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Introduction: The ubiquity of digital devices, the infrastructure of today, and

the ever-increasing proliferation of digital products have dawned a new era, the

era of big data (BD). This era began when the volume, variety, and velocity of

data overwhelmed traditional systems that used to analyze and store that data.

This precipitated a new class of software systems, namely, BD systems. Whereas

BD systems provide a competitive advantage to businesses, many have failed to

harness the power of them. It has been estimated that only 20% of companies

have successfully implemented a BD project.

Methods: This study aims to facilitate BD system development by introducing

Cybermycelium, a domain-driven decentralized BD reference architecture (RA).

The artifact was developed following the guidelines of empirically grounded

RAs and evaluated through implementation in a real-world scenario using the

Architecture Tradeo� Analysis Method (ATAM).

Results: The evaluation revealed that Cybermycelium successfully addressed

key architectural qualities: performance (achieving <1,000 ms response times),

availability (through event brokers and circuit breaking), and modifiability

(enabling rapid service deployment and configuration). The prototype

demonstrated e�ective handling of data processing, scalability challenges,

and domain-specific requirements in a large-scale international company

setting.

Discussion: The results highlight important architectural trade-o�s between

event backbone implementation and service mesh design. While the domain-

driven distributed approach improved scalability and maintainability compared

to traditional monolithic architectures, it requires significant technical expertise

for implementation. This contribution advances the field by providing a validated

reference architecture that addresses the challenges of adopting BD in modern

enterprises.

KEYWORDS

big data reference architecture, big data architecture, big data systems, big

data software engineering, distributed systems, decentralized system, reference
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1 Introduction

The rapid advancement of digital technologies and the ubiquity of internet-connected

devices have ushered in an era of unprecedented data generation and connectivity. This

digital age is characterized by the explosive growth of data, often referred to as “Big

Data,” which has transformed the landscape of data processing and management. BD, with

its immense volume, variety, and velocity, holds the potential to revolutionize decision-

making processes, enhance operational efficiency, and drive innovation across various

domains (Ataei and Litchfield, 2020; Rad and Ataei, 2017).
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The value of BD lies in its ability to uncover hidden patterns,

correlations, and insights that can lead to data-driven strategies and

competitive advantages. Organizations that effectively harness the

power of BD can gain a deeper understanding of customer behavior,

optimize supply chain processes, improve risk management, and

identify new business opportunities (Popovič et al., 2018; Chen

et al., 2012; Ataei et al., 2024). However, despite the immense

potential of BD, many organizations struggle to successfully

integrate it into their existing structures and realize its full benefits.

One of the critical challenges in BD adoption is the

development of robust and scalable data architectures. Current RAs

often fall short in addressing the dynamic and complex nature

of BD, grappling with issues of scalability and efficiency as data

ecosystems continue to expand (Gorton and Klein, 2015; Nadal

et al., 2017). The monolithic nature of these architectures and their

lack of comprehensive support for cross-cutting concerns hinder

their ability to adapt to the ever-evolving BD landscape (Ataei and

Litchfield, 2023).

Recent surveys highlight the prevalence of these challenges in

BD implementation. A report by Databricks reveals that a mere

13% of organizations excel in their data strategy (Technology

Review Insights in Partnership With Databricks, 2021), while

NewVantage Partners finds that only 24% have successfully become

data-driven, with a mere 30% possessing a well-established BD

strategy (Partners, 2021). These findings are further corroborated

by reports from McKinsey and Company (Analytics, 2016) and

Gartner (Nash, 2015), underscoring the difficulties organizations

face in successfully integrating BD into their operations. Among

the challenges, data architecture, organizational culture, and lack of

talent are highlighted.

To address these challenges of data architecture and bridge

the gap between the potential of BD and its successful

implementation, this study introduces Cybermycelium, a domain-

driven, distributed RA for BD systems. Cybermycelium aims to

overcome the limitations of current RAs by incorporating domain-

driven design principles and distributed computing concepts

from contemporary software engineering (Ataei and Staegemann,

2023). By emphasizing scalability, maintainability, and adaptability,

Cybermycelium seeks to provide a flexible and resilient framework

for BD systems, enabling organizations to harness the full potential

of their data assets.

The proposed RA adopts a modular and decentralized

approach, allowing for the logical separation of data into domains

with clearly defined boundaries and event-driven communication.

This domain-driven architecture promotes loose coupling and

high cohesion, facilitating the development of scalable and

maintainable BD systems. By leveraging distributed computing

principles, Cybermycelium enables the efficient processing and

analysis of large-scale datasets across multiple nodes, ensuring

optimal resource utilization and performance.

2 Background

In this section, a brief discussion of what is known about BD

architectures is provided, articulating the research gap, problems

that need addressing, and the objective of this research.

2.1 Big data architectures: state of the art

The available body of knowledge and the knowledge from

practice highlight three generations of BD architectures;

1. Enterprise data warehouse: this is perhaps one of the oldest

approaches to business intelligence and data crunching and

existed even before the term “Big Data” was coined (Leonard,

2011). Usually developed as proprietary software, this data

architecture pivots on the enterprise data warehouse, extract,

transform, and load (ETL) jobs, and data visualization software

such as Microsoft Power Business Intelligence (BI). As the

data sources and consumers grow, this architecture suffers

from hard-to-maintain ETL jobs and visualizations that can

be created and understood by a certain group of stakeholders,

hindering the positive impact of data on business. This also

means that new transformations will take longer to be added to

the workload, the system is monolithic and hard to scale, and

only a few groups of hyper-specialized individuals are able to

operate the system (Ataei and Litchfield, 2022).

2. Data lake: to address the challenges that occurred in the first

generation of data architectures, a new BD ecosystem emerged.

This new ecosystem revolved around a data lake, in a way that

there are not as many transformations on the data initially, but

rather everything is dumped into the data lake and retrieved

when necessary. Although data lake architecture reached some

level of success in comparison with the first generation of

data architectures, it still falls short of being optimal. As data

consumers and data providers grow, data engineers will be

challenged to avoid creating a data swamp (Brackenbury et al.,

2018), and because there is usually no concept of data owner, the

whole stack is usually operated by a group of hyper-specialized

data engineers, creating silos and barriers for gradual adoption.

This also means various teams’ concerns will often go into data

engineer backlogs through an intermediary such as a business

analyst, and they will not be in control of how and when they

can consume the data they desire. Furthermore, data engineers

are usually oblivious to the semantics and value of the data

they are processing; they simply do not know how useful that

data are or which domain it belongs to. This will over time

decrease the quality of data processing, result in haphazard data

management, and make maintenance and data engineering a

complicated task (Ataei and Litchfield, 2023).

3. Cloud based solutions: given the cost and complexity of

running a data lake on-premise alongside the whole data

engineering pipeline and the substantial talent gap currently

faced in the market (Rada et al., 2017), the third generation

of BD architectures tends to revolve around as-a-service or

on-demand cloud-based solutions (Rad and Ataei, 2017).

This generation of architecture tends to lean toward stream

processing with architectures such as Kappa or Lambda (Lin,

2017), or frameworks that unify batch and stream processing

such as Apache Beam (Apache Beam, 2022) or Databricks

(Databricks, 2022). This is usually accompanied by cloud

storage such as Amazon S3 and streaming technologies such as

AmazonKinesis. Although this generation tends to solve various

issues regarding the complexity and cost of data handling and

digestion, it still suffers from the same fundamental architectural
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challenges. It does not have clear data domains; a group of

siloed, hyper-specialized data engineers are running them, and

data storage through a monolithic data pipeline soon becomes a

chokepoint (Ataei and Litchfield, 2020; Ataei and Staegemann,

2023).

To discuss the integral facets that embroil these architectures,

one must look at the characteristics of these architectures and the

ways in which they achieve their ends. Most of these architectures

and RAs use a monolithic data pipeline design with four key

components: data consumers, data processing, data infrastructure,

and data providers.

The process of turning data into actionable insights in these

architectures usually follows a similar lifecycle: (1) Data ingestion:

system beings to ingest data from all corners of the enterprise,

including transactional, operational, and external data; (2) Data

transformation: data captured from the previous step is then

cleansed for duplication and quality and potentially scrubbed

for privacy policies. These data then go through a multifaceted

enrichment process to facilitate data analysis, (3) Data serving:

at this stage, data are ready to be served to a diverse array of

needs, ranging from machine learning to marketing analytics,

business intelligence to product analysis, and customer journey

optimisation.

The lifecycle depicted is indeed a high-level abstract view of

prevalent BD systems. However, it highlights an important matter:

these systems are all operating underlying monolithic data pipeline

architecture that tends to account for all sorts of data in one

architectural construct. This means that data that logically belong

to different domains are now all lumped together and crunched in

one place, making maintainability and scalability a daunting task

(Dehghani, 2019).

While architectures in software engineering have gone through

a series of evolutions in the industry, adopting more decentralized

and distributed approaches such as microservices architecture,

event-driven architectures, reactive systems, and domain-driven

design (Alshuqayran et al., 2016), data engineering, and in specific,

BD ecosystems, do not seem to be adopting many of these

patterns. Evidence collected from the studies of Ataei and Litchfield

(2022) has proven that attention to decentralized BD systems,

metadata, and privacy is deficient. Therefore, the whole idea of

“monolithic data pipeline architecture with no clearly defined

domains and ownership” brings significant challenges to the design,

implementation, maintenance, and scaling of BD systems.

2.2 Why reference architecture?

To justify why RA has been chosen as the suitable artifact,

first it is necessary to clarify two assumptions: (1) Having a sound

software architecture is essential to the successful development and

maintenance of software systems (Len Bass, 2021). (2) There exists

a sufficient body of knowledge in the field of software architecture

to support the development of an effective RA (Ataei and Litchfield,

2020).

One of the focal tenets of software architecture is that every

system is developed to satisfy a business objective and that the

architecture of the system is a bridge between abstract business

goals and concrete final solutions (Len Bass, 2021). While the

journey of BD can be quite challenging, the good news is that

a software RA can be designed, analyzed, and documented,

incorporating best practices, known techniques, and patterns that

will support the achievement of business goals. In this way, the

complexity can be absorbed and made tractable.

Practitioners of complex systems, software engineers, and

system designers have been frequently using RAs to have a

collective understanding of system components, functionalities,

data flows, and patterns that shape the overall qualities of the system

and help further adjust it to the business objectives (Cloutier et al.,

2010; Kohler and Specht, 2019).

A RA is an amalgamation of architectural patterns, standards,

and software engineering techniques that bridge the problem

domain to a class of solutions. This artifact can be partially or

completely instantiated and prototyped in a particular business

context together with other supporting artifacts to enable its use.

RAs are often created from previous RAs (Ataei and Litchfield,

2020). Based on the premises discussed and taking all of them

into consideration, RAs can facilitate the issues of BD architecture

and data engineering because they promote adherence to best

practices, they can capture cross-cutting concerns, they can serve as

organizational memory around design decisions, and they can act

as a blueprint in the portfolio of data engineers and data architects.

3 Related work

The application of RAs to address challenges in data

architecture is well-established, with notable contributions from

both governmental agencies (e.g., NIST’s BD RA (NBDRA) (Chang

and Boyd, 2018)] and industry leaders [e.g., IBM (Quintero and

Lee, 2019) and Microsoft (Levin, 2013)]. Conceptual RAs have

also been proposed (Maier et al., 2013; Suthakar, 2017; Chang

and Mishra, 2015), and numerous domain-specific RAs have been

developed, spanning fields such as national security (Klein et al.,

2016) and the Internet of Things (IoT) (Weyrich and Ebert, 2015).

However, while some RAs, such as the NBDRA, are

comprehensive, most are published as brief papers or white papers

lacking in detail. In addition, while efforts such as Neomycelia

(Ataei and Litchfield, 2021) and Phi (Maamouri et al., 2021) explore

microservice architecture for BD systems, the majority of existing

RAs remain monolithic and centralized (Ataei and Litchfield,

2022).

This research extends current work by addressing these

limitations through a novel domain-driven distributed architecture

for BD systems. This approach emphasizes the logical separation

of data into domains via event-driven communication with clearly

defined boundaries (Ataei and Litchfield, 2021).

4 Research methodology

The researchmethodology of this study ismade up of twomajor

phases. First, the body of knowledge in academia and industry

is explored to identify architecturally significant requirements

(ASR) for BD systems, and second, the chosen methodology for

developing the artifact is delineated.
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4.1 Requirement specification

Architecture aims to produce systems that address specific

requirements, and one cannot succeed in designing a successful

architecture if requirements are unknown (Len Bass, 2021).

Therefore, in this section, the software and system requirements

necessary for the development of Cybermycelium are defined. The

aim is to present three integral pieces of information: (1) type of

requirements; (2) approach for categorization of requirements; and

(3) method for presentation of the requirements.

4.1.1 Type of requirements
System and software requirements vary in complexity, from

simple sketches to formal specifications. Existing classifications of

software requirements were reviewed to establish the most suitable

type for this study.

In reviewing classifications of software requirements, we

considered multiple approaches. Sommerville (Sommerville,

2011) categorizes requirements into user requirements, system

requirements, and design specifications. While this classification

is widely recognized, we ultimately chose to follow Laplante’s

framework (Laplante, 2017), which divides requirements into

functional, non-functional, and domain categories. Laplante’s

approach was deemed more suitable for our study due to its

alignment with our research objectives and its clear distinction

between functional and non-functional aspects of the system.

The requirements for Cybermycelium focussed on both

functional aspects of BD processing and non-functional qualities

such as scalability, modifiability, and performance. While domain-

specific requirements were considered, the study aimed to develop a

general-purpose BD architecture applicable across various sectors.

4.1.2 Categorizing requirements
The categorization process for Cybermycelium requirements

incorporated amethodical approach, primarily employing the well-

recognized 5Vs model of velocity, veracity, volume, variety, and

value (Bughin, 2016; Rad and Ataei, 2017). This model, pertinent

to BD characteristics, was adapted to align with the specific needs

and context of this study. In addition, Security and Privacy (SaP)

were added as they are important cross-cutting concerns. The

methodology employed facilitated a focussed categorization of

requirements, which was central to the development of the RA.

4.1.3 Present requirements
Upon determining the type and category of requirements,

a rigorous approach to presenting these requirements was

sought. Various methods are used in software and system

requirement representation, including informal, semiformal, and

formal methods. For the purposes of this study, the informal

method was chosen. This method is well-established in both

industry and academia (Kassab et al., 2014). Moreover, this

approach adheres to the guidelines outlined in the ISO/IEC/IEEE

standard 29148 (ISO/IEC/IEEE 29148:2018, 2018) for representing

functional requirements and draws inspiration from the Software

Engineering Body of Knowledge (Abran et al., 2004).

4.2 The artifact development methodology

This research followed a systematic approach in the

development of the RA, drawing upon existing methodologies and

adapting them to the specific needs of this study. The foundation

of this approach was laid by synthesizing key elements from

various established RA development methodologies. Notable

contributions from Cloutier et al. (2010), Bayer et al. (2004),

and Stricker et al. (2010a) were instrumental in forming the

basis of the methodology. Each of these studies offered unique

perspectives, ranging from contemporary information collection

to pattern-based approaches, all contributing to a comprehensive

understanding of RA development.

The methodology was further refined by incorporating

insights from Galster and Avgeriou (2011) and Nakagawa et al.

(2014), who provided a framework for empirically grounded RA

development and detailed guidance on RA evaluation. Galster and

Avgeriou (2011) have been used as the main artifact development

methodology, with the addition of SLRs in the “empirical data

acquisition” phase and the Architecture Tradeoff Analyis Method

(ATAM) for evaluating the artifact.

Consequently, the methodology adopted for this research was

structured into six distinct phases: (1) decision on the type of RA;

(2) design strategy; (3) empirical data acquisition; (4) construction

of the RA; (5) enabling RA with variability; and (6) RA evaluation.

4.2.1 Step 1: decision on type of the RA
The initial phase in developing the RA involved selecting its

type based on the classification framework by Angelov et al. (2009),

which categorizes RAs into two main groups: standardization RAs

and facilitation RAs. This decision is foundational, guiding the

subsequent phases of information collection and RA construction.

The classification framework, based on dimensions of context,

goals, and design, was instrumental in identifying the RA type

most aligned with the study’s objectives. It employs a structured

approach using key interrogatives: “When,” “Where,” “Who” for

context, “Why” for goals, and “How” and “What” for design.

The chosen RA for this study is a domain-driven distributed

BD RA, aiming to support BD system development and promote an

effective, scalable data architecture. Therefore, the type is deducted

as a standardization RA designed for adaptability across multiple

organizational contexts.

4.2.2 Step 2: selection of design strategy
The design strategy for the RAwas informed by the frameworks

presented by Angelov et al. (2008) and Galster and Avgeriou

(2011), which outline two primary approaches: practice-driven

(designing RAs from scratch) and research-driven (basing RAs on

existing ones). While practice-driven RAs are less common and

typically found in nascent domains, research-driven RAs, which

amalgamate existing architectures, models, and best practices, are

more prevalent in established fields.

Considering these perspectives, this study opts for a research-

driven approach. The RA developed leverages existing RAs,

concrete architectures, and established best practices. This

approach enables the creation of a descriptive design theory that
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integrates and builds upon the current body of knowledge in the

field.

4.2.3 Step 3: empirical acquisition of data
Due to the limitations witnessed by the research method

“empirically grounded reference architectures,” specifically the lack

of clear guidance on empirical acquisition of data, this phase is

augmented by using a SLR on BD RAs presented by Ataei and

Litchfield (2022). This SLR is recent and captures the body of

knowledge on current RAs in academia and industry.

The findings from this SLR shed light on common components

of BD RAs, the limitations of current BD RAs, and various patterns

of developing BD RAs.

4.2.4 Step 4: construction of the RA
The construction phase of the RA was informed by the insights

and components identified in the studies of Ataei and Litchfield

(2022). Moreover, utilizing the ISO/IEC/IEEE 42010 standard

(International Organization for Standardization , ISO/IEC) as a

foundational guideline, the construction phase was characterized

by a selective integration of components.

A key aspect of this phase was the adoption of the

Archimate modeling language (Lankhorst, 2013), a component

of the ISO/IEC/IEEE 42010 standard. Archimate’s service-

oriented approach effectively linked the application, business, and

technology layers of the RA. This approach is aligned with the

concepts proposed by Cloutier et al. (2010) and Stricker et al.

(2010b), allowing for a comprehensive understanding of the RA

and ensuring its alignment with the study’s objectives and context.

4.2.5 Step 5: enabling RA with variability
The integration of variability into the RA is a pivotal aspect,

enabling it to adapt to specific organizational regulations and

regional policy constraints (Rurua et al., 2019). This adaptability

is essential for ensuring the RA’s applicability across diverse

implementation scenarios.

Variability management is a concept adapted from Business

Process Management (BPM) and Software Product Line

Engineering (SPLE), fields where managing variations in processes

and software artifacts is critical (La Rosa et al., 2009; Rosemann

and Van der Aalst, 2007; Hallerbach et al., 2010).

For the RA developed in this study, the mechanism to

incorporate variability draws inspiration from the studies of Galster

and Avgeriou (2011) and Rurua et al. (2019). This is achieved

through the use of Archimate annotations, a method that allows

for clear delineation of variability aspects within the RA.

4.2.6 Step 6: evaluation of the RA
The evaluation of the RA is crucial to ensuring it meets

its developmental goals, particularly regarding effectiveness and

usability (Galster and Avgeriou, 2011). Evaluating an RA involves

unique challenges due to its higher abstraction level, diverse

stakeholder groups, and focus on architectural qualities (Angelov

and Grefen, 2008; Cioroaica et al., 2019; Maier et al., 2013).

Standard ways to evaluate concrete architectures, such as

SAAM (Kazman et al., 1994), ALMA (Bengtsson et al., 2004),

PASA (Williams and Smith, 2002), and ATAM (Kazman et al.,

1998), cannot be directly used for RAs because they need specific

stakeholder involvement and scenario-based evaluation, which

is hard to do for abstract RAs. This necessitates a customized

approach for RA evaluation.

This study adopts a modified evaluation approach, drawing

on methodologies adapted for RAs by Angelov et al. (2008) and

the extended SAAM approach by Graaf et al. (2005). The process

involves creating a prototype of the RA in an actual organizational

context, followed by evaluation using ATAM, focussing on aspects

such as completeness, buildability, and applicability within the

specific context.

This dual approach of theoretical exploration and practical

implementation ensures a comprehensive evaluation of the RA. It

facilitates understanding the RA’s strengths and improvement areas,

contributing to its refinement, and enhancing its applicability in

various organizational settings (Sharpe et al., 2019; Rohling et al.,

2019; Nakagawa et al., 2009).

5 Cybermycelium architecture: design
and components

This section is composed of the following integral elements:

software requirements, design theories, the artifact, and a

decision-making aid. First, the requirements that underpin

the development of the artifact are explored. Second, the

design theories that guide the creation of the artifact are

discussed. Finally, the artifact is presented, and its components

are described.

5.1 Software and system requirements of
cybermycelium

As a result of the processes conducted in Section 4.1, a set of

requirements for the development of Cybermycelium is identified.

These requirements are presented in terms of BD characteristics

in Table 1.

5.2 The theory

There are various design and kernel theories employed to justify

our artifact and the decisions made. These theories are described in

the following sub-sections.

5.2.1 A paradigm shift: a distributed
domain-driven architecture

Based on the premises discussed in the studies of Ataei

and Litchfield (2022), one can infer that the idea of monolithic

and centralized data pipelines that are highly coupled and

operated by silos of hyper-specialized BD engineers has limitations

and can bring organizations into a bottleneck. Therefore, this
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TABLE 1 Terramycelium software and system requirements.

Category Code Requirements

Volume Vol-1 Support asynchronous, streaming, and batch processing for data collection from various sources

Vol-2 Provide scalable storage for massive data sets

Velocity Vel-1 Support slow, bursty, and high-throughput data transmission between data sources.

Vel-2 Stream data to consumers in a timely manner

Vel-3 Ingest multiple, continuous, time-varying data streams

Vel-4 Support fast search from streaming and processed data with high accuracy and relevancy.

Vel-5 Process data in real-time or near real-time

Variety Var-1 Support various data formats: structured, semi-structured, and unstructured

Var-2 Support aggregation, standardization, and normalization of data from disparate sources

Var-3 Support adaptation mechanisms for schema evolution

Var-4 Provide mechanisms to automatically include new data sources

Value Val-1 Handle compute-intensive analytical processing and machine learning techniques

Val-2 Support batch and streaming analytical processing

Val-3 Support different output file formats for different purposes

Val-4 Support streaming results to consumers

SaP SaP-1 Protect and retain the privacy and security of sensitive data

SaP-2 Access control with multi-level, policy-driven authentication on protected data and nodes

Veracity Ver-1 Support data quality curation: classification, pre-processing, format reduction, and transformation

Ver-2 Support data provenance: data life cycle management and long-term preservation

study explores a domain-driven distributed and decentralized

architecture for BD systems and posits that this architecture

can address some of the challenges discussed. This idea is

inspired by the advancements in software engineering architecture,

specifically event-driven microservices architecture (Bellemare,

2020), domain-driven design (Evans and Evans, 2004), and reactive

systems (Aceto et al., 2007).

Data usually come in two different flavors: (1) operational

data: which serve the needs of an application, facilitate logic,

and can include transactional data; and (2) analytical data:

which usually have a temporality to it and are aggregated

to provide insights. These two different flavors, despite being

related, have different characteristics, and trying to lump them

together may result in a morass. To this end, Cybermycelium

realizes the varying nature between these two planes and

respects the difference. Cybermycelium aims to transfigure current

architectural approaches by proposing an inversion of control and a

topology based on product domains and not technology (Dehghani,

2020). The proposition is that handling two different archetypes of

data should not necessarily result in siloed teams, heavy backlogs,

and a coupled implementation.

To further elucidate on this matter, we take the example of

the microservices architecture. As the industry sailed away from

monolithic n-tier architectures into service-oriented architecture

(SOA), organizations faced a lot of challenges. One prevalent

issue was around the maintenance of the Enterprise Service Bus

(ESB) or SOA bus, which is the locus of aggregation. While the

aggregation layer could be written very thinly, the reality is that

the transformation of XML and logical operations started to bloat

the SOA bus. This added a new level of coupling between internal

and external elements of the system as a whole (Di Francesco, 2017;

Zimmermann, 2017; Waseem et al., 2020).

Microservice architecture, being the evolution of SOA, moved

away from smart pipelines into dumb pipelines and smart services,

removing the need for the locus of aggregation and control.

Moreover, there was no business logic written in the pipelines, and

each service was segregated, usually with the help of domain-driven

design. Whereas microservices architecture still has its challenges,

the gradations of software architectures in the software engineering

industry can be analogous to the data engineering domain. One can

perceive the pipeline architecture and its coupling nature as similar

to SOA and its practice of writing business logic in the SOA bus to

connect the services.

Based on the premises discussed and overcoming the

limitations, the following underpinning principles for

Cybermycelium are posited: (1) distributed domain-driven

services with a bounded context; (2) data as a service; (3) data

infrastructure automation; (4) governance through a federation

service; (5) event-driven services.

5.2.2 Distributed domain-driven services with
bounded context

Integral to Cybermycelium is the distribution and

decentralization of services into domains that have clear bounded

context. Perhaps one of the most challenging things one might face

when it comes to architecting a distributed system is: based on

what architectural quanta should we break down the system? This
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issue has been repeatedly discussed, for example, among adopters

of microservices architecture. Cybermycelium, inspired by the

concept of domain-drive design, tends to store data close to the

product domain that relates to it. This implies that data inhere in

the product domain and as a facet of it (Laigner et al., 2021).

This is mainly driven by the fact that most organizations today

are decomposed based on their products. These products are the

capabilities of the business and are segregated into various domains.

Domain’s bounded context is operated by various teams with

different visions and concerns; incorporating data into a bounded

context can result in a synergy that can improve the management

of evolution and continuous change. This can be micro, such as

application developers communicating with data engineers about

collecting user data in nested data structures or in flat ones, or

macro, such as application developers thinking about redesigning

their GraphQL schema in an intermediary layer that may affect the

data engineers ingestion services.

The concept of domain-driven design is incorporated into this

study to facilitate communication and increase the adoption, rigor,

and relevance of the RA. Communication is a key component of

any software development endeavor (Sudhakar, 2012), and without

it, essential knowledge sharing can be compromised. Often, data

engineers and business stakeholders have no direct interaction

with one another. Instead, domain knowledge is translated through

intermediaries such as business analysts or project managers to a

series of tasks to be done (Khononov, 2021). This implies at least

two translations from two different ontologies.

In each translation, information is lost, which is essential

domain knowledge, and this implies risk to the overall data

quality. In such a data engineering process, the requirements often

get distorted, and the data engineer has no awareness of the

actual business domain or the problem being addressed. Often

times, problems being solved through data engineering are not

simple mathematical problems or riddles but rather have broader

scopes. An organization may decide to optimize workflows and

processes through continuous data-driven decision-making, and a

data architecture that is overly centralized and not flexible can risk

project failure.

To address this challenge, domain-driven design proposes a

better approach to conveying knowledge from domain experts to

data engineers. In domain-driven design, instead of intermediary

translations, business domains are projected into actual data

engineering, emphasizing the creation of one shared terminology,

which is the “ubiquitous language.” This study does not aim

to explore all facets of domain-driven design, but it is worth

mentioning that each business has its own domain and constituent

core, generic, and supporting sub-domains, and this varies from

context to context.

5.2.3 Data as a service
Data can be conceived as the fourth dimension of a product,

next to UI/UX, business, and application. Each domain provides

its data as a service. These data consist of both operational and

analytical data. This also implies that any friction and coupling

between data are removed. For instance, the “invoice” domain

will provide transactional data about the number of invoices

and total of discounts, along with analytical data such as which

practices have created what number of invoices in what period

of time.

However, this data-as-a-service model should be carefully

implemented to account for explorability, discoverability, security,

and quality. The data provided as a service should have the identical

qualities as customer-facing products. This also implies that a

product owner should now treat the data facet as an aspect of

the product and employ objective measures that assure the desired

quality. These measures can include net promoter scores from data

consumers, data provenance, and decreased lead time. Product

owners, in addition to the application and design aspects of the

product, must now incorporate this new facet and try to understand

the needs of data consumers, how they consume the data, and what

the common tools and technologies are to consume the data. This

knowledge can help shape better interfaces for the product.

Product domains may also need to ingest data from upstream

domains, and this requires the definition of clear interfaces.

Furthermore, each domain should also account for metadata.

Metadata is derived from the nature of the product and its data

lifecycle. Data can be ingested and served in various forms, such

as tables, graphs, JSON, Parquet, events, and many more, but in

order for the data to be useful for analytical purposes, there is a

need to associate the data with its corresponding metadata that

encompasses semantics and history.

5.2.4 Data infrastructure automation
As the number of product domains increases, the effort

required to build, deploy, execute, and monitor services increases.

This includes the data pipelines required for that product domain

to carry out its functions. The platform skills required for this

kind of study are usually found in Devops engineers and site

reliability engineers. Application developers and data engineers are

usually not adept at carrying out such workloads in an efficient

manner. For this reason, there is a need for highly abstract, reusable

infrastructural components that can be easily utilized. This implies

that teams should be equipped with the required infrastructure as a

service that can be easily employed to account for BD needs.

One way to provision such infrastructure as a service is to utilize

Infrastructure as a Code (IaaS) software tools such as Terraform

(Hashicorp, 2022) and follow the principles of GitOps. In addition,

data infrastructuremay be extended based on the currently running

infrastructure for application payloads. However, this might be

challenging as the BD ecosystem is growing rapidly. While a

software application might be running on an EC2 worker node

in an EKS cluster on Amazon, the BD system may be running

on a Databricks cluster or using a customer data platform (CDP)

solution such as Segment (Segment, 2022).

Nevertheless, this should not be a daunting task, as one can

simply extend the EKS configs and add a new pod to the network,

which instals Databricks through a Helm Chart (Helm, 2022). In

addition, the data infrastructure should be accompanied by proper

tooling.

A mature infrastructure as a service should provide the team

with core infrastructures such as BD storage, stream processing

services, batch processing services, event backbones, message
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queues, and data integration technologies. Composing data and

application infrastructure together provides a coherent, cost-

efficient, and interoperable infrastructure.

5.2.5 Governance through a federation service
The other principle of Cybermycelium is global governance,

or the global standardization of services. This principle is perhaps

a lesson learnt from the studied application of microservices

architecture in the industry (Alshuqayran et al., 2016). Distributed

architectures are made up of independent collections of nodes with

distinct lifecycles that are deployed separately and are owned by

various teams. As the number of these services grows and the

interconnections increase, the challenge of maintaining and scaling

the system increases. This means services need to interoperate,

ingest data from other services, perform graph or set operations in

a timely manner, and do stream processing.

To scale and maintain these independently deployed yet

interconnected services, Cybermycelium needs a governancemodel

that embraces domain autonomy, decentralization, automation,

Devops, and interoperability through federated government. This

requires a shift in thinking, which obsoletes many prevalent

assumptions about software and data engineering. The point of

federation is not to suppress or kill the creativity and innovation

of the teams but rather to introduce global contracts and

standards that are in line with the company’s resources and

vision. Nevertheless, finding equilibrium between the right amount

of centralisation and decentralization presents a challenge. For

instance, semantic-related metadata can be left to the product

domain to decide, whereas policies and standards for metadata

collection should be global. This is somewhat analogous to

architectural principles in TOGAF’s ADM (Josey, 2016).

The definition of these standards is up to the architecture, or

architectural governance group, and is usually achieved through

service level objectives (SLOs) or well-defined contracts and

standards.

5.2.6 Event-driven services
Cybermycelium has been designed in a decentralized and

distributed manner. Despite the advantages of decentralized

systems in terms of maintenance and scalability, communication

between the services remains a challenge Ataei and Staegemann

(2023). As the number of services grows, the number of

communication channels increases, and this soon turns into a

nexus of interconnected services that each try to meet its own

end. Each service will need to learn about the other services,

their interfaces, and how the messages will be processed. This

increases the coupling between services and makes maintenance a

challenging task. It is argued that this should not be the aim of a

distributed RA such as Cybermycelium.

One approach to alleviating these issues is asynchronous

communication between services through events. This is a different

paradigm from a typical REST style of communication. A point-

to-point communication occurs between services as a series of

“commands,” like getting or updating certain resources, whereas

event-driven communication happens as a series of events. This

implies that instead of service A commanding service B for certain

computations, service B reacts to a change of state through an event

without needing to know about service A.

This provides a dispatch and forget kind of model in which a

service is only responsible for dispatching an event to a topic of

interest for the desired computation. In this way, the service does

not need to wait for the response and see what happens after the

event is dispatched and is only responsible for dispatching events

through a well-defined contract. Underlying this paradigm, services

do not need to know about each other, but rather they need to know

what topic they are interested in.

This is analogous to a restaurant, where instead of a waiter

needing to communicate directly with another waiter, the chef,

and the cook, they all react to certain events, such as customers

coming in or an order slip being left on the counter. The subtlety

lies in the underlying paradigm and philosophy of event instead

of command. This paradigm solves many issues of communication

in distributed BD systems, such as long running blocking tasks,

throughput, maintenance, scale, and the ripple effect of service

failure.

In Cybermycelium, eventual consistency (BASE) is preferred

over ACID transactions for performance and scalability reasons

(Xie et al., 2014). The details of these two varying kinds of

transactions are outside the scope of this study.

5.3 The artifact

After having discussed many kernel and design theories,

the necessary theoretical foundation is created for the design

and development of the artifact. Cybermycelium is created with

Archimate and displays the RA mostly in the technology layer.

Displaying these services in the technology layer means that it is

up to the designer to decide what flow and application should exist

at each node. For the sake of completion, and as every piece of

software is designed to account for a business need, a very simple

BD business process is assumed. While this business layer could

vary in different contexts, Cybermycelium should be able to have

the elasticity required to account for various business models. This

artifact is delineated in Figure 2. To ease understanding of the RA,

the product domain is sub-diagrammed in Figure 1.

5.3.1 Implementation guide
A series of template scripts and configurations for system

instantiation are hosted in an external repository, providing access

to the most recent versions. These materials encompass common

setup scenarios and infrastructure for components within the

Cybermycelium architecture. This repo aims to provide a skeleton

of the project and some of its major components. The developer or

the architect can choose to change Docker images, choose different

Helm charts, and deploy new OLAP or OLTP systems. This repo

can serve as a starter example and is available at Ataei (2023).

5.3.2 Components
Cybermycelium is made up of eight main components

and seven variable components, as depicted in Figure 2. For

simplicity, sub-components are counted as just components.
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FIGURE 1

Cybermycelium product domain design.

For example, Global Policies component is a sub-component of

Standards and Policies component, but it is counted as one non-

variable component. To help with transparency, recreatability,

and generalisability, explanations of some components are

accompanied by an implementation guide and variable component

guidance.

These elements are the following:

1. Ingress service: the ingress service is responsible for exposing the

necessary port and endpoint for the data to flow to the system.

Depending on the nature of the request, the ingress service will

load balance to either a batch processing controller or a stream

processing controller. It is essential for the ingress service to

operate asynchronously to avoid any potential choke points. In

addition, ingress handles the SSL termination and potentially

name-based virtual hosting. Ingress has several benefits. First,

it helps with security by preventing port proliferation and

direct access to services. Second, it helps with performance by

distributing requests based on their nature and SSL termination.

Third, if there is a need for object mutation through a proxy,

ingress is the best architectural construct. Having an ingress also

means that the point of entry is clear, which makes monitoring

easier and allows for other components of the architecture

to remain in private networks. This component addresses the

requirements Vol-1, Vol-2, Var-1, Var-3, Var-4, Val-1, Val-3,

Val-4, SaP-1, and SaP-2.

Implementation guide: for high data throughput or handling

sensitive data, it is recommended to employ robust security

measures such as SSL/TLS encryption for data in transit, firewall

configurations, and rate limiting to protect against distributed

denial-of-service (DDoS) attacks. Configuration should adhere

to industry best practices for network security and data

protection. In smaller-scale implementations or environments

with lower security risks, a simplified ingress setup may suffice.

This entails configuring the necessary ports and endpoints

with appropriate network policies and employing basic SSL

termination. Monitoring and logging should be enabled to track

ingress service performance and security incidents. A simple

and advanced example of an ingress for Kubernetes can be

found in the templates folder at Ataei (2023). The configurations

provided in the repository are only for educational purposes and

are not production ready.

2. Batch processing controller: the batch processing controller

is responsible for dispatching batch events to the event

backbone. This service should be a small one (it could

be a Lambda) with the main responsibility of receiving a

request for batch processing and dispatching an event to

the event broker. Because the nature of the request is of

type batch and has been clearly distinguished by the ingress,

the batch processing controller can dispatch events in bulk

and asynchronously. This is the main difference between this

service and a stream processing controller. The batch processing

controller can execute other non-compute-intensive tasks, such

as scrubbing properties from the given data or adding headers.

Having a specific controller for batch processing improves

monitoring and allows for customized batch event production.

This component addresses the requirements for Vel-1, Val-1,

and Val-2.
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FIGURE 2

Cybermycelium Big Data Reference Architecture.

Implementation considerations for batch processing

controller: when implementing the batch processing controller,

scalability is a primary concern. The service should scale

to handle varying volumes of data, possibly through

containerisation strategies or serverless architectures such

as AWS Lambda. Error handling and retry mechanisms are

crucial to managing failed batch jobs effectively. Integrating

comprehensive monitoring and alerting is essential to tracking

job status, performance metrics, and system health. Maintaining

data consistency and integrity throughout the processing

lifecycle is imperative for ensuring reliable operations.

3. Stream processing controller: the stream processing controller

is responsible for dispatching streaming events to the event

backbone through the event broker. This service has been

segregated from the batch service as it has to account for a

different nature of events. Streams are synchronous in nature

and can require high throughput. This service is a small one

as well, but non-heavy computations such as enabling stream

provenance and one-pass algorithms can be utilized. Having

a specific controller for stream processing means that custom

attributes can be associated with stream events, and the events

can potentially be treated differently based on the nature of

the system. This also eases monitoring and discovery. This

component addresses the requirements Vol-1, Vel-1, Vel-2,

Vel-4, Vel-5, and Val-2.

Implementation considerations for stream processing

controller: the batch processing controller is vital for

handling large, non-time-sensitive data volumes. However,

in environments where real-time or near-real-time data

processing is paramount, the emphasis might shift toward

stream processing controllers. These controllers are optimized

for handling continuous data streams, providing timely insights

and responses, and are particularly beneficial in scenarios

such as real-time analytics, online transaction processing, or

monitoring systems.

For environments dominated by real-time data needs,

transitioning to stream processing involves utilizing

technologies like Apache Kafka or Amazon Kinesis, designed

for high-throughput, low-latency processing. Sometimes,

combining micro-batching with stream processing can balance

the need for real-time processing with the efficiencies of

batch processing. Effective state management is critical across

distributed components in real-time processing systems.

Optimizing the entire pipeline for low latency, from data

ingestion to processing and eventual action or storage, is

essential.

Whether opting for batch or stream processing or a hybrid

approach, the architecture should align with the specific data,

latency, and processing requirements of the application or

system. The decision should consider the balance between

immediate data handling needs and the efficiencies of batch

operations, ensuring that the system is both responsive and

efficient.

4. Event broker: event brokers are designed to achieve “inversion

of control.” As the company evolves and requirements emerge,

the number of nodes or services increases, new regions of

operations may be added, and new events might need to be

dispatched. As each service has to communicate with the rest

through the event backbone, each service will be required to

implement its own event handling module. This can easily turn

into a spaghetti of incompatible implementations by various

teams and can even cause bugs and unexpected behaviors. To

overcome this challenge, an event broker is introduced to each

service of the architecture. Each service connects to its local
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event broker and publishes and subscribes to events through

that broker. One of the key success criteria of the event broker

is a unified interface that sits at the right level of abstraction to

account for all services in the architecture. Event brokers, being

environmentally agnostic, can be deployed on any on-premise,

private, or public infrastructure. This frees up engineers from

having to think about the event interface they have to implement

and how it should behave. Event brokers can also account for

more dynamism by learning which events should be routed to

which consumer applications. Moreover, event brokers do also

implement circuit breaking, which means if the service they

have to broke to is not available and does not respond for a

certain amount of time, the broker establishes the unavailability

of the service to the rest of the services, so no further requests

come through. This is essential to preventing a ripple effect over

the whole system if one system fails. This component indirectly

addresses the requirements: Val-1, and Ver-1.

5. Event backbone: this is the heart of the Cybermycelium,

facilitating communication among all the nodes. The event

backbone in itself should be distributed and ideally clustered

to account for the ever-increasing scale of the system.

Communication occurs as choreographed events from services

analogous to a dance troupe. In a dance troupe, the members

respond to the rhythm of themusic bymoving according to their

specific roles. Here, each service (dancer) listens and reacts to

the event backbone (music) and takes the required action. This

means services are only responsible for dispatching events in a

‘dispatch and forget’ model and subscribe to the topics that are

necessary to achieve their ends. The event backbone thus ensures

a continuous flow of data among services so that all systems

are in the correct state at all times. The event backbone can

be used to mix several streams of events, cache events, archive

events, and other manipulations of events, so long as it is not

too smart or does not become an ESB of SOA architectures.

Ideally, an architect should perceive the event backbone as a

series of coherent nodes that aim to handle various topics of

interest. Over time, the event backbone can be monitored for

access patterns and tuned to facilitate communication in an

efficient manner. This component addresses the requirements

Vel-1, Vel-2, Vel-3, Vel-4, Vel-5, Val-1, Val-2, Ver-1, Ver-2, and

Ver-3.

Implementation considerations for event backbone: when

implementing the event backbone, scalability and fault tolerance

are paramount. The backbone should be designed to handle

high-throughput event streams with low latency. Consider

using a distributed streaming platform such as Apache

Kafka or Apache Pulsar, which provide strong durability

guarantees and support for exactly-once processing semantics.

Implement a partitioning strategy that allows for parallel

processing and ensures event ordering within partitions. State

management is crucial; use a robust state backend (like

RocksDB) to handle large state sizes and enable efficient

checkpointing for fault tolerance. Implement backpressure

mechanisms to handle scenarios where event production

outpaces consumption. Careful configuration of event time and

watermarks is essential for handling out-of-order events and late

data accurately.

6. Egress service: the egress service is responsible for providing

the necessary APIs for the consumers of the system to request

data on demand. This is a self-serve data model in which data

scientists or business analysts can readily request data from

various domains based on the data catalog. Clients can first

request a data catalog and then use the catalog to request the

product domain that accounts for the desired data. This request

can include several data products. Egress is responsible for

routing the request to the data catalog and to the corresponding

product “service mesh” to resolve values. The egress realizes

the address for service meshes and other services through

the data catalog and service discovery. The egress service

should cache the resolved addresses and values to increase

performance and response time. An architect can even choose to

implement a complete query cache component inside the egress

service; however, that will increase complexity and can affect

modifiability. This component is to avoid having people request

data directly from data engineers for various BD requirements

and means that people can just request what data they need,

analogous to a person who orders food at a restaurant, with the

menu being the data catalog and egress being the waiter. This

component addresses the requirements for Vel-2, Vel-4, Val-3,

Val-4, SaP-1, and SaP-2.

7. Product domain servicemesh: as previously discussed, a product

is a capability of the business, and each product has its own

domain consisting of the bounded context and the ubiquitous

language. From a system and architectural point of view, these

domains are referred to as a “service mesh” (Figure 1). Each

service mesh is made up of a batch ingress, stream ingress,

BD storage, BD processing framework, domain’s data service,

the required compute nodes to run these services, a sidecar

per service, and a control tower. These components provide

the necessary means for the domain to achieve its ends. This

architectural component removes the coupling between the

teams and promotes team autonomy. This means people across

various teams are enhanced with the desired computational

nodes and tools necessary and can operate with autonomy

and scale without having to be negatively affected by other

teams or having friction with platform teams or siloed data

engineering teams. Depending on the context and the business,

the architect may create several domains. This component

indirectly addresses Vol-1, Vel-3, Vel-4, Vel-5, Var-1, Var-2, Var-

3, Val-1, Val-2, Val-3, Val-4, Sap-1, SaP-2, Ver-1, Ver-2, and

Ver-3.

Implementation considerations for product domain

service mesh: when implementing the product domain service

mesh, focus on enhancing observability, security, and traffic

management within and between product domains. Utilize

a service mesh implementation such as Istio, which can be

deployed on Kubernetes. Implement sidecar proxies (such

as Envoy) alongside each service to handle inter-service

communication, enabling features such as load balancing,

circuit breaking, and telemetry collection without modifying

application code. Configure mutual TLS (mTLS) between

services for secure communication. Implement fine-grained

access controls using Istio’s authorization policies. Utilize Istio’s

traffic management features for canary deployments and A/B
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testing within product domains. Implement distributed tracing

to monitor request flows across services, aiding in performance

optimization and debugging.

8. Federated governance service: evidently, Cybermycelium is

a distributed architecture that encompasses a variety of

independent services with independent lifecycles that are built

and deployed by independent teams. Whereas teams have

their autonomy established, to avoid haphazard, out-of-control,

and conflicting relations, there should be a global federated

governance that aims to standardize these services. This will

facilitate the interoperability between services, communication,

and aggregates and even allow for a smoother exchange of

members across teams. This also means the most experienced

people at a company, such as technical leads and lead architects,

will prevent potential pitfalls thatmore novice engineersmay fall

into. However, the aim of this service is not to centralize control

in any way as that would be going a step backward into the data

warehouse era. The aim of this service is to allow autonomous

flow in the river of standards and policies that tend to protect

the company from external harm. For instance, failing to comply

with GDPR while operating in Europe can result in fines of up

to 10 million euros, and this may not be something that novice

data engineers or application developers are fully aware of. The

real challenge for the governance team is then to figure out the

necessary abstraction of the standards for the governance layer

and the level of autonomy given to the teams. The federated

governance service is made up of various components, such

as global policies, metadata elements and formats, standards,

and security regulations. These components are briefly discussed

below:

(a) Global policies: general policy governs the organizational

practice. Both internal and external factors could have an

impact on this. For instance, complying with GDPR could

be a company’s policy and should be governed through the

federated governance service.

(b) Metadata properties and formats: this is an overarching

metadata standard defining the required elements that

should be captured as metadata by any service within the

organization; it can also include the shape of metadata and

the properties of it. For instance, the governance team may

decide that each geographical metadata should conform to

ISO 19115-1 (ISO, 2019).

Variable components guidance: in the event of deploying

an internal application where the data are transient and

not subjected to compliance scrutiny, the complexity of

the metadata can be significantly reduced or omitted.

An architect may streamline metadata to include essential

elements that support basic operational requirements,

foregoing expansive metadata schemes typically necessitated

by external regulatory bodies.

(c) Standards: overall standards for APIs (for instance, Open

API), versioning (for instance, SemVer), interpolation,

documentation (for instance, Swagger), data formats,

languages supported, tools supported, technologies that are

accepted, and others.

Variable components guidance: in scenarios where a

system operates in isolation from external interfaces or

in a highly specialized domain with unique requirements,

adherence to common standards may be relaxed or omitted.

The architect must ensure that any deviation from established

standards does not impede future integration efforts or

system scalability. The decision to omit standardization

should be deliberate, with a focus on maintaining system

agility while safeguarding against potential technical debt.

(d) Security regulations: company wide regulations on what is

considered secured, what software is allowed, how interfaces

should be conducted, and how the data should be secured.

For instance, a company may choose to alleviate the risks

associated with OWASP’s top 10 application security risks.

While the abovementioned components are promoted as

the bare minimum, an architect may decide to omit or add a

few more components to the federated governance service. This

component can indirectly affect all requirements.

9. Data catalog (variable): as the number of products increases,

more data become available to be served to consumers,

interoperability increases, and maintenance becomes more

challenging. If there is no automatic way for various teams to

have access to the data they desire, a rather coupled and slow

BD culture will evolve. To avoid these challenges and to increase

discoverability, collaboration, and guided navigation, the service

data catalog should be implemented. The data catalog is listed as

a must-have by Gartner (Ehtisham Zaidi, 2019) and introduces

better communication dynamics, easier data serve by services,

and intelligent collaboration between services. This component

addresses the requirements Vel-4, Var-1, Var-3, and Var-4.

Variable component guidance: in scenarios where the

organization utilizes a single or limited number of data sources,

the structure of the data catalog could be condensed or entirely

omitted. The architect could pivot toward a direct query

approach against the source systems, especially in environments

where data lineage and sourcing are not of paramount concern.

10. Logging aggregator and log store (variable): if all services employ

the idea of localized logging and simply generate and store logs

in their own respective environments, debugging, issue-finding,

and maintenance can become challenging tasks. This is due to

the distributed nature of Cybermycelium and the requirements

to trace transactions among several services. To overcome

this challenge, the log aggregator pattern popularized by Chris

Richardson is employed (Richardson, 2018). The log aggregator

service is responsible for retrieving logging events through the

event broker from individual services and writing the collected

data into the log store. The log aggregator configuration

and semantics are up to the designer and architecture team.

This allows for the distributed tracing and graceful scaling

of organizational logging strategies. This component indirectly

addresses the requirements Vol-1, Vel-1, Val-1, and Ver-1.

Variable components guidance: for applications with a

narrow scope of operation and minimal user base, such as a

prototype or an internally used tool, the logging aggregator

may be omitted. In such cases, direct log analysis methods

may suffice, freeing the system from the additional layer of log

aggregation complexity.

11. Event archive (variable): as the quantity of services grows,

the topics in the event backbone increase, and the number
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of events surges. Along the lines of these events, there could

be a failure, resulting in a timeout and a loss of a series of

events. This puts the system in the wrong state and can have

detrimental ripple effects on all services. Cybermycelium tends

to handle these failures by using an event archive. The event

archive, as the name states, is responsible for registering events,

so they can be retrieved in the event of failure. If there was

a blackout in a certain geographical location and the event

backbone went down, the backbone could recover itself and

bring back the right state of the system by reading the events

from the event archive. The event broker is responsible for

circuit breaking, so services do not request any more events to

the backbone while it is down. The time to expire and what

events should be archived are decided based on the context

in which Cybermycelium is implemented. This component

indirectly addresses the requirements Vol-1, Vel-1, Val-1, and

Ver-1.

Variable components guidance: in a development or

testing environment where events are non-critical, the event

archive could be omitted. The architect might determine that

the operational overhead of maintaining an archival system

outweighs its benefits in a non-production scenario.

12. Data lake (variable): whereas Cybermycelium is a great advocate

of decentralized and distributed systems, it is not necessary for

each product domain to have its own kind of data lake or data

storage. This is to prevent duplication, contrasting data storage

approaches, decreased operability among services, and a lack

of unified raw data storage mechanisms. A data lake has been

designed to store large volumes of data in raw format before it

can be accessed for analytics and other purposes. This means

data can be first stored in the data lake with corresponding

domain ownership before it needs to be accessed and consumed

by various services. Structured, semi-structured, unstructured,

and pseudo-structured data can be stored in the data lake before

it gets retrieved for batch and stream processing. Nevertheless,

this does not imply that all data should directly go to the data

lake; the flow of data is determined based on the particularities

of the context in which the system is embodied. A suitable

approach is to assign each team ownership of a specific storage

unit within the data lake, managed through access control.

This component addresses the requirements Vol-2, Vel-1, Var-1,

Var-3, Var-4, and Val-3.

Variable component guidance: a scenario that warrants the

omission of complex partitioning strategies within the data lake

is when the enterprise operates on a small-scale data footprint

with homogeneous data types. Here, an architect may favor

a simplified, flat-storage approach, eliminating the need for

elaborate partitioning and the overhead it entails.

13. Service discovery (variable): in a distributed setup such as

Cybermycelium, how do services discover the location of other

services? This is achieved through service discovery. As the

practice of hard-coding service addresses in configuration files

is not a maintainable or scalable approach, one has to think

about an automated, scalable solution in which services can

become discoverable by other services. The service discovery

node is responsible for this job. This is achieved through services

registering themselves with the service discovery node when

they boot up. Service discovery then ensures that it keeps an

accurate list of services in the system and provides the API

necessary for others to learn about the services. For instance,

it is idiomatic for an engineer to specify a command to be

executed when a Docker container starts (Node server.js); thus,

one can imagine extending the boot up instructions to achieve

registration to the service discovery node. This somewhat

resembles DHCPs and house wifi networks. This component

indirectly addresses the requirements Vel-2, Vel-4, Var-2, Var-4,

Val-3, Val-4, and SaP-2.

Variable component guidance: for monolithic applications

or when services are statically assigned and do not require

discovery for communication, the service discovery component

can be omitted. An architect might bypass this component

to reduce architectural complexity in a stable and predictable

deployment environment.

14. Monitoring (variable): monitoring systems are integral to

the robustness of a highly dynamic ecosystem of distributed

systems and directly affect metrics such as mean time to

resolution (MTTR). Services emit large amounts of multi

dimensional telemetry data that cover a vast spectrum of

platform and operating system metrics. Having this telemetry

data captured, handled, and visualized helps systems engineers,

software reliability engineers, and architects proactively

address upcoming issues. Based on these premises, the main

responsibility of this service is to capture and provide telemetry

data from other services to increase the overall awareness of the

Cybermycelium ecosystem. This service is tightly aggregated

with the service discovery. Monitoring services help store

this data to fuel proactive actions. This component indirectly

addresses all requirements.

Variable component guidance: in smaller, less complex

systems where the operational state can be ascertained without

extensive monitoring, an architect may decide to omit advanced

monitoring configurations. This could apply to single-service

applications or ones with minimal integration points, where

basic monitoring suffices.

5.3.3 Variable components
The variable elements in Cybermycelium can be adjusted,

modified, or even omitted based on the architect’s decision and

the particularities of the context. The aim of this RA is not to

limit the creativity of data architects but to facilitate their decision-

making process through the introduction of well-known patterns

and best practices from different schools of thought. While it is still

recommended to keep the variable components, an architect may

decide to embark on a more complicated metadata approach rather

than just a data catalog. For brevity, this study does not elaborate on

all the alternative options for each variable module. This is due to

the fact that industry constantly changes, and architects constantly

aim to design systems that address emerging problem domains.

5.4 Decision-making aid

The component decision tree illustrated in Figure 3 is designed

to guide architects through the intricate process of selecting,

modifying, or omitting various components based on a multitude
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of factors. This tool addresses architectural flexibility and varying

application scenarios, providing a structured pathway to informed

architectural choices.

Developed through an analysis of the architecture’s components

and influenced by factors such as data volume, system complexity,

and compliance needs, the tree presents decision nodes

leading to multiple pathways. These nodes represent key

architectural considerations, directing the implementation toward

a configuration that aligns with organizational objectives and

technical requirements. Architects begin with an assessment of

the organizational context, which influences the direction and

complexity of subsequent decisions. As they traverse the tree, they

engage with decisions concerning data scale, processing needs,

security, compliance, and scalability, each with its ramifications

and trade-offs.

6 Evaluation

Of particular importance to the development of an RA is its

evaluation. As previously discussed, the aim is to evaluate the

RA’s correctness and utility by assessing its transformation into

an effective, context-specific concrete architecture, following the

guidelines of ATAM. The main goal of ATAM is to appraise

the consequences of architectural decisions in the light of quality

attributes. This method ensures that the architecture is on the

right trajectory and in line with the context. By uncovering key

architectural trade-offs, risks, and sensitivity points, ATAM analysis

increases confidence in the overall design.

For ATAM to be successful, there should not be a precise

mathematical analysis of the system’s quality attributes, but

rather trends should be identified where architectural patterns are

correlated with a quality attribute of interest. For brevity purposes,

ATAM is not expanded on, nor are the details of each step in it. Only

an explanation of how the evaluation has been conducted through

ATAM is provided. It is important to note that this was not a setup

in which an outside evaluation team would come to a company to

evaluate an architecture in practice, but it was artifact of this study

that was brought into a company to test its utility and relevance.

While this could have been achieved with technical action

research or lightweight architecture evaluation, ATAM was found

to be in line with the conceptual constructs, which are architectural

constructs. ATAM provided us with a framework to discuss

architectural concepts in a rigorous way (Wieringa, 2014). A

prototype was created and evaluated internally, introducing

potential bias. To avoid bias, a third-party researcher, familiar with

ATAM, was invited to observe the overall process and partake in

architectural probing questions.

For instantiation of the RA, the ISO/IEC 25000 SQuaRE

standard (Software Product Quality Requirements and Evaluation)

(ISO, 2014) has been utilized for technology selection.

Notwithstanding, this standard was not fully adopted. The

technology research phase combined a structured literature review

with hands-on exploratory testing, ensuring a comprehensive

understanding of potential technologies for the Cybermycelium

architecture. The literature review delved into academic papers,

industry reports, product documentation, and user testimonials

to understand various technologies, theoretical underpinnings,

FIGURE 3

Decision-making tree for Cybermycelium.

practical applications, strengths, and limitations. This phase was

essential in assessing the alignment of each technology with the

specific requirements of Cybermycelium.
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Concurrently, exploratory testing provided firsthand insights

into the functionalities, maintainability, compatibility, and

portability of the technologies. This practical examination ensured

that each technology was rigorously assessed against established

evaluation criteria, with findings documented for subsequent

analysis. For example, when selecting a distributed streaming

platform for the event backbone, Apache Kafka, Amazon Kinesis,

and Azure Event Hubs were evaluated. The literature review

revealed that Apache Kafka had a strong academic foundation,

extensive industry adoption, and a wide range of connectors and

integrations.

Exploratory testing confirmed Kafka’s high throughput, low

latency, and scalability. Moreover, Kafka had over 27 thousand

stars on Github with over 11,000 issues closed, portraying the

maturity and reliability of the library. The evaluation matrix

scored Kafka highly in terms of functional suitability, reliability,

and maintainability. As a result, Apache Kafka was chosen as

the technology for the event backbone in the Cybermycelium

instantiation.

Consequently, popular open-source tools that support

the architectural requirements of Cybermycelium have been

chosen. Developing tools from scratch was not favored, as that

would delay the evaluation artifact and this would affect the

stakeholders negatively. In addition, many mature tools exist

that satisfy the architectural requirements of Cybermycelium,

so therefore “reinventing the wheel” was unnecessary. Table 2 is

the breakdown of how each technology was implemented in the

Cybermycelium prototype:

It was aimed at incorporating most components of the RA

into this instance; however, logging, monitoring, service discovery,

the federated governance service, and the data catalog have been

omitted. Moreover, some details of this evaluation are omitted

to protect the security and intellectual property of the practice,

and some details are modified for academic purposes. These

modifications have not affected the integrity of the evaluation. A

high-level overview of the steps taken in this ATAM is portrayed

in Figure 4.

6.1 Phase 1

This evaulation is undertaken in a subsidiary of a large-scale

international company that has over 6,000 employees all around

the globe. The subsidiary company offers practice management

software for veterinary practitioners via Software as a Service (Saas)

and has over 15,000 customers from the USA, UK, Australia,

New Zealand, Canada, Singapore, and Ireland, among which are

some of the biggest equine hospitals, universities, and veterinary

practices. The company is currently at the stage of shifting

from a centralized synchronous architecture into a decentralized

event-driven microservices architecture and is ambitious to adopt

artificial intelligence and BD.

The initial step was the identification of relevant stakeholders.

For this purpose, the key stakeholders in the company’s

technical governance team are approached. The aim was to

incorporate at least two lead architects of the company in

this process. The emphasis was on architects who have been

in business for a long period of time. This was to ensure

that no important element was missed in the process of

evaluation. As a result, two lead development architects were

invited, along with the head of product and a business analyst,

for phase 1.

6.1.1 Step 1 and 2: introduction
During the initial meeting, in step 1, ATAM was presented

with a clear description of its purposes. In step 2, stakeholders

discussed the background of the business, some of the challenges

faced, the current state of affairs, the primary business goals,

and architecturally significant requirements. This step illuminated

integral elements such as (1) the most important functions of the

system; (2) any political, regional, or managerial constraints; (3)

the business context and how it relates to our prototype; and (4)

architectural drivers.

6.1.2 Step 3: present the architecture
In step 3, the prototype has been presented, our assumptions

have been stated, and variability points have been portrayed.

6.1.3 Step 4: identifying architectural approaches
To establish the architectural styles, the prototype was first

analyzed with regard to the architectural patterns and principles

depicted in Section 5.2. A deeper analysis was then conducted, and

architectural decisions were justified. The event-driven nature of

the prototype was discussed, and the usefulness of the domains was

discussed.

6.1.4 Step 5: utility tree elicitation
To generate the utility tree, the most important quality

attributes first had to be learnt. While these quality attributes were

learned about in step 2 shortly, in this step they were probed deeper.

Assumptions were first presented and double-checked with the

stakeholders. Whereas concerns over privacy were raised by some

stakeholders, the members unanimously agreed that performance,

availability, and maintainability are the most important quality

attributes. This was in line with our assumptions. In this process,

the technical difficulty was rated, and the business importance was

rated by the key stakeholders.

Based on these premises, the utility tree has been generated

(Figure 5). Each node on the utility tree corresponds to specific real-

world scenarios, linking quality attributes to measurable outcomes.

This ensures that performance, availability, and modifiability are

tested against the day-to-day operations of the SaaS environment.

In addition to key quality attributes being identified, specific

scenarios were elicited to test these attributes within the context of

our SaaS company’s operational environment. Each scenario was

designed to rigorously test the Cybermycelium architecture against

the metrics defined in the utility tree. The scenarios include the

following:
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TABLE 2 Components, technologies, and requirements in the Cybermycelium evaluation.

Component Technology Requirements addressed

Ingress service Nginx Vol-1, Vol-2, Var-1, Var-3, Var-4, Val-1, Val-3, Val-4, SaP-1, SaP-2

Batch processing controller AWS lambdas Vel-1, Val-1, Val-2

Stream processing controller AWS lambdas, kafka streams Vol-1, Vel-1, Vel-2, Vel-4, Vel-5, Val-2

Event broker Kafka broker Val-1, Ver-1 (indirectly)

Event backbone Kafka Vel-1, Vel-2, Vel-3, Vel-4, Vel-5, Val-1, Val-2, Ver-1, Ver-2, Ver-3

Egress service AWS application load balancer, node JS Vel-2, Vel-4, Val-3, Val-4, SaP-1, SaP-2

Product domain service mesh Istio, envoy Vol-1, Vel-3, Vel-4, Vel-5, Var-1, Var-2, Var-3, Val-1, Val-2, Val-3, Val-4, SaP-1,

SaP-2, Ver-1, Ver-2, Ver-3

Data lake AWS S3 Vol-2, Vel-1, Var-1, Var-3, Var-4, Val-3

Event archive AWS S3 Vol-1, Vel-1, Val-1, Ver-1 (indirectly)

FIGURE 4

ATAM steps.

• Scenario 1: real-time processing of streaming data from

multiple clinics, with the system maintaining response times

under 1,200 ms even during peak usage.

• Scenario 2: simulated failure of a data center to test the

resilience of the load balancer and the cluster availability,

maintaining 99.99 and 99.999% uptime, respectively.

• Scenario 3: integration of a new third-party service within

a week, showcasing the modifiability and extensibility of the

service mesh infrastructure.

• Scenario 4: addition of new data sources in response

to changing privacy regulations, completed within the

modifiability goal of less than one week.

These scenarios provide a broad overview of the types of

challenges and requirements the architecture must address. They

serve as foundational concepts that will be further refined intomore

specific and detailed scenarios in subsequent steps of the ATAM

process.

6.1.5 Step 6: analyse architectural approaches
Prior to commencing this step, simulations of the prioritized

scenarios were conducted against the prototype to validate the

architecture’s response against the utility tree metrics. Valuable

insights into the system’s performance under various stress

conditions and its ability to adapt to new requirements rapidly were

provided by these simulations.

After this, analysis of the architectural approaches took place. In

this step, the lead architects were asked to probe the architecture,

and an explanation of how the prototype is addressing each

scenario was provided. The architectural constructs were justified

by evaluating key quality attributes previously collected for the
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FIGURE 5

Utility tree.

purposes of this evaluation. The following was explained for each

quality attribute:

• For performance, Nginx, Kafka, Istio, DataBricks, and the

AWS Application Load Balancer have been described.

• For availability, Kafka, Event Archive, Nginx, Controllers,

Data Lake, and Istio have been discussed.

• For modifiability, the concept of domain-driven design, the

service mesh, zero coupling, the plug-and-play nature of the

archetype, the ability to add desireable services through event

brokers, and the distributed nature of the architecture have

been discussed.

The result of this step was the identification of sensitivity

points, trade-offs, risks, and non-risks. This step took longer than

anticipated as a variety of questions arose and many aspects of

the architecture were challenged. The details are discussed in

Section 6.2.3.

6.2 Phase 2

This phase was a more serious phase of the evaluation, as

more stakeholders were invited, more scenarios were collected,

and even simulations were created. For this phase, in addition to

lead architects, a product owner responsible for the product in

which the artifact is tested, a quality assurance engineer, and several

developers were invited. Step 1 was repeated, a recap of steps 2–

6 was provided, and the current list of risks, non-risks, sensitivity

points, and trade-offs was shared.

This phase is an iteration of phase one, so scenarios were

collected, architectural approaches were analyzed, and finally, the

result of the evaluation was presented.

6.2.1 Step 7: brainstorm and prioritize scenarios
Building upon the high-level scenarios defined in Step 5, this

step involves a detailed brainstorming session to develop specific,

context-driven scenarios. These refined scenarios provide a fine-

grained and realistic set of challenges and opportunities that the

Cybermycelium architecture must address, reflecting the unique

operational environment of the SaaS company. They are designed

to be direct derivatives of the broader concepts introduced earlier,

now tailored to test the system’s responses in a more rigorous and

precise manner.

Based on this premise, in this step, stakeholders were asked

to come up with three different kinds of scenarios: growth

scenarios (anticipated changes), use-case scenarios (typical usage

of the system), and exploratory scenarios (extreme cases). Twenty

scenarios were created as a result of this, which the stakeholders

were then asked to vote on.

Drawing from the quality attributes highlighted in the utility

tree, stakeholders were prompted to conceive scenarios that test the

system’s capabilities in a pragmatic setting. The following scenarios

were derived, each tailored to challenge and assess the architecture’s

response to realistic operational demands:

• Scenario 1: “Rapid diagnostics turnaround”—in the context of

a veterinary hospital, the architecture must support the real-

time analysis of lab results, enabling a diagnosis for conditions

such as Lyme disease within a critical time window and

ensuring that response times remain below the threshold of

1,200 ms.

• Scenario 2: “Disaster recovery”—a simulation of a regional

data center outage tests the system’s failover mechanisms,

specifically the ability of the load balancer and data cluster to

maintain operational availability above 99.99%.

• Scenario 3: “Seamless integration”—the architecture must

facilitate the integration of a new third-party service mesh

within a week, demonstrating the system’s adaptability to

evolving business partnerships and technical ecosystems.

• Scenario 4: “Compliance adaptation”—in response to updated

privacy regulations, the system must accommodate the

addition of new data sources and changes to data handling

processes within a week, showcasing the architecture’s

modifiability and compliance agility.

In turn, these scenarios are described as two user journeys:

• A cat owner brings a cat to the veterinary hospital. The cat

has symptoms of Lyme disease and should be diagnosed in a

timely manner to avoid master problems.

• There have been numerous cases of cancer in pets in certain

environments. This environment should be analyzed to see if

environmental factors play a cancer inducing role.

6.2.2 Step 8: analyse architectural approaches
Before starting this step, a few days of rest were taken to

simulate the scenarios against the prototype.While ATAMdoes not

prescribe this, the evaluation was augmented with this simulation

to ensure that no necessary architectural detail was overlooked.

This improved confidence in the RA and the architectural probing

questions to come.

The scenarios were emulated against the prototype by creating

relevant topics in the Kafka, having the data flow, having the ingress

in the service mesh digest it and flow it into the storage and

processing, and so on and so forth. Real-world data have been used,

so there was no need for data fabrication and synthesis. Nginx was

configured to pass the request to the responsible Lambdas, and

Lambdas then produced the necessary events and sent them to

Kafka.
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The simulation was presented alongside some metrics captured

and displayed in the cloud served Garafana instance. From here

on, this step followed the exact same procedure as step 6, with the

difference that this time there had been more extensive probing

and analysis of the architecture and the simulated scenarios. The

simulation and results helped clarify some of the architectural

constructs and led to the emergence of several questions:

• How does the system recover if the event backbone goes out of

order?

• What if the service mesh ingress is not available?

• Should privacy be its own service? or should it sit in

federation?

• Should we have a dedicated service mesh for metadata

management?

• How easy is it to extend and modify current services?

• Should there be a certain order to events?

• Is there a benefit to creating event mesh between event

brokers?

• Where is the best place to scrub sensitive data from the

incoming streams?

6.2.3 Step 9: present results
In this last step, the collected theories form the process of

evaluation, discussed in terms of quality attributes, risks, sensitivity

points, trade-offs, and other unplanned discussions that arose

during the meetings.

Based on the result of our evaluation, stakeholder feedback,

the utility tree, and the architectural qualities of Cybermycelium,

it is deduced that system quality QS is a function f of the quality

attributes availability QA, performance QP, and modifiability QM.

QS = f (QM,QA,QP) (1)

6.2.3.1 Performance

To analyse the approach in line with the utility tree, after the

simulated scenarios had been created, a cloud stress testing agent

(StressStimulus) was used. After this stress test had been run a

couple of times, it became evident that the cold start latency of AWS

Lambda services can affect the performance requirements stated in

the utility tree. Anywhere from 100 ms to over a second can be

taken by a Lambda at a cold start time. This latency varies and is

hard to nail down, but even considering the latency, an average

of 1,000 ms of response time has been captured from the system,

which is in line with the utility tree. While this issue could be solved

by replacing Lambdas with EC2s or Fargates, the cost would be

increased, the maintainability of the architecture would be affected

(a server has to be provisioned and maintained), and a rework of

several services would be required.

In addition, other Lambda like solutions exist that have actually

solved the cold start problem; one good example is the cloud

workers offered by CloudFlare. However, a multi-cloud approach

is not yet open to the company chosen for the purposes of this

evaluation, and thus, AWS is the only option.Moreover, predictable

start-ups with provisioned concurrency could be implemented but

that requires more effort and is outside the scope of this study. As

the architecture is distributed, the latency in between services has

also been measured as tail latency is a known issue in distributed

systems. Due to the fact that the service mesh was hosted on a

private network on a virtual cloud, no major issue could be found

with cloud latency, and the average response time was under 1,000

ms. A streaming process was implemented in Databricks; it was

opted not to use micro-batch to have an accurate evaluation, and

it was decided not to configure the fair scheduling pool so as to test

the worst case scenario.

After creating and analyzing various performance models of

the system, it has become clear to us that latency, side effects such

as input and output, and mutations and transformations were the

most important performance sensitivity points. Our performance

model was built based on the following cases:

• Periodic, regular data dispatch to the product domain.

The event-driven nature of the system really helped with

handling throughput and concurrency. Whereas there have been

bottlenecks in the areas of storage and network latency, the

system has managed to reach its desired performance on average.

Given this insight and after some rigorous testing, the system’s

performance sensitivity is characterized as follows:

QP = h(s, l, cbp) (2)

That is, the system is sensitive to side effects (s), latency (l), and

concurrency back pressure (cbp).

6.2.3.2 Availablity

As guided by the utility tree, the key stimulus to model for

the prototype is the failure of the ingress (load balancer), the

data processing cluster, and most importantly, the event backbone.

Due to the distributed nature of Cybermycelium and the derived

prototype, failure in one service, if not handled properly, can have a

ripple effect on the system. This is one area where the idea of “event

brokers” was found to be really helpful. By implementing circuit

breakers in event brokers, other nodes of the systemwere prevented

from being affected by the failure of one. The events that the node

was about to receive before it failed were also archived.

Whereas the event archive has played an ancillary role in

providing archive to various circuit breakers, its main functionality

was to provide event history to the event backbone in the event of

failure. This is again achieved by circuit breaking at the broker level

and event retrieval from the event archive. On the other hand, in

relation to container orchestration and health checks, Kubernetes

provided a declarative API to handle the state of the system. With

setting replica sets and necessary deployments, the master node

kept ensuring that a certain number of pods were always available.

This implies that it is critical for the master node to be available at

all times.

Based on these findings, the system’s availability is characterized

as follows (g is the fraction of time that the system is working):

QA = g(λE,µC,µS) (3)

That is, system availability is primarily affected by the failure

rate of the event backbone (λE), the time it takes for the circuit
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breaker to trip and become available again (µC), and the time it

takes for the service to recover from failure (µS).

One major factor that really helped alleviate many issues with

distributed systems was the cloud-native aspect of Cybermycelium.

Whereas this aspect of the architect has not been discussed

previously, the prototype was easily deployed in AWS with well-

known Amazon web services. As on-premise data centers were not

handled, much of the hardware was handled by the cloud company.

6.2.3.3 Modifiability

To analyse modifiability, the guidelines of SAAM (Kazman

et al., 1994) were followed. The distributed and service driven

nature of the prototype allowed us to easily achieve the utility tree

and even more. All of our cloud based infrastructure has been

written as Terraform code in HCL, whichmeans adding a new node

to the system was as easy as copying the worker groups block in

the EKS configuration and setting its hardware properties. Different

services and deployments could then be easily deployed and have

the public Docker images run. Brokers were also streamlined, and

a new broker could be spun up within minutes. One area that

was found a bit challenging to modify was perhaps the Databricks

cluster and the EKS ALB ingress (Nginx).

Certification management was also easily handled through

Istio, local CertManager, and Let’s Encrypt. One area that could be

taking a bit longer was the inclusion of private Docker image secrets

as a Kubernetes secret and having it refreshed every 12 h. To the

best of our knowledge, cron jobs were the only way to achieve this,

but the implementation was not straight forward.

On the other hand, bringing up a scalable Kafka cluster was

not that difficult, but there were so many configurations that one

could choose to turn on or amend. This can potentially affect

modifiability in the long run, when the company might have

varying and sometimes conflicting requirements.

Modifiability is also affected by the skillset of the engineers

and how familiar they are with Kubernetes, Databricks, and Istio.

Taking all these into consideration, the system’s modifiability is

characterized as follows (s is the skill set required):

QM = s(K,D,K) (4)

That is, the system modifiability is affected by Kubernetes

maintenance (K), Databricks maintenance, versioning, and

configuration (D), and Kafka versioning, maintenance, and

configuration.

6.2.3.4 Trade-o� points

As a result of these analyses, two trade-off points are identified:

1. Event backbone and event brokers.

2. Service mesh.

One area that has raised many worries is the event backbone.

The event backbone being the communication facilitator has raised

a lot of questions, and many are worried that this might turn into

a bloated architectural component such as the enterprise service

bus (ESB) in service-oriented architectures (SOAs). Many of these

questions and issues were addressed both in the discussion and

the prototype. By implementing an event archive, it meant that if

the event backbone went down, the previous state of affairs could

be restored and services could be brought to the correct state.

The implementation of circuit breakers through the event brokers

further solidified the availability of the architecture and could be

deemed to affect reliability too. Along these lines, event brokers

helped us address some of the modifiability challenges. Having

these event brokers setup means that different environments do

not implement their own event processing mechanisms, and the

interface is unified across them. This clear interface contributed

positively to the overall modifiability of the system and allowed

engineers to simply copy the broker for their services. In addition,

brokers also improved interoperability, and hard-to-trace bugs led

to processor missmatches.

Given all, Cybermycelium does not tend to dictate what has

to be done or kill the creativity of the archites but rather aims

to shed light on a novel perspective on designing BD systems.

Therefore, the event backbone and event brokers introduce

a trade-off between performance, availability, and reliability.

Whereas eliminating the event backbone may increase availability

longitudinally and increase modifiability cross-sectionally, it may

affect the performance quality attribute in a negative way. This is

due to the fact that the event backbone is distributed in nature,

can scale well to account for demans, can cache and remember

communication paths, merge event streams, provide windowing

techniques, and be configured to facilitate certain access patterns

that are common to the system.

Another area where stakeholders were challenged was the idea

of service mesh. Whereas this makes a lot of sense to developers

who had to figure out how the twisted platform worked, the benefit

perhaps was not that evident to everyone from the beginning.

This is another area of trade-off. While having the service mesh

affects the modifiability of the system in a negative way from a

platform point of view, it does increase it from a data engineering

and software engineer point of view. The service mesh may also

affect performance slightly, but the effect is negligible. Service

mesh also affects availability positively by streamlining the platform

interfaces, providing an orchestrator (control tower), and doing

health checks through proxies.

6.2.3.5 Limitations

Cybermycelium is a new perspective on BD system

development and tends to absorb many of the well-established

patterns and ideas from various domains. Being distributed in

nature, there are still many areas in which Cybermycelium can be

improved. For instance, a great answer to tail latency issues, which

can affect the system negatively, is still not available. In addition

to that, feedback has been received that many developers find

Cybermycelium a complex architecture that requires a lot of skill to

implement. It requires an understanding of event-driven systems,

event streaming, service meshing, cloud computing, and even data

mesh. It is not thought that a modern distributed BD architecture

should be simple, but it is strived to simplify the ways in which

Cybermycelium can be absorbed.

Taking all these into consideration, it is posited that distributed

BD systems are still in their infancy stage, and much work is

required to facilitate this area of research. This research could be

in the areas of BD distributed patterns, event-driven BD systems,

data mesh, BD RAs, and methods for creating BD distributed

architectures.
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Moreover, the security, privacy, and metadata aspects of BD

need substantial work at the macro- and micro-levels. More

mature technologies and better architecture that combine these

technologies into a solution are needed. This is one major area on

the roadmap.

6.2.3.6 Threats to validity

This section acknowledges the limitations and potential biases

inherent in the evaluation process and the results thereof, aiming to

provide a balanced and realistic interpretation of the findings.

In conducting the evaluation of the Cybermycelium

architecture using the ATAM method, several threats to validity

need to be considered:

1. Selection bias: the scenarios and stakeholders involved in the

evaluation were chosen from a specific context, which may not

represent all possible use cases and viewpoints. This selection

bias might limit the generalizability of the findings to other

contexts or architectural needs.

2. Evaluator bias: as the evaluators are also the architects of the

system, there is an inherent risk of confirmation bias, where

evaluators might favor findings that confirm the architecture’s

intended benefits. Third-party validation or blind evaluations

can mitigate this risk.

3. Scenario validity: the scenarios used in the utility tree elicitation

and subsequent steps may not capture the complexity or

unpredictability of real-world operations. While they proxy

actual system behavior, they may overlook aspects.

4. Technological evolution: the chosen technologies and tools

are subject to rapid evolution and change. The evaluation’s

relevance may diminish as new technologies emerge or existing

ones evolve, affecting the architecture’s performance, availability,

and modifiability.

5. Complexity and scale: the distributed nature of the

Cybermycelium architecture adds layers of complexity that

might not be fully addressed or understood in the evaluation.

The scale at which the system operates can introduce unforeseen

challenges not captured in the evaluation.

Recognizing these threats is crucial for interpreting the

evaluation results in the right context. It is also important for

future work to continuously validate and refine the architecture,

considering these limitations and the evolving nature of technology

and business needs.

7 Discussion

This study introduced Cybermycelium, a novel domain-driven

distributed reference architecture for BD systems, designed to

address limitations in current BD architectures. Motivated by the

challenges of monolithic data pipelines and siloed data engineering

teams, Cybermycelium proposes a decentralized approach that

leverages principles from domain-driven design, event-driven

architecture, and microservices. The architecture aims to improve

scalability, flexibility, and data governance in BD systems.

The research employed a systematic methodology, combining

a comprehensive literature review with architectural design and

evaluation using the ATAM. A prototype implementation in a

real-world organizational context allowed for practical assessment

of Cybermycelium’s performance, availability, and modifiability.

The evaluation revealed promising capabilities in handling high

data volumes and velocities, with the event-driven nature of the

architecture contributing to system resilience and scalability.

Key findings from the evaluation include the identification

of trade-offs between system flexibility and complexity, the

critical role of the event backbone in system performance,

and the importance of specialized technical expertise in

implementing and maintaining the architecture. The study

also highlighted the potential of Cybermycelium in addressing data

governance challenges through its federated governance service,

a feature that aligns with increasing regulatory requirements in

BD management.

7.1 Why Cybermycelium?

If our aspiration to enhance every business aspect with data

needs to come to fruition, we need a different approach to data

architecture. Traditional data warehouse approaches to business

intelligence, while addressing the volume and computing aspects of

data, have failed to address other characteristics of it: heterogeneity

and proliferation of data sources (variety), the speed at which data

arrive and need to be processed (velocity), the rate at which data

mutate (variability), and the truth or quality of the data (veracity).

Integral to the success of any BD initiative is the underlying

data architecture that governs the entire system, its components,

their relations to each other, data flow, and the principles and

standards that govern the quality attributes and evolution of the

system (Serra, 2024). This architecture and design process, if done

underlying current prevalent approaches, can result in losses and

may leave managers disappointed. Nevertheless, it is not suggested

that all these architectures will fail; perhaps some have proven to

be successful in a specific context. There are two threats to the

maintainability and scalability of these systems: (1) Data source

proliferation: as the BD system grows and more data sources are

added, the ability to ingest, process, and harmonize all these data

in one place diminishes, (2) Data consumer proliferation: as the

variability of the data rises, the sum of aggregations, projections,

and slices increases, which in turn adds more work to the backlog

of the data engineering team, slowing down the process of serving

the data to consumers.

Currently, BD RA architectures are usually segregated into

pipelines that process data differently. While each pipeline has its

own responsibility to handle various aspects of the BD system,

there is still a high level of coupling between the pipelines. This

coupling is even more highlighted when the company is at the

stage of rapid experimentation with data sources and would like to

explore new domains of insight generation, and this in turn means

that delivering new features and values is orthogonal to the axis of

change.

Another major issue with the current architectural approaches

is that data engineering is usually confined to a team of hyper-

specialized individuals who are siloed from the operational units of

the organization. These teams, being fully responsible for creating
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the infrastructure for data processing, are often absent in business

knowledge and the domain, which limits their productivity.

In the following section, a comparison of Cybermycelium and

current existing RAs is explored. This is to position this study

in academia and highlight the contribution and the architectural

evolution that this artifact provides.

7.2 A comparative analysis

This section offers a comparison of Cybermycelium with

existing BD RAs, emphasizing its differences in areas such as

data processing, scalability, security, privacy, data management,

and adaptability. The following sub-sections start by describing a

common BD RA and then compare it to Cybermycelium.

7.2.1 Data processing and scalability
Lambda Architecture, as presented by Kiran et al. (2015), and

Kappa Architecture, discussed in Kreps (2014), are both designed

to handle data processing in big data systems. Lambda Architecture

uses a dual-layered processing framework to handle batch and real-

time streaming data, while Kappa Architecture simplifies this by

treating all data as a single stream and merging the processing

layers.

However, both Lambda and Kappa architectures focus

primarily on the data processing aspect and do not extensively

address cross-cutting concerns such as data governance, security,

or metadata management. They provide simple, high-level views of

data processing but lack a comprehensive framework for handling

the diverse needs of modern data-driven organizations.

In contrast, Cybermycelium takes a more holistic approach

to data processing and scalability. It separates batch and

stream processing using dedicated controllers, similar to Lambda

Architecture, but also incorporates additional components to

address cross-cutting concerns. For example, Cybermycelium

includes a federated governance service for data governance and

compliance, a metadata catalog for data discovery and lineage

tracking, and services for data product sharing and automated

infrastructure provisioning.

7.2.2 Security and privacy
From a security and privacy point of view, most RAs found

in the studies of Ataei and Litchfield (2022) are lacking. The

Intel Healthcare RA (Sikora-Wohlfeld et al., 2014), designed for

healthcare data processing, exhibits its limitations in its focus on

security and privacy, which are critical in handling sensitive health

data. Similarly, IBM’s Healthcare RA (Quintero and Lee, 2019),

while effective in its core functionality, does not prioritize security

and privacy aspects sufficiently.

In contrast, Cybermycelium introduces architectural

constructs that can significantly improve security and privacy

from an architectural standpoint. The domain-driven design and

decentralized data ownership model, inspired by Dehghani (2022),

allows for more granular access control and data governance. By

treating data as a product and assigning ownership to specific

domains, Cybermycelium enables domain teams to implement

security measures and access controls tailored to their specific data

assets and compliance requirements.

Moreover, the federated governance service in Cybermycelium

provides a framework for enforcing consistent security policies

and privacy standards across domains. This service can be used to

define and monitor compliance with data protection regulations,

such as HIPAA or GDPR, ensuring that sensitive data are handled

appropriately throughout the organization.

7.2.3 Data management and quality
Oracle’s RA (Cackett, 2013), although robust in its overall

structure, falls short in emphasizing data quality and metadata

management. Cybermycelium fills this gap with a metadata

management system that ensures data quality and consistency

across its lifecycle. This system includes mechanisms for data

validation, cleansing, and enrichment, providing a higher level of

assurance in data quality and usability.

Moreover, Maier’s RA (Maier et al., 2013), despite its

comprehensive approach to BD, does not sufficiently address

dynamic data quality in diverse environments. Cybermycelium

addresses this limitation by implementing robust data quality

mechanisms. These mechanisms are designed to maintain

high data integrity across varying datasets and use cases,

ensuring that the data are accurate, complete, and relevant for

analytical purposes.

7.2.4 Customization and industry adaptability
Microsoft BD Ecosystem RA (Levin, 2013) offers a structured

approach to BD processing within the Microsoft suite of

tools. However, its adaptability to varying industry-specific

needs and non-Microsoft ecosystems is limited. Cybermycelium

addresses this by adopting a technology-agnostic design, ensuring

compatibility and flexibility across different platforms and tools. It

facilitates customization to align with the specific requirements of

diverse industries, from healthcare to retail, by allowing integration

with various data sources and processing tools, thus enabling more

tailored and effective BD solutions.

7.2.5 Innovation in data storage and handling
The Data Lake Approach (Pääkkönen and Pakkala, 2015),

while providing a consolidated platform for data storage, often

leads to challenges in data governance, potentially transforming

data lakes into unmanageable “data swamps.” Cybermycelium

confronts this issue with a decentralized data governance model,

which empowers individual domains to manage and govern

their data while still adhering to overarching organizational

policies. This approach enhances data quality, accessibility,

and compliance.

Moreover, the NIST BD RA (Chang and Boyd, 2018),

though comprehensive in scope, often lacks specificity in its

practical application, particularly in data storage and handling

strategies. Cybermycelium introduces an innovative approach with

its distributed data mesh. This mesh not only facilitates efficient

data management but also supports scalability and interoperability

across various business domains, thereby offering a more practical

and application-focussed data architecture.
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7.2.6 Cloud-based and decentralized
architectures

Cloud-based solutions, represented by architectures such as

Amazon Web Services or Microsoft Azure, offer scalability and

flexibility but tend to maintain a centralized, monolithic structure

in data processing and storage. This structure can limit the

system’s responsiveness to changing data demands and hinder

rapid scalability.

Cybermycelium, while leveraging the benefits of cloud

infrastructure, such as on-demand resource allocation and global

accessibility, diverges from the traditional cloud-based approach

by embracing a decentralized, domain-driven architecture. This

design choice promotes modularity, making each component of

the architecture independently scalable and adaptable. It enables

Cybermycelium to avoid the limitations typically associated with

monolithic cloud-based systems, thus offering a more dynamic

and responsive BD architecture. An overview of the comparative

analysis of Cybermycelium with existing BD RAs is presented in

Table 3.

7.3 Broader implications and adoption
considerations

The implementation of Cybermycelium represents a paradigm

shift in big data architecture, aligning with emerging concepts

such as data mesh (Dehghani, 2022) and data fabric (Gartner,

2021). This alignment positions Cybermycelium at the forefront

of decentralized data management strategies, emphasizing domain-

oriented, distributed architectural patterns.

Adopting Cybermycelium necessitates significant

organizational restructuring, transitioning from traditional

siloed approaches to cross-functional, domain-driven teams. This

transformation echoes the sociotechnical systems theory (Baxter

and Sommerville, 2011), which emphasizes the interdependence

of social and technical factors in organizational change. New

roles such as data product owners become essential, reflecting

a shift toward treating data as a product (Levy and Wilensky,

2021). The technical implementation of Cybermycelium requires

a diverse skill set, encompassing proficiencies in event-driven

architectures, distributed systems, and domain-driven design. This

multidisciplinary approach aligns with the T-shaped skill concept

(Guest, 1991), where professionals possess both depth in specific

areas and breadth across related domains.

While Cybermycelium offers potential benefits in scalability,

flexibility, and data governance, its adoption faces several

challenges. These include the technical complexity inherent in

distributed systems, organizational resistance to change, and initial

financial investments. These challenges are consistent with the

innovation diffusion theory (Rogers, 2003), which posits that the

adoption of new technologies is influenced by their perceived

attributes and the social system in which they are introduced.

To mitigate these challenges, organizations can employ

strategies such as phased implementation and comprehensive

training programmes. These approaches are rooted in change

management theories such as Kotter’s 8-step model (Kotter, 1996),

emphasizing the importance of creating a sense of urgency,

building a guiding coalition, and anchoring new approaches in the

organizational culture.

7.4 Limitations and future work

Cybermycelium, being a new perspective on BD system

development, still has areas for improvement. The distributed

nature of the architecture presents challenges, particularly in

addressing tail latency issues. The complexity of the architecture

requires a high level of skill to implement, necessitating

understanding of event-driven systems, event streaming, service

meshing, cloud computing, and data mesh concepts.

Future research directions could include the following:

• Investigating practical implementation and integration of

Cybermycelium in diverse organizational contexts.

• Assessing its efficacy in handling emerging data formats and

processing paradigms.

• Refining the architecture based on real-world performance

metrics and evolving industry trends.

• Developing guidelines and best practices for adopting and

maintaining decentralized, domain-driven BD architectures.

• Exploring integration patterns to help companies transition

from centralized to emergent distributed BD architectures.

• Investigating the use of Cybermycelium for new AI

applications using Large Language Models (LLMs).

8 Conclusion

This study introduces Cybermycelium, a novel domain-driven

distributed reference architecture for Big Data systems, addressing

critical limitations in current architectures. Cybermycelium’s

key contributions lie in its decentralized, event-driven

approach, integrating principles from domain-driven design

and microservices. It enhances scalability, flexibility, and data

governance while introducing a federated governance model that

balances domain autonomy with organizational oversight.

The practical evaluation using ATAM provides valuable

insights into Cybermycelium’s performance, availability, and

modifiability in real-world scenarios. This evaluation also

highlights important trade-offs and challenges in implementing

distributed Big Data architectures, contributing to the broader

discourse on Big Data system design. Cybermycelium’s alignment

with emerging concepts such as data mesh and data fabric positions

it at the forefront of Big Data management strategies. By offering

a more adaptable solution to the increasing volume, variety, and

velocity of data, it addresses the limitations of monolithic data

pipelines and siloed data engineering teams.

While implementing Cybermycelium presents challenges,

including organizational restructuring and the need for diverse

technical skills, its potential benefits in improved data quality and

more agile decision-making are substantial. As Big Data continues

to evolve alongside AI and machine learning advancements,

architectures such as Cybermycelium will be crucial in enabling

organizations to effectively harness their data assets. In conclusion,

Cybermycelium offers a promising direction for Big Data
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TABLE 3 Comparative analysis of Cybermycelium with existing big data reference architectures.

Area of comparison Limitations of existing BD RAs Cybermycelium’s approach

Data processing and scalability Focus on data processing Holistic approach

Lack comprehensive framework Addresses cross-cutting concerns

Tightly coupled layers Microservices-based architecture

Security and privacy Limited focus on security and privacy Domain-driven design

Insufficient data protection Federated governance, modular design

Data management and quality Insufficient emphasis on data quality Metadata management system

Limited ability to handle dynamic quality Robust data quality mechanisms

Customization and industry adaptability Limited adaptability to industry-specific Technology-agnostic design

needs and non-proprietary ecosystems Facilitates customization

Data storage and handling Challenges in data governance Decentralized governance model

Lack of specificity in application Distributed data mesh

Cloud-based and Decentralized

architectures

Centralized, monolithic structure Decentralized, domain-driven

Limits responsiveness and scalability Modular components for adaptability

architecture, providing a flexible, scalable, and governance-

focussed framework adaptable to the changing needs of data-driven

organizations. Its contributions open new avenues for research

and practical implementation, furthering the field’s ongoing

development and the realization of Big Data’s full potential.
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