
the best linking result. Our system design approach does not require
any model learning and only breaks each row of records into
tokens and uses frequency statistics to group records that need to
be compared and linked. Also, some of the works adopt Hadoop
Mapreduce for design, which is known to have a poor performance
than Apache Spark due to the constant reading and writing of data
to and from disk in MapReduce.

Lastly, for the Apache Spark-based design approaches, the
works either require data pre-processing or use a different blocking
approach. For instance, in the work of Pita et al. (2015), the

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

system requires data pre-processing and clear linking records.
Our proposed system does not require data pre-processing nor
standardization prior to linking equivalent references. Similarly
in Simonini et al. (2018) and Gagliardelli (2019), they utilized
a Locality-Sensitive Hashing (LSH) blocking approach to group
records that need to be compared for similarity. Our proposed
system, on the other hand, utilizes a frequency-based blocking
approach to group records before applying a linking model.

3 Methodology

SparkDWM1 is a distributed scalable implementation of a
legacy DWM using Apache Spark’s Resilient Distributed Datasets
(RDD).2 SparkDWMmimics all the basic ER processes in the legacy
DWM including blocking, similarity comparison, transitive closure
for form clusters, and cluster evaluation using entropy. SparkDWM
is a memory-based data processing framework and an improved
version of Hadoop MapReduce, which is a disk-based data
processing framework. Spark is an open-source multi-language big
data processing engine that runs on a cluster of computers. Spark’s
multi-language capability includes programming languages such as
Python (PySpark), Scala (Spark), Java, and R (SparkR).

In SparkDWM, we utilized PySpark, which is an interface
for Apache Spark in Python, as the programming framework to
refactor the legacy DWM. PySpark is a Python API for Spark
applications that allows non-Java, R, or Scala programmers to
write Spark applications in Python. PySpark has support for
Spark Core, which is the base execution engine for Spark and is
comprised of RDD. RDD (Zaharia et al., 2012) in PySpark is an
immutable, distributed collection of data elements partitioned and
assigned to multiple computational nodes on a cluster for parallel
processing. RDD is made up of Transformations and Actions.
Transformations modify a previous RDD and save the resulting
RDD in memory whereas Actions operate on an RDD to produce
actual physical results.

SparkDWM uses Hadoop Distributed File System (HDFS) as
the data storage framework. HDFS (Shvachko et al., 2010) is a
distributed file system designed to store large volumes of data across
a cluster of computational nodes. It allows for easy scalability of
a cluster to hundreds and thousands of nodes. We also utilize
Apache YARN (Vavilapalli et al., 2013) as the resource management
platform to equally allocate resources such as CPU cores and
memory to available executors on the Spark cluster. Figure 1
below depicts the general process workflow and the interaction
between HDFS, YARN, and SparkDWM. The end user runs the
“Driver.sh” bash script, which prompts the user to enter a valid
parameter file. A parameter file is a file that contains settings used to
execute the program, and these settings are unique for each dataset.
The bash script then finds some system environments such as
SPARK_HOME, HADOOP_HOME, and PYTHON_HOME and
updates the main SparkDWM_Driver.py script. At that point,
SparkDWM is ready for resources and input dataset for execution.
All CPU vCores and memory per each node are accumulated on
YARN for the entire cluster and redistributed back to nodes as and

1 https://bitbucket.org/oysterer/distributed-dwm/src/master/

2 https://spark.apache.org/

when needed for SparkDWM. At the same time, the input data and
the truth set file are all partitioned and stored on HDFS using a
replication factor of 128MB per block on each computational node.
All the individual execution processes are displayed in Figure 2
below. SparkDWM produces two sets of outputs, a Linked Index
file and a system statistics file. The Linked Index file is a file that
contains only two columns: the reference identifier column and the
cluster identifier column. For each reference, SparkDWMproduces
the cluster to which such reference belongs to. The Linked index file
is stored back on HDFS and made ready for download by the end
user as shown in Figure 1.

Since SparkDWM is a complete refactor of the legacy DWM,
the main phases of the DWM are followed and redesigned using
PySpark RDD. Figure 2 below shows the overall step-by-step
design architecture of SparkDWM. SparkDWM is an iterative
system comprising reference tokenization, frequency generation,
reformation of references, forming blocks of references to be
compared, similarity comparison of reference pairs, transitive
closure to create clusters, evaluation of clusters, and computation of
ER matrix to evaluate the performance of SparkDWM. Each phase
in SparkDWM is explained in Sub-sections 3.1–3.8.

3.1 Tokenization

In SparkDWM, the merged dataset is first stored in a staging
file, and the record header, which is always the first row in the
reference list, is removed. Removing the reference header in the
staging area ensures that none of the references are missed after
partition. Partitioning the input data before removing the header
will remove the first row from each partition, reducing the size
of the original references. The reference in the staging file is
partitioned and stored on HDFS using a replication factor of
128MB. The input data will then be ready to be read by the first
RDD in SparkDWM. The “spark context.textFile()” method is then
applied to each HDFS partition of the input data to create a tuple of
key-value pairs. This process is shown in the Tokenization section
of Figure 2.

The tokenization process removes all unwanted characters
from the references and keeps only string and numeric tokens.
Unwanted characters may include all special characters that are
not words or numbers. SparkDWM uses two types of tokenization
functions: the tokenizer splitter and compress. The splitter removes
all unwanted characters and splits by the given delimiter. In
contrast, the compress tokenizer removes all unwanted characters
and replaces white spaces, thereby having a compressed long
token. Finally, tokenization statistics such as “tokens found”,
“numericTokens”, “uniqueTokens” etc., are extracted using the
“RDD.count()” function, as shown in Figure 2.

3.2 Frequency generation

The next step is to compute the frequency of each token from
the tokenization step using the basic word count algorithm in
PySpark. In the frequency generation phase, each token is mapped
using a lambda function and the result from this transformation is

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://bitbucket.org/oysterer/distributed-dwm/src/master/
https://spark.apache.org/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

FIGURE 1

General process workflow interaction of HDFS, YARN, and SparkDWM PySpark RDD.

FIGURE 2

Design architecture of SparkDWM using PySpark RDD.

saved to memory. The key to the map is a token, and the value is a
numeric value of 1 for each token. All values belonging to each key
group is then shuffled and summed up using the “reduceByKey()”
method in PySpark.

Table 1 below shows output from computing token frequencies
for references as well as some intrinsic token metadata in
SparkDWM. The key is the first element of the parent tuple, and
the second element of the parent tuple represents the value. For

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

TABLE 1 Computed frequencies of tokens with other intrinsic metadata

in SparkDWM.

Token frequencies

(‘WINSTON’, (7, ‘A960838’, 31))
(‘WINSTON’, (7, ‘A974515’, 31))
(‘WINSTON’, (9, ‘A750205’, 31))
(‘WINSTON’, (9, ‘A942770’, 31))

(‘AARON’, (2, ‘A813025’, 33))
(‘AARON’, (2, ‘A824917’, 33))
(‘AARON’, (2, ‘A875214’, 33))

(‘59’, (12, ‘A776838’, 2))
(‘59’, (12, ‘A844925’, 2))

(‘DONALD’, (1, ‘A770538’, 3))
(‘DONALD’, (2, ‘A816319’, 3))
(‘DONALD’, (1, ‘A882820’, 3))

(‘DWIGHT’, (3, ‘A770538’, 3))
(‘DWIGHT’, (3, ‘A816319’, 3))
(‘DWIGHT’, (3, ‘A882820’, 3))

(‘27052’, (10, ‘A770538’, 3))
(‘27052’, (10, ‘A816319’, 3))
(‘27052’, (10, ‘A882820’, 3))

(‘131’, (11, ‘A816319’, 2))
(‘131’, (11, ‘A882820’, 2))

TABLE 2 Reformed references in SparkDWM using intrinsic metadata.

Reformed references

(‘A944634’, {1: ‘IAN∧ 1’, 2: ‘AADLAND∧ 1’, 3: ‘LARS∧ 1’, 4: ‘29021∧ 1’, 5:
‘HIGH∧ 1’, 6: ‘SIERRA∧ 1’, 7: ‘TRL∧ 4’, 8: ‘SANTA∧ 1’, 9: ‘CLARITA∧ 1’, 10:
‘CA∧ 3’, 11: ‘91390∧ 1’, 12: ‘490∧ 1’, 13: ‘46∧ 1’, 14: ‘2048∧ 1’})

(‘A755471’, {1: ‘MYRA∧ 2’, 2: ‘AARGAARD∧ 1’, 3: ‘ESPERSEN∧ 2’, 4: ‘1224∧

2’, 5: ‘MAGNOLIA∧ 2’, 6: ‘ST∧ 6’, 7: ‘WINSTON∧ 31’, 8: ‘SALEM∧ 31’, 9:
‘NC∧ 47’, 10: ‘27103∧ 6’, 11: ‘117∧ 1’, 12: ‘15∧ 1’, 13: ‘8521∧ 1’})

(‘A869762’, {1: ‘GREGORY∧ 1’, 2: ‘AARON∧ 33’, 3: ‘A∧ 3’, 4: ‘7514∧ 1’, 5:
‘DIVALDI∧ 1’, 6: ‘ST∧ 6’, 7: ‘LEWISVILLE∧ 1’, 8: ‘NC∧ 47’, 9: ‘27023∧ 1’, 10:
‘672∧ 1’, 11: ‘52∧ 1’, 12: ‘2262∧ 1’})

(‘A813025’, {1: ‘ALLEN∧ 1’, 2: ‘AARON∧ 33’, 3: ‘IKAIKA∧ 1’, 4: ‘3830∧ 1’, 5:
‘COUNTRY∧ 3’, 6: ‘CLUB∧ 3’, 7: ‘RD∧ 13’, 8: ‘J∧ 1’, 9: ‘WINSTON∧ 31’, 10:
‘SALEM∧ 31’, 11: ‘NC∧ 47’, 12: ‘27104∧ 10’})

(‘A844925’, {1: ‘DAVIS∧ 2’, 2: ‘AARON∧ 33’, 3: ‘SCOTT∧ 2’, 4: ‘3211∧ 4’, 5:
‘KINNAMON∧ 4’, 6: ‘RD∧ 13’, 7: ‘WINSTON∧ 31’, 8: ‘SALEM∧ 31’, 9: ‘NC∧

47’, 10: ‘27104∧ 10’, 11: ‘834∧ 2’, 12: ‘59∧ 2’, 13: ‘6144∧ 2’})

instance, in the output record “[’AARON’, (2, ’A813025′, 33)]”,
the token “AARON” represents the key of the RDD, and (2,
’A813025′, 33)” represent the value. The value “(2, ’A813025′, 33)”
contains the positional index of the token, which is 2, the reference
identifier from which the token was found which is ’A813025′,
and finally the frequency of the token which is 33. The role of
the reference identifier inside the value tuple is to ensure that
each token belonging to the same reference identifier is correctly
captured and utilized in the reference reformation phase.

In ER, because there is a higher possibility of having tokens
that are the same but can be used in different contexts, we store
the reference identifier for each token for easy identification. For
instance, the token “Grant” may represent a person’s last name in
one case and might mean someone living on “Grant St”. Although
similar tokens may be found after the tokenization and frequency
generation, their positional index may be different. For instance,

if one reference is of the form first name, last name, and another
reference is of the form last name, first name, the positional index
of the first name token in one reference may be different from
the second reference. An example of this scenario is “output 1–
[’WINSTON’, (7, ’A974515′, 31)]” vs. “output 2–[’WINSTON’, (9,
’A750205′, 31)]”. The positional index of the token “WINSTON” in
output 1 is 7, whereas that of output 2 is 9.

3.3 Reference reformation

One of the main reasons for keeping the tokens per each
reference identifier, the positional index of tokens, and reference
identifier in the tokenization and frequency generation steps is
to maintain the information needed to reform the references
while maintaining their original integrity. The reservation of
intrinsic metadata helps to eliminate the storing tokens and token
frequencies in a shared dictionary, as done in the legacy DWM.
Storing tokens and frequency information in a single dictionary
causes out-of-memory errors and, hence, program failure when
processing larger volume of data.

In the reference reformation phase, the logic for a basic word
count in PySpark is used where the “RDD.map()” method is used to
extract the reference identifier as the key and the intrinsic metadata
as the value. The next step is to use the “RDD.reduceByKey()”
method to group all metadata belonging to a particular key group.
The reformed reference RDD is utilized in many subsequent stages
in the process, including the Blocking and Cluster Evaluation. To
recreate the reference as shown in Table 2 below, the reference
identifier is pulled from the output in section 3.2 and used as
a key, and the values inside each reference identifier comprise
the positional index, token, and the frequency of the token. The
output shown in Table 2 below shows the reformed references with
the reference identifier as key and the tokens together with their
positional index and frequencies as values. For instance, for the
value “2: ’AADLAND∧ 1′”, the 2 is the positional index of the token
in the reference identifier ’A944634′, AADLAND is the token, and
1 is the frequency of the token in the entire input dataset.

3.4 Blocking

Pairwise comparison is one of the most commonly used and
acceptable ways of comparing two references for similarity. It
requires that every entity reference is compared with all other
references in the dataset. This process is computationally expensive
and often inefficient when dealing with big data. To solve this
problem, record blocking (Christen, 2012; Papadakis et al., 2015,
2020) is used to group references based on a common blocking
key, and only references in a particular block are compared
for similarity.

In SparkDWM, blocking begins an iteration, and references
that meet the blocking condition are selected for processing.
Blocking in SparkDWM is made up of 3 stages, namely the
“Extraction of Blocking Tokens”, the “Creation of Blocking Keys”
from the extracted tokens, and the “Block Pair Deduplication”
phase. The input RDD for the extraction of blocking tokens is

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

TABLE 3 Sample output from all blocking phases in SparkDWM.

Blocking step Sample output from
SparkDWM

Extraction of blocking tokens (‘A956423’, [‘LLOYD’, ‘AAARON’,
‘DEAN’, ’SPICEWOOD’])
(‘A921659’, [‘NAOMI’,
‘AUDREY’, ’STRATFORD’])
(‘A948701’,
[‘LOCHURST’, ’PFAFFTOWN’])
(‘A935026’, [‘NENA’, ‘ABAI’,
‘IKWECHEGH’,
‘LOCHURST’, ’PFAFFTOWN’])
(‘A922259’, [‘NATHEN’, ‘ABADIE’,
‘HARRY’, ‘CENTURY’,
‘BLVD’, ’KERNERSVILLE’])

Creation of blocking keys (‘ESPERSENMYRA’, ’A755471’)
(‘ESPERSENMYRA’, ‘A912696’)
(‘MAGNOLIAMYRA’, ‘A755471’)
(‘ESPERSENMAGNOLIA’, ‘A755471’)
(‘CLUBCOUNTRY’, ‘A813025’)
(‘DAVISSCOTT’, ‘A844925’)

Deduplication of blocking
reference pairs

(‘A770538:A882820’, 10)
(‘A780828:A887611’, 3)
(‘A816319:A882820’, 10)
(‘A824917:A875214’, 1)
(‘A922259:A992523’, 15)

the reformed references. The main blocking parameter used in
SparkDWM is a “beta” value. Beta represents a frequency threshold
for a token to be considered a blocking token. Tokens that qualify
to be blocking tokens are those with a frequency between 2 and
beta. For instance, as shown in Table 3 below, extracted blocking
tokens from the reference “A956423” are “LLOYD”, “AAARON”,
“DEAN”, and “SPICEWOOD”. Similarly, tokens extracted from
the reference “A935026” are “NENA”, “ABAI”, “IKWECHEGH”,
“LOCHURST”, and “PFAFFTOWN”. The “RDD.map()” method is
used to extract such tokens. After the tokens have been extracted,
they are used to form blocking keys.

Just as in the legacy DWM, SparkDWM has two ways of
creating blocking keys, either by single tokens or by pairs of
tokens. If the key creation type is to block by singles, the individual
tokens from each reference represent the blocking key. However,
if the blocking type is to block by pairs of tokens, pairs are
formed from each reference in ascending order or magnitude.
For instance, to form blocking keys from “(’A921659′, [’NAOMI’,
’AUDREY’, ’STRATFORD’])”, the keys “NAOMIAUDREY”,
“NAOMISTRATFORD”, and “AUDREYSTRATFORD” will
be formed. Similarly, for “(’A956423′, [’LLOYD’, ’AAARON’,
’DEAN’, ’SPICEWOOD’])”, the keys “LLOYDAAARON”,
“LLOYDDEAN”, “LLOYDSPICEWOOD”, “AAARONDEAN”,
“AAARONSPICEWOOD”, and “DEANSPICEWOOD” will be
formed. These formed blocking keys will serve as the key for
the RDD, and the reference identifiers will represent the values.
Examples of this type of key value pair output is shown in row 2 of
Table 3.

The next step in the blocking phase after creating the blocking
keys is to group all reference identifiers using the blocking
keys. For instance, for the output (’ESPERSENMYRA’, ’A755471′)
and this (’ESPERSENMYRA’, ’A912696′), the output will be
(’A755471:A912696′, ’ESPERSENMYRA’) representing block pair
that need to be compared. The final step in the blocking phase

is to deduplicate the created blocking pairs of references for
comparison. Deduplication of blocking keys is to ensure each pair
is compared only once. The third row in Table 3 below shows
the results of the deduplication of blocking pairs. For instance,
“(’A770538:A882820′, 10)” means the pair of reference was seen 10
times during the blocking process, hence, it will compare only once.

3.5 Similarity comparison

All pairs of references from the block deduplication RDD are
compared for similarity, and the pairs that turn out to be equivalent
are linked. SparkDWM uses two very crucial parameters at this
phase, namely “Sigma” and “Mu”. Sigma is another token frequency
threshold for eliminating stopwords. Stopwords are tokens having a
frequency higher than the given sigma threshold. It has been found
that stopwords do not positively improve the linking performance
of ER and sometimes may even hinder the performance negatively
(Al Sarkhi and Talburt, 2019a,b). Due to this reason, they are
eliminated in order to have a reduced number of tokens in each
reference to compare, which further reduces the computational
complexity in ER. The second parameter used for linking in
SparkDWM is “mu”. Mu is a linking threshold for categorizing a
pair of references as linked or not linked. The mu value is a decimal
value between 0 and 1, with 0 representing the lowest similarity
score and 1 representing the highest score. For instance, if a mu
is set to 0.68, all pair scores up to 0.68 and above are considered
linked pairs.

SparkDWM uses a similarity matrix comparator (Li et al.,
2018) for linking equivalent references. The matrix comparator
is a variant of the Monge Elkan comparator and uses Damerau
Levenshtein Edit Distance (D-LED) for accessing the similarity
of tokens. Each reference pair is passed through the similarity
function using the “RDD.map()” method, and linked pairs from
the resulting RDD are extracted using the “RDD.filter()” method.
Similarity scores from the reference pairs are filtered for links by
comparing the similarity score with the given mu threshold. The
output from the similarity comparison phase includes the linked
pairs, the inverse of the linked pairs, and the pair itself, which is the
first item of the composite key in the linked pairs. An example of
this output is shown in Table 4. This output RDD will serve as the
transformation input for the transitive closure phase.

As shown in Table 4, the first element in the tuple before
the comma in the linked reference pair column represents the
pairs of references that SparkDWM considered as equivalent pairs.
For instance, in “(’A770538.A816319′, ’A816319′)”, the references
A770538 and A816319 are similar and therefore linked. The pair
then serve as the key in the tuple, and the value is the second
element of the pair. This output structure is necessary and follows
the accepted record structure for the CCMR algorithm used in
Sub-section 3.6 below.

3.6 Transitive closure

SparkDWM uses the logic from the Connected Components
with MapReduce (CCMR) algorithm to find clusters of reference.

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

CCMR algorithm uses a graph-based approach to find the
connections between references where entities are represented as
vertex and the similarity between entities as the edge. CCMR
was first introduced by Seidl et al. (2012) and improved by
Kolb et al. (2014). During the transitive closure iteration in
SparkDWM, “RDD.accumulator()” method is used to store the
“mergeState”, “localMaxState”, and the “clusterCount” statistics.
The “mergeState” is when a pair of reference identifiers are arranged
in ascending order; the opposite is true for the “localMaxState”.
The accumulator values are used to determine whether the next
transitive closure iterationwill happen or not. The transitive closure
iteration ends when the “mergeState” accumulator value is 0.
Figure 3 shows step-by-step breakdown of the CCMR transitive
closure algorithm used in SparkDWM. The process starts by

TABLE 4 Output from the similarity comparison phase of SparkDWM.

Linked reference
pairs

Inverse of linked
pairs

Pair-self

(‘A770538.A816319’,
‘A816319’)

(‘A816319.A770538’,
‘A770538’)

(‘A770538.A770538’,
‘A770538’)

(‘A770538.A882820’,
‘A882820’)

(‘A882820.A770538’,
‘A770538’)

(‘A770538.A770538’,
‘A770538’)

comparing each key group in the cluster andmaking decisions until
the exit point is met.

3.7 Cluster evaluation

One of the main duties of a subject matter expert in the
traditional data curation process is to manually analyze and
determine whether clusters formed by an ER system are good or
bad clusters. This process can be cumbersome, especially when
dealing with big data. One of the promising breakthroughs of
the legacy DWM upon which SparkDWM was developed is the
system’s ability to automatically evaluate formed clusters, thereby
eliminating the human-in-the-loop, a common issue in traditional
data curation. This is done by computing the entropy score of
clusters using a variant of Shannon Entropy to find the level
of organization or disorganization between clusters. A crucial
parameter utilized at this phase is the “entropy” threshold, which
is a decimal value between 0 and 1, with 0 representing high
disorganization and 1 representing high organization of clusters.
Some RDDs used in this phase include “map()”, “union()”,
“filter()”, and “join()”. The final output of the cluster evaluation
phase is either good clusters or bad clusters. All good clusters
are stored in a linked index file, whereas bad clusters are merged

FIGURE 3

Decision tree of the CCMR transitive algorithm used in SparkDWM.

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

TABLE 5 ER matrix calculation parameters.

Matric Formula

Precision True pairs/linked pairs

Recall True pairs/expected pairs

F-measure (2∗P∗R)/(P+R)

with unprocessed references from the blocking phase for the next
program iteration.

3.8 ER matrix

The performance of most ER systems is determined using well-
defined statistical measures. If a truth set file accompanied by
the original dataset is loaded into SparkDWM, the truth file is
copied into a staging area and loaded to HDFS for the ER matrix
process. A truth set is a file that has two columns which contain
each reference identifier on one column and its corresponding
cluster identifier on the second column. This helps to know if the
SparkDWM system performed well or not. The input for the ER
matrix is all good cluster references and the truth file (if any). The
“spark.sparkContext.textFile()” method is used to read the truth set
from HDFS and joined with the good cluster RDDs formed. Again,
the “RDD.accumulator()” method is used to aggregate the matrix
statistics. A pair-counting approach is used to count the statistics.
The formula for counting pairs is shown in Equation 1 below. The
statistics to be computed are shown in Table 5. The linked pairs
are all the pairs that SparkDWM linked and usually are the output
from all the good clusters formed. On the other hand, equivalent
pairs refer to the pairs of references found in the truth set file, and
the system was expected to find and link those. True pair is the
intersection between the pairs linked and those that were expected
to be linked. With these base values, the precision, recall, and f-
measure can be computed, as shown in Table 5. Precision is the
number of true pairs divided by linked pairs, recall is the number of
true pairs divided by the expected pair, and finally, f-measure refers
to the harmonic mean between the precision and recall.

pair =
(n∗ (n− 1))

2
(1)

4 Experiment and results

In this section, we demonstrate SparkDWM using a set of
commonly used data files used by the legacy DWM and expand on
the system’s capabilities with some publicly available benchmark ER
data files. We also compare SparkDWM with HadoopDWM and
report on the computational time of both systems.

4.1 Dataset

To prove that SparkDWM achieves the similar results as
the legacy DWM we use a set of 18 synthetic datasets publicly

made available and often used to test legacy DWM. These
test samples were generated using the Synthetic Occupancy
Generator (Talburt et al., 2009) program which infuses data quality
errors into a given dataset in order to test the performance
of ER systems. These 18 datasets contain customer names and
address information, and the quality status spans from poor
quality (with a P prefix) to good quality (with a G prefix),
which are either in mixed layout (with a X prefix) or a single
layout. Record headers found in the good-quality files include
“recID”, “fname”, “lname”, “mname”, “address”, “city”, “state”,
“zip”, “ssn”. Similarly, the record headers for the poor-quality
files include “recID”, “name”, “address”, “city state zip”, “PO
Box”, “POCity State Zip”, “SSN”, “DOB”. For system scalability
testing purposes, we utilized publicly available datasets created
by Köpcke et al. (2010). Three variations of these datasets were
used including database affiliations which contains over 2,000
references, geographic settlement dataset containing approximately
3,000 references, and North Carolina (NC) voter’s dataset. The
NC voters dataset comprise of a 3.5 million, 7 million, and 203
million references.

4.2 Sparkdwm vs. legacy DWM

To compare the legacy DWM with SparkDWM, we used the
same parameter file with optimal configuration values for both
systems. These optimal values were determined using the PDP
program (Anderson et al., 2023), which provides a set of starting
parameters for the DWM. The number of records in each of the
18 sample files were small with S1G file being the least with about
50 records in it and the S6GeCo being the largest with 19,999
records. Given the smaller size of these files and the default HDFS
block size being 128MB, we utilized a single-node cluster. The
cluster was had Spark with pre-built Hadoop 3.3, OpenJDK 8,
and Python 3.10 installed. The host machine for the cluster was
64-bit Ubuntu 23.04 operating systems equipped with a 4-core
i3 Intel 4th generation CPU at 3.10 GHz base speed and 8GB
DDR3 RAM.

The result of the experiment is shown in Table 6 below.
From Table 6, it can be seen that the SparkDWM system
achieves the similar results as the legacy DWM. The two
systems have the same Precision, Recall, and F-measure. For
instance, with a good quality dataset such as S5G with 3,004
references, SparkDWM and legacy DWM had a precision of
0.9542, a recall of 0.9142, and an F-measure of 0.9338. For
poor-quality datasets such as S9P, SparkDWM and legacy DWM
had a precision of 0.8572, a recall of 0.6876, and an F-measure
of 0.763. Similarly, for mixed layout datasets such as S15GX,
SparkDWM, and legacy DWM had the precision of 0.9234,
recall of 0.8684, and an F-measure of 0.8591, and for S18PX,
SparkDWM, and legacy DWM had the precision of 0.8482, recall
of 0.6609 and an F-measure of 0.7429. With all formats and
layouts of datasets, SparkDWM achieves the similar result as
legacy DWM, which is an indication that all the basic processes
of the legacy DWM have been thoroughly refactored using
PySpark’s RDD.

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

TABLE 6 Comparison of ER metric results of SparkDWM and legacy DWM.

Sample Refs read Quality System Precision Recall F-measure

S1G 50 Good Legacy DWM 1.0 1.0 1.0

SparkDWM 1.0 1.0 1.0

S2G 100 Good Legacy DWM 0.9231 1.0 0.96

SparkDWM 0.9231 1.0 0.96

S3Rest 868 Good Legacy DWM 0.9712 0.9018 0.9352

SparkDWM 0.9712 0.9018 0.9352

S4G 1,912 Good Legacy DWM 0.9649 0.9152 0.9394

SparkDWM 0.9649 0.9152 0.9394

S5G 3,004 Good Legacy DWM 0.9542 0.9142 0.9338

SparkDWM 0.9542 0.9142 0.9338

S6GeCo 19,998 Good Legacy DWM 0.9606 0.9769 0.9687

SparkDWM 0.9606 0.9769 0.9687

S7GX 2,912 Good Legacy DWM 0.9453 0.9067 0.9256

SparkDWM 0.9453 0.9067 0.9256

S8P 1,000 Poor Legacy DWM 0.8489 0.6677 0.7475

SparkDWM 0.8489 0.6677 0.7475

S9P 1,000 Poor Legacy DWM 0.8572 0.6876 0.7631

SparkDWM 0.8572 0.6876 0.7631

S10PX 2,000 Poor Legacy DWM 0.8845 0.6846 0.7718

SparkDWM 0.8845 0.6846 0.7718

S11PX 3,999 Poor Legacy DWM 0.8091 0.6788 0.7382

SparkDWM 0.8091 0.6788 0.7382

S12PX 6,000 Poor Legacy DWM 0.874 0.6849 0.768

SparkDWM 0.874 0.6849 0.768

S13GX 2,000 Good Legacy DWM 0.8843 0.8979 0.891

SparkDWM 0.8843 0.8979 0.891

S14GX 5,000 Good Legacy DWM 0.9186 0.8726 0.895

SparkDWM 0.9186 0.8726 0.895

S15GX 10,000 Good Legacy DWM 0.9234 0.8684 0.8951

SparkDWM 0.9234 0.8684 0.8951

S16PX 2,000 Poor Legacy DWM 0.8857 0.6904 0.7759

SparkDWM 0.8857 0.6904 0.7759

S17PX 5,000 Poor Legacy DWM 0.8699 0.6764 0.761

SparkDWM 0.8699 0.6764 0.761

S18PX 10,000 Poor Legacy DWM 0.8482 0.6609 0.7429

SparkDWM 0.8482 0.6609 0.7429

4.3 Comparative analysis of SparkDWM
and HadoopDWM

Next, we compare the performance of SparkDWM
with the HadoopDWM (Hagan et al., 2024) system, a
previously designed distributed DWM system using Hadoop

MapReduce using the 18 synthetically generated datasets.

Figure 4 shows the side-by-side comparison of the execution

time of SparkDWM and HadoopDWM. From the graph, it

can be observed that SparkDWM outperforms the Hadoop

version of the DWM. The higher computational time

of HadoopDWM was due to the reading and writing of

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

FIGURE 4

Comparison of SparkDWM execution time with HadoopDWM.

TABLE 7 SparkDWM clustering statistics per program iteration.

Data sample Reference
count

SparkDWM
iteration

Selected
refs to
process

Linked
pairs

Total
clusters

Refs in
clusters

Good
clusters

Refs in
good
cluster

Geographic settlement 3,054 1 3,054 3,357 796 2,815 773 2,741

2 313 58 21 65 2 6

3 307 50 18 55 2 5

4 302 27 14 36 4 9

5 293 7 5 12 1 2

6 291 6 4 10 0 0

7 291 4 3 7 0 0

8 291 1 1 2 0 0

9 291 0 - - - -

Affiliations 2,260 1 2,260 6,530 222 1,668 222 1,668

2 592 0 - - - -

NC-Voters-3.5 mil 3,500,840 1 3,500,840 5,492 4,692 9,747 1,706 3,515

2 3,497,325 3,449 2,974 6,203 0 0

3 3,497,325 3,447 2,972 6,199 0 0

4 3,497,325 3,443 2,970 6,194 0 0

NC-Voters-7 mil 7,001,680 1 7,001,680 1,065,973 836,693 1,754,634 823,312 1,670,126

NC-Voters-203 mil 203,048,721 1 203,048,721 299,549,642 165,061 9,865,452 165,061 9,865,452

intermediate data to and from disk, which is one of the
bottlenecks of Hadoop MapReduce. In SparkDWM, the
input data is read from HDFS once and all transformations
in the execution process are stored in memory, hence the
performance improvement.

4.4 Scalability of SparkDWM

To test the scalability of SparkDWM using larger data files,
we used computational resources from the Arkansas High-
Performance Computing Center’s Pinnacle cluster. A maximum of

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

60 computational nodes were requested from the Pinnacle cluster.
Each of the nodes was equipped with 2 8-core Intel(R) Xeon(R)
Gold 6130 CPU @ 2.10GHz base speed, and a memory of 60 GB.
Python version 10.12, Hadoop 3, Spark 3 with pre-built Hadoop,
and Java 8 was installed on each computational node.

The dataset used for scalability testing includes the research
author’s affiliations dataset, geographic settlement dataset, and
three versions of the North Carolina voter’s dataset of sizes 3.5
million, 7million, and 203million. Table 7 shows the scalability and
clustering behavior of SparkDWM using these publicly available
ER benchmark datasets. The table includes the total reference
count per sample, the program iterations, the number of references
selected for reprocessing at each iteration step during the blocking
phase, the number of pairs linked during the similarity comparison
phase, the total clusters formed from each iteration, references
in the cluster, the number of good clusters formed, and the total
references in good clusters. SparkDWM iterates through the given
dataset until all clusters formed are good and no other references
are left during the blocking phase. At the end of each iteration,
all unprocessed references and bad clusters formed (if any) are
selected for reprocessing. For instance, in the first iteration of
geographic settlement dataset, the total number of references in
the formed clusters was 2,815; however, only 2,741 were good
references in the 773 good clusters, leaving 74 bad clusters as shown
in Table 7. The bad clusters were then merged with unprocessed
references, totaling 313 for reprocessing in the second iteration.
Similar scenarios apply to the affiliations and North Carolina
datasets. In the affiliation’s dataset, the 1st iteration had 2,260
references selected for reprocessing, the number of pairs linked was
6,530, total clusters formed was 222 with 1,668 references in those
clusters, and out of the 222 clusters forms, all of them were good
clusters as shown in Table 7. The number of references selected for
reprocessing in the 2nd ietartion was 592 and because there were
no linked pairs in that iteration, the SparkDWM hit an exit point
and stopped.

We also compare the linking and clustering performance
of SparkDWM with that of Famer. The result from the

TABLE 8 Comparison of linking and clustering performance between

SparkDWM and Famer.

Sample System Total linked
pairs

Total
clusters

Affiliations SparkDWM 26, 844 814

Famer 32, 816 330

Geographic Settlements SparkDWM 4, 502 1,073

Famer 4, 391 820

comparison is shown in Table 8. It can be observed from the
table that with the affiliation’s dataset, SparkDWM creates fewer
linked pairs given optimal starting linking parameters from the
PDP program compared with Famer. However, with similar
optimal linking parameters, SparkDWM was over-linked when
the Geographic Settlement file was processed, and in terms
of clustering, SparkDWM over-clusters compared to what was
recorded in Famer.

Table 9 shows the performance comparison of SparkDWM
and HadoopDWM using dataset sizes ranging from 3.5 million to
203 million references. Each computational node used for these
experiments has an 8-core CPU and 60 GB of memory. It is
observed from the experiment that for 3.5 million entity references,
the total job required five computational nodes, and SparkDWM
took a total of 9min to run. In contrast, it takes 36min to run the
same data in HadoopDWM. Similarly, for the 7 million references,
only 5 computational nodes were required, and it took SparkDWM
15min to run compared to 2 h in HadoopDWM. Again, for the
203 million references, 41 computational nodes and a total of 3 h
24min were required to run successfully compared to 7 h 33min in
HadoopDWM. The higher computational time in HadoopDWM
resulted from the reading and writing of data after each Mapper
and Reducer step. SparkDWM, using a memory-based execution
approach, achieves a better result than HadoopDWM in terms of
execution time, as shown in Table 9.

5 Conclusion and future work

The use of distributed computing technologies for data
processing has gained popularity since the advent of big data.
These big data processing frameworks permit larger datasets to be
partitioned into smaller chunks and processed in parallel. One of
the most popular and widely used big data processing frameworks
is Apache Spark. In this research, we introduced SparkDWM,
which capitalizes on the scalability, in-memory computing, and
highly distributed properties of PySpark to refactor a single-
threaded design of a Data Washing Machine. We solved the out-
of-memory problem of a DWM by using a single computer CPU
cores and memory and scaled up the machine to be able to process
larger datasets.

We tested the performance of SparkDWMwith 18 synthetically
generated name and address datasets and the results in Table 6
prove that SparkDWM gets similar results as the legacy DWM
given optimal starting parameters from the PDP system. The 18
samples used were of varying formats and layouts, including poor
quality, good quality, single layouts, and mixed layouts. The ER
metrics from the experiment show that the file with the lowest
reference count, S1G, has 50 references with precision, recall,

TABLE 9 Performance comparison of SparkDWM vs. HadoopDWM for larger datasets.

Sample name Ref. count Computational nodes HadoopDWM execution time SparkDWM execution time

NC-Voters-3.5 mil 3,500,840 5 36min 9 min

NC-Voters-7 mil 7,001,680 5 2 h 1min 15 min

NC-Voters-203 mil 203,048,721 41 7 h, 33min 3 h 24 min

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

and f-measure of 100%, respectively. On the other hand, the file
with the highest number of references, S6GeCo, has approximately
19,999 references with a precision of 96.06%, recall of 97.69%, and
f-measure of 96.87%.

SparkDWM was also compared with a previous system called
HadoopDWM using the same 18 sample files. The results show
that SparkDWMoutperforms the Hadoop-based DWM in terms of
execution time. It was observed that the higher computational time
in HadoopDWM was caused by the extensive reading and writing
of data to and from HDFS. Although Hadoop MapReduce is great
for batch processing, the I/O overhead remains one of the main
bottlenecks. PySpark stores intermediate RDD transformations
in memory until an RDD action is invoked. This makes data
processing in SparkDWM faster and more reliable than HDWM.

The scalability of SparkDWM was tested using a set of
publicly available ER datasets. We tested the system using a
dataset from a few thousand to 203 million references and
provided the system statistics in Tables 7, 9. In Table 9, we
showed the computational time of SparkDWM and HadoopDWM
given the same computational resources. For the 3.5 million
references, SparkDWM took 9min, whereas HadoopDWM took
36min. Similarly, for 203 million references, SparkDWM took
3 h 24min, whereas HadoopDWM took 7 h 33min. We also
compared the linking and clustering performance of SparkDWM
with another distributed ER system, Famer, and concluded that
SparkDWM over-clusters references given optimal parameters.
However, SparkDWM can form fewer links than Famer. The
number of linked pairs is easily improved if the linking threshold
“mu” is reduced or more references are selected for processing in
the blocking phase using “beta”. More often than not, having more
linked pairs does not guarantee good clusters. We, therefore, learn
that although Famer creates more linked pairs and fewer clusters,
SparkDWM can form more clusters even with fewer linked pairs.

Since the main goal of this research was to prove that all
the basic processes in the legacy DWM have been followed and
SparkDWM is able to process hundreds of millions of records, we
only compared our system’s performance with the legacy DWM
and Famer. In future research, we intend to perform a side-by-
side performance analysis of SparkDWM with other distributed
ER systems such as Dedoop and SparkER. This can be done by
combining different execution types such as tiny executors and
fat executors and comparing the linking, clustering, ER matrix
performance of all these systems. Using fat executors means
assigning all CPU cores on each computational node was assigned
to only 1 executor. This was as a result of a poor performance
observed when we utilized tiny executors where there is 1 CPU
core assigned per each executor on the cluster. On the other hand,
using tiny executorsmean assigning 1 CPU core per executor on the
cluster. Given the shortcomings in both configuration approaches,
we belief a combination of both configurations will produce a
better result.

Again, in future research, we plan to incorporate the
PDP system and SparkDWM, where the dataset will be read
once for both systems, and the determination of starting
parameters could be done simultaneously with SparkDWM
in operation. Currently, using PDP to obtain the optimal
starting parameters is a separate process from SparkDWM,

and the PDP has to be run before SparkDWM. This means
SparkDWM has to wait for PDP before processing data.
This wait time can be eliminated if the PDP system is
integrated into SparkDWM. This integration would help even
further reduce computational time and eliminate the wait time
for SparkDWM.

Lastly, in future research, we intend to improve the use of
the Matrix Comparator as the linking method for SparkDWM.
Although the Matrix Comparator was initially designed to handle
small datasets, it has proven to be only a temporal solution for
linking equivalent references in SparkDWM. Experiments even
depict that the linking time is much higher when using the Matrix
Comparator in SparkDWM compared to other data-intensive
phases of the system, such as Blocking. Redesigning the Matrix
Comparator will also improve linking performance of SparkDWM
in terms of computational time.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://dbs.uni-leipzig.de/research/projects/
object_matching/benchmark_datasets_for_entity_resolution.

Author contributions

NH: Data curation, Methodology, Software, Visualization,
Writing – original draft, Writing – review & editing. JT:
Conceptualization, Funding acquisition, Methodology, Resources,
Supervision, Validation, Writing – review & editing.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article. This
material was based upon work supported by the National Science
Foundation under Award No. OIA-1946391.

Acknowledgments

This work was conducted fully or in part on computational
resources at the Arkansas High Performance Computing Center.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Hagan and Talburt 10.3389/fdata.2024.1446071

their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Author disclaimer

Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References

Al Sarkhi, A., and Talburt, J. (2020). A scalable, hybrid entity resolution process for
unstandardized entity references. J. Comp. Sci. Colleg. 35, 19–29.

Al Sarkhi, A., and Talburt, J. R. (2019a). An analysis of the effect of stop words on
the performance of the matrix comparator for entity resolution. J. Comp. Sci. Colleg.
34, 64–71.

Al Sarkhi, A., and Talburt, J. R. (2019b). Estimating the parameters for linking
unstandardized references with the matrix comparator. J. Inform. Technol. Manag. 10,
12–26.

Anderson, K. E., Talburt, J. R., Hagan, K. A., Zimmerman, T., and Hagan,
D. (2023). “Optimal starting parameters for unsupervised data clustering and
cleaning in the data washing machine,” in Proceedings of the Future Technologies
Conference (FTC) 2023, Volume 2, ed. K. Arai (Cham: Springer Nature Switzerland),
106–125.

Pita, R., Pinto, C., Melo, P., Silva, M., Barreto, M., and Rasella, D. (2015). “A
spark-based workflow for probabilistic record linkage of healthcare data,” in Edbt/Icdt
Workshops, 17–26.

Christen, P. (2012). A survey of indexing techniques for scalable record
linkage and deduplication. IEEE Trans. Knowl. Data Eng. 24, 1537–1555.
doi: 10.1109/TKDE.2011.127

Dean, J., and Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Commun. ACM. 51, 107–113. doi: 10.1145/1327452.1327492

Gagliardelli, L., Simonini, G., Beneventano, D., and Bergamaschi, S. (2019).
“Sparker: scaling entity resolution in spark,” in Advances in Database Technology-
EDBT 2019, 22nd International Conference on Extending Database Technology,
Lisbon, Portugal, March 26-29, Proceedings, Vol. 2019, (Open Proceedings. Org),
602–605.

Hagan, N. K. A., Talburt, J., Anderson, K., and Hagan, D. (2024). A scalable
MapReduce-based design of an unsupervised entity resolution system. Front. Big Data
7:1296552. doi: 10.3389/fdata.2024.1296552

Kolb, L., Köpcke, H., Thor, A., and Rahm, E. (2011). “Learning-based entity
resolution with MapReduce,” in Proceedings of the Third International Workshop on
Cloud DataManagement (New York, NY: Association for ComputingMachinery), 1–6.

Kolb, L., Sehili, Z., and Rahm, E. (2014). Iterative computation of connected
graph components with MapReduce. Datenbank-Spektrum 14, 107–117.
doi: 10.1007/s13222-014-0154-1

Kolb, L., Thor, A., and Rahm, E. (2012). Dedoop: efficient deduplication with
Hadoop. Proc. VLDB Endowm. 5, 1878–1881. doi: 10.14778/2367502.2367527

Köpcke, H., Thor, A., and Rahm, E. (2010). Evaluation of entity resolution
approaches on real-world match problems. Proc. VLDB Endowm. 3, 484–493.
doi: 10.14778/1920841.1920904

Li, X., Talburt, J. R., and Li, T. (2018). “Scoring matrix for unstandardized data
in entity resolution,” in 2018 International Conference on Computational Science and
Computational Intelligence (CSCI) (IEEE), 1087–1092.

Nentwig, M., Groß, A., Möller, M., and Rahm, E. (2017). Distributed holistic
clustering on linked data’. arXiv. Available at: http://arxiv.org/abs/1708.09299
(accessed: January 20, 2024).

Obraczka, D., Saeedi, A., and Rahm, E. (2019). “Knowledge graph completion with
FAMER,” in Proc. DI2KG.

Papadakis, G., Alexious, G., Papastefanatos, G., and Koutrika, G. (2015).
Schema-agnostic vs schema-based configurations for blocking methods on
homogeneous data. Proc. VLDB Endowm. 9, 312–323. doi: 10.14778/2856318.
2856326

Papadakis, G., Skoutas, D., Thanos, E., and Palpanas, E. (2020). Blocking and
filtering techniques for entity resolution: a survey. ACM Comp. Surv. 53, 1–31.
doi: 10.1145/3377455

Saeedi, A., Peukert, E., and Rahm, E. (2017). “Comparative evaluation of distributed
clustering schemes for multi-source entity resolution,” in Advances in Databases
and Information Systems: 21st European Conference, ADBIS 2017 (Nicosia: Springer
International Publishing), 278–293.

Seidl, T., Boden, B., and Fries, S. (2012). “CC-MR - finding connected components
in huge graphs with MapReduce,” in Proceedings of the 2012th European Conference
on Machine Learning and Knowledge Discovery in Databases - Volume Part I. Berlin,
Heidelberg: Springer-Verlag (ECMLPKDD’12), 458–473.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). “The hadoop distributed
file system,” in 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST) (Incline Village, NV: IEEE), 1–10.

Simonini, G., Bergamaschi, S., and Jagadish, H. V. (2016). BLAST: a loosely
schema-aware meta-blocking approach for entity resolution. Proc. VLDB Endowm. 9,
1173–1184. doi: 10.14778/2994509.2994533

Simonini, G., Gagliardelli, L., Zhu, S., Bergamaschi, S. (2018). “Enhancing loosely
schema-aware entity resolution with user interaction,” in 2018 International Conference
on High Performance Computing & Simulation (HPCS) (Orleans: IEEE), 860–864.
doi: 10.1109/HPCS.2018.00138

Talburt, J., and Zhou, Y. (2013). “A practical guide to entity resolution
with OYSTER,” in Handbook of Data Quality: Research and Practice, 235–270.
doi: 10.1007/978-3-642-36257-6_11

Talburt, J. R., Al Sarkhi, A. K., Pullen, D., and Claassen, L. (2020). An iterative, self-
assessing entity resolution system: first steps toward a data washing machine. Int. J.
Adv. Comp. Sci. Appl. 11:12. doi: 10.14569/IJACSA.2020.0111279

Talburt, J. R., Ehrlinger, L., and Magruder, J. (2023). Editorial: automated
data curation and data governance automation. Front. Big Data 6:1148331.
doi: 10.3389/fdata.2023.1148331

Talburt, J. R., Pullen, D., and Penning, M. (2019). “Evaluating and improving data
fusion accuracy,” in Information Quality in Information Fusion and Decision Making,
eds. É. Bossé and G.L. Rogova (Cham: Springer International Publishing), 295–326.
doi: 10.1007/978-3-030-03643-0_14

Talburt, J. R., and Zhou, Y. (2015). Entity Information Life Cycle for Big Data:
Master Data Management and Information Integration. 1st edn. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

Talburt, J. R., Zhou, Y., and Shivaiah, S. Y. (2009). “SOG: a synthetic occupancy
generator to support entity resolution instruction and research,” in Proceedings of 14th
International Conference on Information Quality (ICIQ 2009), 91–105.

Vavilapalli, V. K., Murthy, A., Douglas, C., Agarwal, S., Konar, M., Evans, R., et al.
(2013). “Apache Hadoop YARN: yet another resource negotiator,” in Proceedings of the
4th Annual Symposium on Cloud Computing. SOCC ’13: ACM Symposium on Cloud
Computing (Santa Clara California: ACM), 1–16. doi: 10.1145/2523616.2523633

Wang, C., and Karimi, S. (2016). “Parallel duplicate detection in adverse drug
reaction databases with spark,” in EDBT, 551–562.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., et al.
(2012). “Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing,” in 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), 15–28.

Zaharia, M., Xin, R., Wendel, P., Das, T., Armbrust, M., Dave, A., et al. (2016).
Apache Spark: a unified engine for big data processing. Commun. ACM 59, 56–65.
doi: 10.1145/2934664

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2024.1446071
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.3389/fdata.2024.1296552
https://doi.org/10.1007/s13222-014-0154-1
https://doi.org/10.14778/2367502.2367527
https://doi.org/10.14778/1920841.1920904
http://arxiv.org/abs/1708.09299
https://doi.org/10.14778/2856318.2856326
https://doi.org/10.1145/3377455
https://doi.org/10.14778/2994509.2994533
https://doi.org/10.1109/HPCS.2018.00138
https://doi.org/10.1007/978-3-642-36257-6_11
https://doi.org/10.14569/IJACSA.2020.0111279
https://doi.org/10.3389/fdata.2023.1148331
https://doi.org/10.1007/978-3-030-03643-0_14
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2934664
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	SparkDWM: a scalable design of a Data Washing Machine using Apache Spark
	1 Introduction
	2 Related work
	2.1 Scalable solutions in ER
	2.2 Learning-based solutions in ER
	2.3 Apache spark-based solutions in ER
	2.4 Research gap

	3 Methodology
	3.1 Tokenization
	3.2 Frequency generation
	3.3 Reference reformation
	3.4 Blocking
	3.5 Similarity comparison
	3.6 Transitive closure
	3.7 Cluster evaluation
	3.8 ER matrix

	4 Experiment and results
	4.1 Dataset
	4.2 Sparkdwm vs. legacy DWM
	4.3 Comparative analysis of SparkDWM and HadoopDWM
	4.4 Scalability of SparkDWM

	5 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	References


